JPS6122114A - Fluidized bed incinerator - Google Patents

Fluidized bed incinerator

Info

Publication number
JPS6122114A
JPS6122114A JP14145484A JP14145484A JPS6122114A JP S6122114 A JPS6122114 A JP S6122114A JP 14145484 A JP14145484 A JP 14145484A JP 14145484 A JP14145484 A JP 14145484A JP S6122114 A JPS6122114 A JP S6122114A
Authority
JP
Japan
Prior art keywords
fluidized bed
combustion
gas
section
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14145484A
Other languages
Japanese (ja)
Other versions
JPH0359327B2 (en
Inventor
Tsutomu Higo
勉 肥後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP14145484A priority Critical patent/JPS6122114A/en
Publication of JPS6122114A publication Critical patent/JPS6122114A/en
Publication of JPH0359327B2 publication Critical patent/JPH0359327B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/002Fluidised bed combustion apparatus for pulverulent solid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed

Abstract

PURPOSE:To reduce the concentration of nitrogen oxides and permit a fluidized bed area to cope with a combustion load by a method wherein a blowing inlet, blowing the secondary air toward the fluidized bed in nearly virtically downward, is provided above the top side of the fluidized bed. CONSTITUTION:Combustion object (a) thrown from a throwing inlet 7 is dispersed into a fluidized bed 2. Combustion gas rises up through the fluidized bed. As the secondary air (b) is blown from the blowing nozzle 8 toward nearly virtical direction, turning flow is composed of descending flow at central portion along a furnace wall and ascending flow in the peripheral portion in a free board part 4, therefore, the combustion objects arrive at the fluidized bed effectively. Then, the temperature of the secondary air and gas are risen up by radiant heat during descending and gas and air collide against the gas ascending from the fluidized bed portion 2 near a throat portion 3 and unburnt portion is burnt effectively. Furthermore, they are premixed with the gas after combustion, concentration of oxygen becomes low and temperature rise of the flame portion is small, therefore, the generation of the nitrogen oxides is restrained. As the fluidized bed is heated effectively through a fluidized sand and radiant heat, a heat balance in the fluidized bed becomes good and the temperature of the fluidized bed is stabilized at high temperature.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、流動床を用い゛て燃焼物を焼却せしめる流動
床焼却炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a fluidized bed incinerator that uses a fluidized bed to incinerate combustion materials.

[従来技術] 流動床燃焼炉においては、燃焼空気は、主として、流動
床を形成する流動砂の流動化のために流動床面の吹出部
から押込むように供給される押込空気により兼用される
ことが多い。その場合押込圧力は、下記の式により近似
的に表わすことがでトる。
[Prior Art] In a fluidized bed combustion furnace, combustion air is mainly used as forced air that is supplied from a blow-off section on the surface of the fluidized bed to fluidize the fluidized sand that forms the fluidized bed. many. In that case, the pushing pressure can be approximately expressed by the following formula.

[押込圧力1″、[炉内圧力]+[流動床の層の高さ]
×[流動床のかさ密度]+[吹出部の圧力損失]この押
込圧力は通常10’O’O’+nmAgを超え、それに
更にダクト圧損や空気予熱器、クントロールダンパ等の
圧損も見込む′ため押込空気の送風動力は、単純な焼却
処理設備の場合、全所妄動′力の3割前後に達すること
も珍らしくなかった。
[Indentation pressure 1″, [Furnace pressure] + [Fluidized bed layer height]
× [Bulk density of fluidized bed] + [Pressure loss at blowout section] This indentation pressure usually exceeds 10'O'O' + nmAg, and in addition, duct pressure loss, air preheater, Kuntrol damper, etc. pressure loss is also expected. In the case of simple incineration treatment equipment, it was not uncommon for the blowing power of the forced air to reach around 30% of the total moving power.

また1、押込空気による流動砂の流動は、吹上げる空気
に対する抵抗に基づく流動砂の浮遊化によるものであっ
て、押込風量が増加する程空気の吹上速度も高まり、流
動砂の運動も急速に激しくなる。それに伴って流動砂自
体、流動床部分の壁および流動床底面の吹上部等におけ
る摩耗が急速に増大する。従って、流動床の面積は押込
風量から決まってしま゛う。
In addition, 1. The flow of fluidized sand by forced air is due to the suspension of the fluidized sand based on the resistance to the blown air, and as the amount of forced air increases, the upward velocity of the air also increases, and the movement of the fluidized sand also increases rapidly. It gets intense. As a result, wear on the fluidized sand itself, the walls of the fluidized bed portion, the blowing portion of the bottom of the fluidized bed, etc. increases rapidly. Therefore, the area of the fluidized bed is determined by the forced air volume.

そこで、成る程度以上の規模の燃焼炉においては、燃焼
用空気の全量を押込送風機による押込空気とし′で供給
することはせず、その一部を別の風圧も100〜30’
Om+nAg程度の送風機で炉の7リ一ボード部に二次
空気として供給することによって、所要の動力と炉床面
積とを減少することを図っている。その際、フリーボー
ド部にどのように二次空気を吹込む′かによってフリー
ボード部における燃焼状態が変化し、排ガス中の窒素酸
化物の濃度や流動床の温度に大きく影響することが知ら
れている。
Therefore, in combustion furnaces of a size larger than 100, the entire amount of combustion air is not supplied as forced air by a forced air blower, but a part of it is supplied at another wind pressure of 100 to 30'.
By supplying secondary air to the 7-liquid board section of the furnace using a blower of approximately Om+nAg, it is intended to reduce the required power and hearth area. At that time, it is known that the combustion state in the freeboard section changes depending on how the secondary air is blown into the freeboard section, which greatly affects the concentration of nitrogen oxides in the exhaust gas and the temperature of the fluidized bed. ing.

燃焼物が窒素分を多く含む場合や、高発熱量のものであ
るときには、いわゆる低空気比運転を行なうのが普通で
ある。これは二次空気の比率を特に高めて押込空気の風
量を抑え、流動床部における空気量を燃焼物の必要とす
る理論空気量の1.2倍前後より少なくするもので、こ
の場合には、二次空気の吹込方法の影響は一層大きくな
る。
When the combustion material contains a large amount of nitrogen or has a high calorific value, so-called low air ratio operation is usually performed. This is done by particularly increasing the ratio of secondary air and suppressing the amount of forced air, reducing the amount of air in the fluidized bed to less than 1.2 times the theoretical amount of air required for the combustible material. , the influence of the secondary air blowing method becomes even greater.

二次空気の吹込位置の影響をみるに、二次空気を吹込む
場合の吹込位置があまり流動床部に近いと、流動砂が急
止ることによってフリーボード部から熱を回収していた
のが、逆に吹込空気によって熱を奪われることになり、
そのため流動床部の熱のバランスが悪化する。流動床燃
焼炉においては流動床の温度は即ち、流動床部における
燃焼温度であって、燃焼状態に影響する重要なファクタ
ーであり、それが低すぎるときは燃焼反応速度が低下し
て熱のバランスをさらに悪化し、流動床温度が下が1)
続けて遂には燃焼を維持できないことになる。従って、
流動床の温度は燃焼物によっても異なるが500℃以上
、一般には600℃以上に保つ必要があり、600℃以
下になると、この熱バランスの悪化は、流動床温度を維
持するための助燃の必要性を生ずるに至る。
Looking at the effect of the secondary air blowing position, it was found that if the blowing position when blowing secondary air was too close to the fluidized bed section, the fluidized sand would suddenly stop and heat would be recovered from the freeboard section. , conversely, heat is taken away by the blown air,
Therefore, the heat balance in the fluidized bed section deteriorates. In a fluidized bed combustion furnace, the temperature of the fluidized bed is the combustion temperature in the fluidized bed section, and is an important factor that affects the combustion state. If it is too low, the combustion reaction rate will decrease and the heat balance will be affected. This worsens and the temperature of the fluidized bed decreases (1).
Eventually, combustion cannot be maintained. Therefore,
Although the temperature of the fluidized bed varies depending on the material to be combusted, it is necessary to maintain it at 500°C or higher, generally 600°C or higher.If the temperature drops below 600°C, this deterioration of the heat balance will cause the need for auxiliary combustion to maintain the fluidized bed temperature. It leads to the production of sex.

なお、流動床の温度が高すぎると、流動砂の強度の低下
による消耗や、燃焼物の種類によっては流動砂の融着と
いった事態を招くため、流動砂の種類や焼却物に含まれ
る塩類などによって異なるが900℃、一般には800
°Cを超えることは避けなければならず、流動砂の温度
は例えば都市ごみ焼却炉は一般に600〜800℃の範
囲に維持することが必要である。
Note that if the temperature of the fluidized bed is too high, the strength of the fluidized sand will decrease and it will be wasted, and depending on the type of combustible material, the fluidized sand will be fused. Although it varies depending on the temperature, it is 900℃, generally 800℃
It is necessary to avoid exceeding .degree. C., and the temperature of fluidized sand, for example in municipal waste incinerators, generally needs to be maintained in the range of 600 to 800.degree.

上記とは逆に、二次空気が、フリーボード部のあまり上
方の位置から水平に近い方向で吹込まれると、十分燃焼
空気として利用されないうちに排ガスとして炉から排出
されてしまう。
Contrary to the above, if secondary air is blown in from a position too high above the freeboard section in a nearly horizontal direction, it will be discharged from the furnace as exhaust gas before being sufficiently utilized as combustion air.

さらに、フリーボード部に形成される火炎近傍の壁から
直接火炎に向けて二次空気が吹込まれると、二次空気が
高温に予熱されていない限り、二次空気との直接の混合
により燃焼ガスの温度が低下してしまい、燃焼の促進と
は逆の結果になってしまう。
Additionally, if secondary air is blown directly into the flame from the wall near the flame formed in the freeboard area, combustion will occur due to direct mixing with the secondary air, unless the secondary air is preheated to a high temperature. This lowers the temperature of the gas, which is the opposite of promoting combustion.

また、tI&焼物に窒素分が多く含まれる場合、流動床
燃焼炉は低空気比運転を行なうことによって、燃焼反応
中に還元反応である脱硝反応を進行させて排ガス中の窒
素酸化物濃度を低下させることができる。しかしなが1
流動床を呂たガスに直ぐ二次空気を供給すると、ガスの
温度が低下して脱硝反応が中途で停止してしまったり、
逆に火炎温度が上昇しすぎて、二次空気の酸素により窒
素酸化物が生成する恐れもあった。
In addition, when the tI & baked goods contain a large amount of nitrogen, the fluidized bed combustion furnace operates at a low air ratio to advance the denitrification reaction, which is a reduction reaction, during the combustion reaction and reduce the concentration of nitrogen oxides in the exhaust gas. can be done. But long 1
If secondary air is supplied immediately to the gas that has passed through the fluidized bed, the temperature of the gas will drop and the denitrification reaction will stop midway.
On the other hand, if the flame temperature rose too much, there was a risk that nitrogen oxides would be produced by the oxygen in the secondary air.

さらに、低空気比運転においては、どうしても多くの未
燃焼分゛がフリーボード部に供給されるため、717−
ボード部での燃焼が効果的に行なわれないと、未燃焼分
がそのまま排出されることになり、公害防止上でも問題
であり、また熱交換器やボイラ等により燃焼熱を回収す
るようにした設備の場合には、排出した未燃焼分だけエ
ネルギの利用ができないことになり、効率の低下は避け
られなかった。そのため、低空気比運転とはいいなか呟
実際には理論空気量程度の空気量を押込空気として供給
せざるを得ず、このため折角の流動床焼却炉の燃焼速度
が大きいという特徴を生かしきれずに、流動床面積は大
となる欠点があった。
Furthermore, in low air ratio operation, a large amount of unburned fuel is inevitably supplied to the freeboard section, so the 717-
If combustion is not carried out effectively in the board section, the unburned material will be discharged as is, which is a problem in terms of pollution prevention.Additionally, the heat of combustion must be recovered using heat exchangers, boilers, etc. In the case of equipment, energy could not be used for the amount of unburned energy that was emitted, and a decline in efficiency was unavoidable. Therefore, in reality, the air volume equivalent to the theoretical air volume has to be supplied as forced air, making it difficult to take full advantage of the high combustion speed of the fluidized bed incinerator. However, the disadvantage was that the area of the fluidized bed was large.

[発明が解決しようとする問題点] 本発明は、従来のものにおける上記の如す問題点、即ち
、二次空気の吹込位置や方向の影響により焼却炉内の熱
バランスの悪化を招き燃焼が阻害されたり、二次空気が
蕪駄に素通りしたり、窒素酸化物濃度の低下が阻止され
たりすること、或いは、流動床形成用の押込空気量が過
大となって流動床面積が燃焼負荷に対して過大となるこ
と、などの問題点を解決する流動床焼却を提供すること
を目的とするものである。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned problems in the conventional ones, namely, the heat balance inside the incinerator deteriorates due to the influence of the blowing position and direction of the secondary air, resulting in combustion. secondary air may be blocked, the secondary air may pass through the turnips, or the reduction in nitrogen oxide concentration may be prevented, or the amount of forced air for fluidized bed formation may be excessive and the fluidized bed area may become subject to combustion load. The purpose of the present invention is to provide fluidized bed incineration that solves problems such as excessive waste.

[問題点を解決するための手段] 本発明は、上記の問題点を解決するための手段として、
流動床の上方に該流動床に向けてほぼ鉛直下方に二次空
気を吹込む二次空気吹込I]を備えたことを特徴とする
流動床焼却炉を提供するものである。
[Means for solving the problems] The present invention, as a means for solving the above problems,
The present invention provides a fluidized bed incinerator characterized in that it is equipped with a secondary air blower I above the fluidized bed for blowing secondary air almost vertically downward toward the fluidized bed.

[実施例] 以下図面に示す実施例に基づいて本発明を説明する。[Example] The present invention will be described below based on embodiments shown in the drawings.

第1図はボイラ化壁を備えたフリーボード部を有する単
純な型式の流動床燃焼炉である第1の実施例を示す。
FIG. 1 shows a first embodiment of a simple type fluidized bed combustion furnace with a freeboard section with boiler walls.

燃焼炉1は下から通ガス面積の狭い流動床部2、通ガス
面積が徐々に拡大するスロート部3および通ガス面積が
広いフリーボード部4の三部分に大別することができる
。流動床部2の底面5は下方から押込まれる流動床形成
用空気の吹出部となっており、その上方の浮遊化した流
動砂が流動床部2を形成している。スロート部3は7’
J−ボード部4と流動床部2の中間域であって、流動砂
は安定した浮動状態でなく流動床部から上昇する流動砂
と7リ一ボード部4から落下する流動砂とが激しく交錯
し、流動砂がちゅう密に存在する区域である。7リ一ボ
ード部4は、流動床部2からスロート部3を通って上昇
した流動砂が稀薄な区域である。フリーボード部4の炉
頂部の頂壁6の、流動床中央部の鉛直上方に当る部分に
は燃焼物投入ロアが設けられ、その付近の周囲に二次空
気吹込ノズル8が鉛直下方に向けて設置されている。ま
た頂壁6の隅に形成された突出部には、燃焼排ガスノズ
ル9が設けられでいる。フリーボード部4の下部から燃
焼物投入ロア、吹込ノズル8および排ガスノズル9を除
く頂壁6に至るまでの炉の内壁は、木管の設置などによ
り、いわゆるボイラ化壁10として構成されている。
The combustion furnace 1 can be roughly divided into three parts, from the bottom: a fluidized bed part 2 with a narrow gas passing area, a throat part 3 with a gradually increasing gas passing area, and a freeboard part 4 with a wide gas passing area. The bottom surface 5 of the fluidized bed section 2 serves as a blowout section for air for forming a fluidized bed pushed in from below, and the suspended fluidized sand above the bottom surface forms the fluidized bed section 2. Throat part 3 is 7'
In the intermediate area between the J-board section 4 and the fluidized bed section 2, the fluidized sand is not in a stable floating state, and the fluidized sand rising from the fluidized bed section and the fluidized sand falling from the 7-board section 4 are heavily intersected. However, this is an area where fluid sand is densely present. The 7 reel board section 4 is an area where the fluidized sand that has risen from the fluidized bed section 2 through the throat section 3 is diluted. A combustible material charging lower is provided on the top wall 6 at the top of the furnace of the freeboard section 4, which corresponds to the vertically upper part of the central part of the fluidized bed. is set up. Further, a combustion exhaust gas nozzle 9 is provided in a protrusion formed at a corner of the top wall 6. The inner wall of the furnace from the lower part of the freeboard section 4 to the top wall 6 excluding the combustion material input lower, the blowing nozzle 8 and the exhaust gas nozzle 9 is configured as a so-called boiler wall 10 by installing wood pipes or the like.

次に第1実施例の作用を説明する。Next, the operation of the first embodiment will be explained.

流動床部2においては、底面5から流動床用空気が吹込
まれ、それにより流動砂は浮遊状態となっている。燃焼
物投入ロアから投入された燃焼物は、流動床の中央部に
落下する。そこで燃焼物は流動砂や流動床内のガスによ
って加熱され、水分の蒸発による水蒸気や、燃焼または
熱分解によるガスを発生し、燃焼物自体ガスや流動砂と
の衝突により、流動床内に分散する。また、流動床部を
上昇するガスは、それら燃焼物や燃焼物から発生するガ
スなどの作用により側方に偏向されて炉壁に沿う上昇流
となり、この上昇流を補う形で炉中央部には下降流が形
成される。そして頂壁6の中央部に上記下降流を助勢す
るように吹込ノズル8から二次空気がほぼ垂直下方に向
けて吹込まれるため、フリーボード部4には、中央部が
下降流で炉壁に沿う周辺部が上昇流となる旋回流が形成
される。そこで、投入ロアから投入された燃焼物は効率
よく流動床に到達する。
In the fluidized bed section 2, fluidized bed air is blown into the bottom 5, so that the fluidized sand is in a suspended state. The combustible material introduced from the combustible material input lower falls into the center of the fluidized bed. There, the combustible material is heated by the fluidized sand and gas in the fluidized bed, generating water vapor due to evaporation of water and gas due to combustion or thermal decomposition, and the combustible material itself is dispersed within the fluidized bed by collision with the gas and fluidized sand. do. In addition, the gas rising in the fluidized bed is deflected to the side by the combustion materials and the gases generated from the combustion materials, creating an upward flow along the furnace wall. A downward flow is formed. Since secondary air is blown almost vertically downward from the blowing nozzle 8 into the center of the top wall 6 to assist the above-mentioned downward flow, the freeboard section 4 has a downward flow from the center to the furnace wall. A swirling flow is formed in which the peripheral portion along the direction is an upward flow. Therefore, the combustible material charged from the charging lower reaches the fluidized bed efficiently.

また吹込まれた二次空気は、燃焼がほぼ完了したガスと
混合し、下降中さらに輻射熱をうけるなどして十分昇温
された後、スロート部3の近傍で流動床部2から上昇し
てきた未燃物を多く含むガスと衝突するため、衝突後直
ちに火炎を形成して効果的に未燃分の燃焼を行なうこと
がで終る。しかも、燃焼後のガスと予混合されているた
め、酸素濃度は比較的低く、火炎部の温度上昇は比較的
小さいために火炎部での窒素酸化物の生成が抑制される
効果もある。又、そこで火炎の位置はスロー1部3近傍
となり、躍動する流動砂を介して効率的に流動床を加熱
すると共に、輻射熱により下方の流動床を直接加熱する
ことになる。従って、流動床内で読焼物が燃焼する割合
、即ち燃焼率が低く71ノ一ボード部に排出する未燃分
が多い場合でも、熱収支は良好となる。しがも、流動床
2内での燃焼率が低下すれば、それを補なう形で7リ一
ボード部4(三おける火炎が一層増強され、その火炎に
よる加熱量が増大するため、流動床の温度は高く、かつ
安定したものとなる。
In addition, the blown secondary air mixes with gas that has almost completed combustion, receives radiant heat during its descent, and is sufficiently heated, and then the air that rises from the fluidized bed section 2 near the throat section 3 Since it collides with gas containing a large amount of combustible material, a flame is formed immediately after the collision, and the unburnt material is effectively combusted. Furthermore, since it is premixed with the gas after combustion, the oxygen concentration is relatively low, and the temperature rise in the flame section is relatively small, which has the effect of suppressing the formation of nitrogen oxides in the flame section. Further, the position of the flame is near the throw 1 part 3, and the fluidized bed is efficiently heated through the moving fluidized sand, and the fluidized bed below is directly heated by the radiant heat. Therefore, even if the rate of combustion of the material to be read in the fluidized bed, that is, the combustion rate, is low and there is a large amount of unburned material discharged to the 71-board part, the heat balance is good. However, if the combustion rate in the fluidized bed 2 decreases, the flame in the 7 re-board section 4 (3) will be further strengthened to compensate for it, and the amount of heating by the flame will increase. The temperature of the floor becomes high and stable.

本実施例によれば、火炎位置を低くすることができるの
で、フリーボード部における燃焼をその低い部分でほぼ
完了させることができ、従って未燃分の量に比較して7
リ一ボード部4の容積を小さくすることができる。その
結果、燃焼量が同じであれば、下から吹込まれる流動床
用空気用、即ち空気比を下げて流動床面積を縮小し、か
つフリーボード容積も従来と同等或いはそれより小さい
全体にコンパクトな燃焼炉を初ることができる。
According to this embodiment, since the flame position can be lowered, combustion in the freeboard part can be almost completed at that lower part, and therefore, compared to the amount of unburned matter,
The volume of the re-board section 4 can be reduced. As a result, if the combustion amount is the same, the air for the fluidized bed that is blown in from below, that is, the air ratio is lowered, the fluidized bed area is reduced, and the freeboard volume is the same or smaller than the conventional one. You can start a combustion furnace.

本実施例は、7リ一ボード部4の低い部分に火、炎を形
成し、そこで燃焼をほぼ完了させてしまうことができる
ため、フリーボード部4において積極的に外部に熱を取
出しても燃焼または流動床温度に対する悪影響のおそれ
が少ない。また燃焼済の高温ガスが壁面に沿って流れる
ことにより、ボイラ化壁10の伝熱量が多くなるという
副次的効果も生ずる。従って、廃棄物を燃焼してその熱
を回収し有効利用しようとする場合、本実施例の燃焼炉
は極めて有利である。
In this embodiment, the fire and flame can be formed in the lower part of the free board part 4 and the combustion can be almost completed there, so even if the heat is actively taken out to the outside in the free board part 4, Less risk of adverse effects on combustion or fluidized bed temperature. Furthermore, as the burned high-temperature gas flows along the wall surface, a secondary effect occurs in that the amount of heat transferred through the boiler wall 10 increases. Therefore, the combustion furnace of this embodiment is extremely advantageous when burning waste and recovering and effectively utilizing the heat.

第2図は、スロート部3から上方フリーボード部4まで
の部分の構造は第1実施例と同じであるが、スロート部
3下方の流動床部2が特殊な構造である本発明の第2実
施例を示す。
FIG. 2 shows a second embodiment of the present invention in which the structure of the portion from the throat section 3 to the upper freeboard section 4 is the same as that of the first embodiment, but the fluidized bed section 2 below the throat section 3 has a special structure. An example is shown.

第2実施例において、流動床部2は移動層部11と流動
層部12との三部分から構成され、炉壁からオーバーハ
ングさせたデフレクタ13を設けるなどして、流動床部
2内においても旋回流を発生するようになっている。
In the second embodiment, the fluidized bed section 2 is composed of three parts: a moving bed section 11 and a fluidized bed section 12. It is designed to generate a swirling flow.

移動層部11では、底面5からの吹込空気量を流動砂が
浮遊するのに必要な最小限のものとし、流動砂は他律的
移動状態に保持される。一方流動層部12では底面5か
らの吹込空気量を多くし、流動砂は激しく運動してスロ
ート部3からBli ’)出して7リ一ボード部4に舞
い上る状態に保持される。
In the moving bed section 11, the amount of air blown from the bottom surface 5 is set to the minimum necessary for floating the fluidized sand, and the fluidized sand is maintained in a heteronomous moving state. On the other hand, in the fluidized bed section 12, the amount of air blown from the bottom surface 5 is increased, and the fluidized sand is kept in a state where it moves violently, comes out from the throat section 3, and floats up to the 7 reel board section 4.

移動層部11は燃焼物が落下してくる流動床の中央部に
形成され、その両側はデフレクタ13を備えた流動層部
12となっている。そして、移動層部11に落下してき
た燃焼物は、スロート部3から落ちてトた或いは流動層
上部から舞込んできた流動砂にすみやかに覆われ下降し
てゆく移動層にひ外ずり込まれ、流動床部2に埋没して
しまう。
The moving bed section 11 is formed at the center of the fluidized bed where the combustion material falls, and the fluidized bed sections 12 are provided with deflectors 13 on both sides thereof. The combustible materials that have fallen into the moving bed section 11 are quickly covered with fluidized sand that has fallen from the throat section 3 or that has flowed in from the upper part of the fluidized bed, and is swept into the descending moving bed. , it will be buried in the fluidized bed section 2.

一方、底部の流動層部12側では、流動砂が激しく舞上
っているため、移動層部11側流動砂は流動層部12側
の運動に引摺られ、図のような旋回運動を行なう。それ
に伴って供給燃焼物も分散し、流動床全体に拡散する。
On the other hand, on the fluidized bed section 12 side at the bottom, the fluidized sand is flying up violently, so the fluidized sand on the moving bed section 11 side is dragged by the movement on the fluidized bed section 12 side, and performs a swirling motion as shown in the figure. Along with this, the feed combustion material is also dispersed and diffused throughout the fluidized bed.

そのため、第1実施例よりも流動床面積が広い場合でも
燃焼物を特別な方法で供給することなしに、良好な燃焼
状態を得ることができる。
Therefore, even when the fluidized bed area is larger than in the first embodiment, a good combustion state can be obtained without using a special method to supply the combustion material.

流動床部2の炉壁上端には、内方に向ってオーバーハン
グ状に傾斜したデフレクタ13が設けられているため、
下方から吹込まれた空気を含むガスは強い方向性を与え
られながら流動床部から噴出し、スロート部3を通過し
た後丁度反対側の壁或いは側壁に衝突するように進行し
、衝突後第1実施例の場合と同様にその運動エネルギー
は分散して炉壁内面に沿う上昇流となる。この上昇流は
流動床部からの噴出がデフレクタ13によって強められ
ているので、フリーボード部4における旋回流は第1実
施例の場合よりさらに強力である。
At the upper end of the furnace wall of the fluidized bed section 2, a deflector 13 is provided which is inclined inward in an overhanging manner.
The gas containing air blown in from below ejects from the fluidized bed part while being given strong directionality, and after passing through the throat part 3, it advances so as to collide with the opposite wall or side wall, and after the collision, the first As in the case of the embodiment, the kinetic energy is dispersed and becomes an upward flow along the inner surface of the furnace wall. Since the upward flow ejected from the fluidized bed section is strengthened by the deflector 13, the swirling flow in the freeboard section 4 is even stronger than in the first embodiment.

また上昇するガス流が強くかつ左右交差していることか
ら、中央下降流との混合も良好で生じる火炎が燃焼速度
の大きく体積の大きな火炎となるため、流動砂との熱交
換量や流動床の受熱効率も高く、第1実施例より一層強
い作用を奏する。
In addition, since the ascending gas flow is strong and intersects left and right, it mixes well with the central downward flow, resulting in a flame with a high burning rate and a large volume. The heat receiving efficiency is also high, and the effect is stronger than that of the first embodiment.

ボイラ化壁10は、第1および第2実施例を通じて、炉
壁近傍を上昇する燃焼ガス流れに加えて、火炎からの輻
射熱によっても加熱される。そのため、体積の大きい火
炎により高い熱貫流係数が得られる。また直接炉内にお
いて熱交換が行なわれるため、炉頂温度を抑えて水スプ
レーやダストが煙道に溶融付着を防止するための、過剰
な二次空気の吹込みなどによるガスの冷却が回避され、
従って熱回収の絶対量を増加することがで趣る。このよ
うに伝熱面積が小さくても多量の熱回収が可能となる。
In the first and second embodiments, the boiler wall 10 is heated not only by the combustion gas flow rising near the furnace wall but also by radiant heat from the flame. Therefore, a high heat transmission coefficient can be obtained due to the flame having a large volume. In addition, since heat exchange occurs directly in the furnace, cooling of the gas by excessive secondary air blowing, etc., which suppresses the furnace top temperature and prevents water spray and dust from melting and adhering to the flue, is avoided. ,
Therefore, it is desirable to increase the absolute amount of heat recovery. In this way, even if the heat transfer area is small, a large amount of heat can be recovered.

流動床の温度が800℃以上にもなると、それを抑える
ため流動床に直接水を注入することが従来から行なわれ
てきたが、このような従来の方法では熱回収量が減少し
てしまう。これに対し、流動床に対する空気の吹込量を
減少させて燃焼率を下げるようにすれば、本実施例の燃
焼炉の場合フリーボード部での未燃分の燃焼を確実に行
なうことができると共に火炎の効果を増大することがで
きるので、熱回収量を低下させずにすむので有利である
When the temperature of the fluidized bed reaches 800° C. or higher, it has conventionally been done to directly inject water into the fluidized bed in order to suppress the temperature, but such conventional methods reduce the amount of heat recovery. On the other hand, if the combustion rate is lowered by reducing the amount of air blown into the fluidized bed, in the case of the combustion furnace of this embodiment, it is possible to reliably burn the unburned matter in the freeboard part, and This is advantageous because the effectiveness of the flame can be increased without reducing the amount of heat recovery.

なお、第1および第2の実施例の燃焼炉は、水平断面を
矩形としても或いは円形としてもよい。
Note that the combustion furnaces of the first and second embodiments may have a horizontal cross section that is rectangular or circular.

また、天井壁は必ずしも水平でなくてもよく、例えば炉
はボイラー化壁とせずフリーボード部が傾斜し、そのま
まガス冷却室やボイラに接続する形のものであっても中
央の下降流とスロート部近傍の状況は本質的に第1,2
の実施例と同様であり、本発明は有効に適用される。又
、特に第2の実施例で巾か1〜2Mと狭い流動床の場合
、必ずしも炉頂から燃焼物を供給する必要はなく、炉の
側壁中央から供給してもよい。
In addition, the ceiling wall does not necessarily have to be horizontal; for example, if the furnace is not a boiler wall, but the freeboard part is slanted, and it is connected directly to the gas cooling room or boiler, the central downward flow and throat The situation around the area is essentially the first and second
The present invention is effectively applied. Moreover, especially in the case of the narrow fluidized bed with a width of 1 to 2 m in the second embodiment, it is not necessarily necessary to feed the combustion material from the top of the furnace, but it may be fed from the center of the side wall of the furnace.

[発明の効果] 上記のように構成されているので、本発明は二次空気が
吹込口から流動床に達するまでに十分予熱昇温された後
に未燃分を含むガスと衝突して直ちにスロート部近傍に
おいて火炎を形成するため、燃焼中のガスを冷却して熱
バランスを悪化させることなしに燃焼を促進することが
でき、また流動床用空気量を少なくして流動床面積を小
さくすることが可能となり、コンパクトな燃焼炉を得る
ことがでとる。
[Effects of the Invention] As configured as described above, the present invention allows the secondary air to be sufficiently preheated and heated before it reaches the fluidized bed from the inlet, and then collides with gas containing unburned components and immediately throats the secondary air. Since the flame is formed near the combustion chamber, combustion can be promoted without cooling the combustion gas and worsening the heat balance, and the amount of air for the fluidized bed can be reduced to reduce the area of the fluidized bed. This makes it possible to obtain a compact combustion furnace.

例えば、燃焼物の低位発熱量が3000Kcaジ/kg
もあれば、流動床底面よりの空気吹込量は余熱なしに理
論空気量の半分程度で間に合い、従って流動床面積を半
分程度にすることが可能で、そのためフリーボード部容
積の増加なしでも燃焼−に問題は生じない。しかもボイ
ラー化壁とすれば、小さな伝熱面積で大きい熱回収が可
能であり、熱貫流係数を平均80Kcaρ/m 2時℃
程度まで上げることがで終る。
For example, the lower calorific value of the combustion material is 3000 Kca/kg.
If there is, the amount of air blown from the bottom of the fluidized bed can be about half of the theoretical air amount without residual heat, and therefore the area of the fluidized bed can be reduced to about half, and therefore combustion can be achieved without increasing the volume of the freeboard section. There is no problem. Moreover, if the boiler wall is used, large heat recovery is possible with a small heat transfer area, and the heat transmission coefficient is 80Kcaρ/m on average at 2 hours °C.
The end is to raise the level to a certain level.

本発明により流動床燃焼炉はその性能を大幅に改善され
、特に廃棄物を焼却してその燃焼熱を回収利用する炉に
おいてその改善が顕著である。
According to the present invention, the performance of a fluidized bed combustion furnace has been greatly improved, and the improvement is particularly remarkable in a furnace that incinerates waste and recovers and utilizes the combustion heat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明のそれぞれ第1および第
2実施例の縦断側面図である。 1−m−燃焼炉、2−−一流動床部、3−−−スロート
部、4−一一7リーボード部、5−−一底面、6−−−
頂壁、7一−−燃焼物投入口、訃−吹込ノズル、9−一
一排ガスノズル、10−−−ボイラ化壁、11−一一移
動層部、12−一一流動層部、13−一一デフレクタ。
1 and 2 are longitudinal sectional side views of a first and second embodiment of the invention, respectively. 1-m-combustion furnace, 2--fluidized bed section, 3--throat section, 4--117 Lee board section, 5--bottom surface, 6--
Top wall, 71--combustible material inlet, 9-11 exhaust gas nozzle, 10--boiler wall, 11-11 moving bed section, 12-11 fluidized bed section, 13- 11 deflector.

Claims (1)

【特許請求の範囲】[Claims] 1、流動床の上方に、該流動床に向けてほぼ鉛直下方に
二次空気を吹込む二次空気吹込口を備えたことを特徴と
する流動床焼却炉。
1. A fluidized bed incinerator characterized by having a secondary air inlet above the fluidized bed that blows secondary air almost vertically downward toward the fluidized bed.
JP14145484A 1984-07-10 1984-07-10 Fluidized bed incinerator Granted JPS6122114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14145484A JPS6122114A (en) 1984-07-10 1984-07-10 Fluidized bed incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14145484A JPS6122114A (en) 1984-07-10 1984-07-10 Fluidized bed incinerator

Publications (2)

Publication Number Publication Date
JPS6122114A true JPS6122114A (en) 1986-01-30
JPH0359327B2 JPH0359327B2 (en) 1991-09-10

Family

ID=15292280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14145484A Granted JPS6122114A (en) 1984-07-10 1984-07-10 Fluidized bed incinerator

Country Status (1)

Country Link
JP (1) JPS6122114A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213407A (en) * 1985-03-01 1986-09-22 ザ エム.ダブリユ.ケロツグ カンパニー Reduction type circulation fluidized-bed combustion method
JPH0725121A (en) * 1993-07-13 1995-01-27 Nec Corp Dot impact printer
CN1318801C (en) * 2004-12-30 2007-05-30 云南锡业集团有限责任公司 Secondary burning method and device in top blow sinking smelting process
CN104848230A (en) * 2015-05-31 2015-08-19 北京四维天拓技术有限公司 Cyclone incinerator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547779A (en) * 1977-06-20 1979-01-20 Energy Products Of Idaho Cineration pyrolytic gasifying system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547779A (en) * 1977-06-20 1979-01-20 Energy Products Of Idaho Cineration pyrolytic gasifying system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213407A (en) * 1985-03-01 1986-09-22 ザ エム.ダブリユ.ケロツグ カンパニー Reduction type circulation fluidized-bed combustion method
JPH0725121A (en) * 1993-07-13 1995-01-27 Nec Corp Dot impact printer
CN1318801C (en) * 2004-12-30 2007-05-30 云南锡业集团有限责任公司 Secondary burning method and device in top blow sinking smelting process
CN104848230A (en) * 2015-05-31 2015-08-19 北京四维天拓技术有限公司 Cyclone incinerator
CN104848230B (en) * 2015-05-31 2017-01-25 北京四维天拓技术有限公司 Cyclone incinerator

Also Published As

Publication number Publication date
JPH0359327B2 (en) 1991-09-10

Similar Documents

Publication Publication Date Title
WO2004092648A1 (en) Method of controlling combustion of waste incinerator and waste incinerator
JP2004205161A (en) Solid fuel boiler and boiler combustion method
CN1110880A (en) Integrted low NOx tangential firing system
CN202884901U (en) Boiler capable of realizing reignition of exhaust gas coal powder by using high-temperature flue gas and reducing NOx
CN103697465A (en) Boiler capable of achieving reignition of exhaust gas coal powder and reducing NOx by using high-temperature flue gas
EP0238907A2 (en) Low excess air tangential firing system
CN108954298A (en) A kind of circulating fluidized bed boiler low nitrogen burning exhaust system and its remodeling method
CN111981473A (en) Slag burnout system and method of biomass boiler
JPS6122114A (en) Fluidized bed incinerator
CN1477329A (en) Fluidized bed boiler with multifunctional cyclone separator
JP5501198B2 (en) Low NOx / low dust combustion method and boiler combustion chamber
CN211290021U (en) Low-nitrogen burner for deep peak shaving pulverized coal boiler
JPH05180413A (en) Fluidized bed combustion boilers
JP4048945B2 (en) Combustion method of flame retardant fuel in rotary kiln
JPH08254301A (en) Furnace wall structure for fluidized bed boiler
JP2005265410A (en) Waste incinerator
JP4103115B2 (en) Combustion air blowing method for combustion melting furnace and combustion melting furnace
JP2001108220A (en) Waste incinerator
JP3217470B2 (en) Boiler equipment
JP2014211243A (en) Combustion control system for refuse incinerator
RU49951U1 (en) HEATER
JPS6131761B2 (en)
EP1500875A1 (en) Method of operating waste incinerator and waste incinerator
CN208936144U (en) A kind of low nitrogen type circulating fluidized bed boiler based on optimization burning
JPH0127334B2 (en)