JPH0359125B2 - - Google Patents

Info

Publication number
JPH0359125B2
JPH0359125B2 JP60031500A JP3150085A JPH0359125B2 JP H0359125 B2 JPH0359125 B2 JP H0359125B2 JP 60031500 A JP60031500 A JP 60031500A JP 3150085 A JP3150085 A JP 3150085A JP H0359125 B2 JPH0359125 B2 JP H0359125B2
Authority
JP
Japan
Prior art keywords
scale
cooling
temperature
scale adhesion
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60031500A
Other languages
Japanese (ja)
Other versions
JPS61194112A (en
Inventor
Seishiro Kato
Kazuaki Ezaka
Tadayoshi Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3150085A priority Critical patent/JPS61194112A/en
Publication of JPS61194112A publication Critical patent/JPS61194112A/en
Publication of JPH0359125B2 publication Critical patent/JPH0359125B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は自動車の足廻り部品、パイプ、ドラム
缶らに使われる軽加工用の高強度でスケール密着
性に優れた熱延鋼板の製造方法に関する。 〔従来の技術〕 連続鋳造法或いは造塊法にて得た鋼片を熱間圧
延して製造した鋼板の2次スケールは成形加工に
よつて一部剥離がさけられないため、従来は酸洗
後、リン酸塩処理等の表面処理を実施したのち成
形、加工を行ないドラム缶、パイプ等の製品と
し、その後表面被覆する方法が採用されてた。し
かし経済的に不利であるため最近では表面処理工
程を必要としないスケール密着性にすぐれた熱延
鋼板の製造方法として特公昭54−31734号が提案
されている。この方法はCrを0.02〜0.1%、Niを
0.02〜0.1%添加し、捲取温度を450〜750℃した
ものである。 〔発明が解決しようとする問題点〕 前記特公昭54−31734号の方法では次のような
問題点がある。適用する用途に溶接上の問題点が
あつて、フラツシユバツト溶接時のペネトレータ
ー割れ及びスポツト溶接部のナゲツト内破断の対
策については何ら記載がなく、又Niは高価であ
り、経済的に不利である。 本発明は上記溶接性の問題を解消するとともに
軽加工用途に適した高強度でスケール密着性に優
れた熱延鋼板を安価に製造する方法を提供するも
のである。 〔問題点を解決するための手段〕 本発明者等は上記した問題点を解決するため
種々検討を重ね、 a スケール厚を薄くすること……スケールは組
成に拘らず、常温での変形能は、マトリツクス
である地鉄に比べると劣る。従つて可能な限り
薄くする必要がある。 b スケール組成……Fe2O3、Fe3O4、FeOが存
在するが、常温での硬さが高く、変形能の乏し
いFe2O3は回避すべきである。Fe3O4は高温
(570℃以上)で安定なFeOが変態して生成され
るが、その量と変態過程が重要で、スケール密
着性に影響をおよぼす。FeOはマトリツクスで
ある地鉄との整合性が良い場合には、軟質であ
ることもあつて、スケール密着性が向上する。 c スケール/地鉄界面または界面直下……P、
S、Cu等の濃化現象、界面直下の他鉄セメンタ
イトの量、酸化物、窒化物の存在が影響する。 の新な知見を得た。本発明はこの新知見にもとず
いてなされたもので、その手段の特徴とするとこ
ろは次の乃至の通りである。 C0.03〜0.25wt%、0.04<Si≦0.5wt%、
Mn0.2〜2.0wt%、P≦0.025wt%、S≦
0.015wt%、Al≦0.08wt%、Cr≦0.1wt%を含
有し、残部がFe及び不可避的元素からなる鋼
を溶製後、連続鋳造法或いは造塊法にて得た鋼
片を加熱炉に装入するかもしくは一旦冷片とし
たのち再加熱し、(Ar3+50℃)以下の温度で
熱間圧延した後、5秒以内に注水冷却を開始し
冷却速度40℃/秒以上の急冷で600℃以下360℃
以上の温度で捲きとることを特徴とするスケー
ル密着性に優れた熱延鋼板の製造方法。 C0.03〜0.25wt%、0.04<Si≦0.5wt%、
Mn0.2〜2.0wt%、P≦0.025wt%、S≦
0.015wt%、Al≦0.08wt%、Cr≦0.1wt%を含
有し、残部がFe及び不可避的元素からなる鋼
を溶製後、連続鋳造法或いは造塊法にて得た鋼
片を加熱炉に装入するかもしくは一旦冷片とし
たのち再加熱し、(Ar3+50℃)以下の温度で
熱間圧延した後、5秒以内に注水冷却を開始し
冷却速度40℃/秒以上の急冷で360℃未満の温
度で捲きとりその後、冷却速度を0.5℃/分以
上とすることを特徴とするスケール密着性に優
れた熱延鋼板の製造方法。 〔作用〕 本発明における成分および熱延条件の限定によ
りもたらされる作用を述べる。C0.03〜0.25%と
することにより、本発明にかかる熱延鋼板の用途
即ち、自動車の足廻りであるブレーキやアクセル
ペダルのアーム、フレームなどに必要な強度と2
次スケールの密着性が得られる。即ち0.03%未満
では目的とする鋼板の強度上問題があり、0.25%
超ではスケール/地鉄界面近くにもFe3C(セメン
タイト)が多くなり、2次スケールの密着性を悪
化させる。 Mnを0.2〜2.0%とすることにより、スケール
密着性を悪化させることなく目的とする鋼板の強
度を確保するものである。即ち0.2%未満では目
的とする鋼板の強度が得られず、また2.0%超で
は経済性を失うこととスケール密着性を悪くさせ
る。 Siを0.04〜0.5%とした理由は、Siは溶接性上非
常に重要な働きをする元素として添加するもので
ある。つまり、Mn/Siで4〜23の範囲とすると
フラツシユバツト溶接時のペネトレーター割れは
発生しない。又C+Mn/20+Si/30+2P+4Sの
値が小さい方がスポツト溶接部のナゲツト内破断
が発生しにくい。又強度は、Ceq=C+Mn/6
+Si/4に比例しており、特に高強度鋼板を製造
するに当つては目的とする強度を得るにはC、
MnよりSi増とした方がスポツト溶接上は好まし
く、添加量はMn/Siを配慮して決定する必要が
ある。これらのことからSi添加量は0.05〜0.5%と
することによりスケール密着性を悪化させること
なくMn/Si=4〜23を確実に得るものである。 Pを0.025%以下、Sを0.015%以下とすること
により、P、Sが加熱および熱延中にスケール/
地鉄界面に濃化、2次スケール密着性を悪くする
のを予防している。 本発明の目的のためには、P、Sともに少ない
方が好ましい。しかし脱P、脱Sともに処理コス
トが嵩むので経済上の許容範囲を考慮して含有量
はこの値以下で適宜決定することでよい。 次に本発明の目的とする鋼板製造のため溶鋼処
理過程でAl脱酸した場合Alの含有は不可避的で
あるので、Alのスケール密着性に対する影響に
ついて調査した結果、スケール密着性を良好に維
持できるAlの許容範囲は0.08%以下であることが
認められた。 本発明において、Crを0.1%以下とすることに
より、微細なクロムカーバイドを形成し、セメン
タイト量を減少するのでCrを添加しないで後述
の熱延条件で製造した熱延鋼板に比べてより一層
スケール密着性が向上するからである。Cr添加
した熱延鋼板のスケール密着性を第8図と第10
図に示す。このCr添加の密着性向上に対する効
果も0.1%までであり、これ以上は経済性を失う。 更にNb、Mo、V、Zrの元素の添加は必要と
する材質特性とくに強度向上の要望を満すために
経済的許容範囲において添加することが好まし
い。 次に熱延条件について述べる。 C:0.09〜0.15wt%、Si:0.07〜0.20wt%、
Mn:0.40〜0.75wt%、P:0.014〜0.016wt%、
S:0.007〜0.015wt%、Al:0.014〜0.025wt%の
スラブを、熱延条件を諸々変化させて製造した鋼
板の板巾方向端のスケール密着性、スケール厚、
スケール組成を調査して、その関係を整理して第
1,2図に示す。スケール厚み≦8μ、Fe2O3≦3
%、Fe3O4≧85%の各条件を満足すればスケール
密着性評点Grが5以下で合格となる。〔Gr:半径
R=1.5×板厚としたポンチを押し付けて90°に曲
げた鋼板ピースの曲り外面のテーピング式スケー
ル剥離状況を面積%で9区分して評点としてラン
ク付けしたもの〕。しかし上記条件の全部が満足
していなくても一条件が著しく大または小であれ
ばスケール密着性は合格する。 本発明において圧延仕上げ温度を(Ar3+50
℃)以下の限定した理由は組織的に混粒組織ある
いは圧延組織を残存させない範囲で温度を低目と
し、スケール厚みを薄くすることにある。第3図
はスケール厚みと圧延仕上温度の関係を示してお
り、上の実線は上限を表わす線であり、下の実線
は下限を表わす線であるので両実線間にデータが
存在する。第3図に示すように840℃以下とする
ことによりスケール厚みを8μ以下とすることが
できる。 本発明において捲取り温度を500℃以下とした
理由は、第6図にスケール密着性と仕上げ温度、
捲取り温度の関係を示すが、捲取り温度500℃超
ではスケール密着性が合格するものがない。ま
た、第3図と同じ表面形先である第4,5図に示
すように捲取り温度500℃以下とするとFe2O3
成量を3%以下、スケール厚を8μ以下とするこ
とが可能である。一般的に、 スケール生成量(y)はy=K・√t(t:時
間)、K=k・e-Q/RT(k:雰囲気条件等で定まる
定数、Q:33000cal/mol、R:ガス定数、T:
温度)で表わすことができる。従つて高温での滞
留時間は短時間の方が好ましく、本発明者の実験
から得た知見によると、仕上げ圧延後、冷却開始
するまでの時間は5秒以下とする必要がある。又
前記において捲取り温度を600℃以下とした理
由は前記Crの添加によるスケール密着性の効果
によつて、Cr無添加の場合に規定したスケール
厚、Fe2O3生成量が緩和されその許容限界の捲取
り温度上限値が600℃である。仕上げ圧延後冷却
中の冷却速度を40℃/s以上としたのは、スケー
ル密着性を確保しつつ、スケール厚みを薄くする
ためである。 スケール層を顕微鏡下で観察した結果では冷却
速度が40℃/sec未満と遅い場合には、FeO→
Fe3O4+Fe変態(570℃以下で起る)によるα−
Feが、スケール表面側に存在し、冷却途中に変
態が開始し、スケール表面側から進行しており、
冷却速度が速い場合には、α−Feがスケール層
全面または地鉄界面側に認められ、これ等から変
態が地鉄側から進行していて、生成したFe3O4
地鉄との整合性が良く、スケール密着性が向上し
たものと考えられる。この現象は捲取り温度にも
依存し、500℃超では冷却速度に拘らず、変態は
スケール表面から進行し、スケール密着性は悪
い。冷却速度40℃/s以上で冷却すれば捲取り温
度が500℃以下の任意で捲取り後に0.5℃/分以上
の速い冷却速度であつても、または、捲取り温度
500℃以下、360℃以上で捲取り後に0.5℃/分未
満の遅い冷却速度で冷却しても、変態はスケール
表面、地鉄界面両方から進み、スケールは全面α
−Feを含んだFe3O4となり、スケール密着性が良
好である。しかし捲取り温度を360℃未満としそ
れ以降の冷却速度が0.5℃/分未満にした場合に
は、α−Feは地鉄側からのみ進行するが、α−
Feが島状に存在し、スケール密着性が劣り好ま
しくない。 しかし冷却速度40℃/s以上で360℃未満で捲
取つた場合でも、捲取後に冷却速度が0.5℃/分
以上の冷却をすれば、FeOのFe3O4への変態を抑
制し、FeO主体のスケールとすれば密着性は良好
である。これはFeOが軟質であり、FeO//α−
Fe(地鉄)の方位関係が(100)〔011〕FeO//
(100)〔001〕〓-Feにあり整合性が良く密着性が良
好になるものと考えられる。捲取後に0.5℃/分
以上の冷却速度で冷却するにはヤード内の通気性
の良好な所に、段積をやめて、自然通風による冷
却或いはフアンによる強制通風冷却、ボツクス内
でのN2、Arガス等を用いたフアンによる強制冷
却、散水冷却、浸漬冷却等の何れか又は組合せに
よる冷却手段が使用できる。 〔実施例〕 本発明の実施例の比較例で使用の鋼の成分と
Mn/Siを第1表に示す。鋼AはAl−Si−Kベー
スの成分系で、鋼BはA鋼の成分に対してCrを
添加した成分系である。第2表には上記鋼を用い
た実施例と比較例の熱延条件を示す。比較例1は
鋼Aに於いて圧延温度を870℃とし、550℃で捲取
つたコイルでその長手巾方向のスケール密着性を
第7図に示す。コイルの内捲、外捲部及び端部の
スケール剥離が大きく、スケールの密着性判定基
準(Gr≦5、以下Gr≦5と称す)を満足してい
ない。 比較例2は鋼Bに於いて圧延温度を870℃とし、
650℃で捲取つたコイルでその長手・巾方向のス
ケール密着性を第8図に示す。コイルの内〓、外
〓部及び端部の一部でスケール剥離が大きく、
Gr≦5を満足していない。実施例1は鋼Bに於
いて圧延温度を870℃とし、550℃で捲取つたコイ
ルでその長手・巾方向のスケール密着性を第9図
に示す。 コイル長手・巾方向全域に於いてGr≦5を満
足、比較例1及び2よりもスケール密着性は向上
しており、Cr添加と捲取温度低温化による改善
効果がある。比較例3は鋼Aに於いて圧延温度を
830℃とし、450℃で捲取つたコイルでその長手・
巾方向のスケール密着性を第10図に示す。コイ
ル長手・巾方向全域に於いてGr≦5を満足、比
較例1よりもスケール密着性が大巾に向上してお
り、低温圧延、低温捲取による改善効果がある。
実施例2は鋼Bに於いて圧延温度を830℃とし、
450℃で捲取つたコイルでその長手・巾方向のス
ケール密着性を第11図に示す。コイル長手・巾
方向全域に於いてGr≦5を満足、実施例1及び
比較例3よりも更にスケール密着性が向上してお
り、Cr添加と低温圧延、低温捲取による改善効
果がある。 本発明の他の実施例と比較例で使用の鋼の成分
及び熱延条件とスケール密着性判定結果を次の第
3表に示す。 比較例C−2、D−2、E−2、F−2は、
Gr≦5を満足、比較例C−1、D−1、E−1、
F−1に比べ大巾にスケール密着性が向上してお
り、低温圧延、圧延後速かに水冷開始、冷却速度
向上及び低温捲取による改善効果がある。 実施例C−3、C−4、C−5、D−4は特許
請求の範囲1に基づいて製造された熱延鋼板であ
り、Gr≦5を満足、比較例C−1、D−1に比
べ大巾にスケール密着性が向上、また比較例C−
2、D−2、E−2、F−3よりも更にスケール
密着性の向上がみられ、圧延温度、冷却温度、捲
取温度とCr添加の改善効果がある。 比較例D−3は、Gr≦5を満足、比較例D−
1に比べスケール密着性が向上、また比較例D−
2よりも更にスケール密着性の向上がみられ、圧
延温度、冷却速度、捲取度以外に捲取後の強制冷
却による改善効果がある。 実施例D−5は特許請求の範囲2に基づいて製
造された熱延鋼板であり、Gr≦5を満足、比較
例D−1に比べ大巾にスケール密着性が向上、ま
た比較例D−2、D−3よりも更にスケール密着
性と向上がみられ、圧延温度、冷却速度、捲取温
度とCr添加及び捲取後の強制冷却による改善効
果がある。
[Industrial Field of Application] The present invention relates to a method for manufacturing a hot rolled steel sheet having high strength and excellent scale adhesion for light processing and used for automobile suspension parts, pipes, drums, etc. [Prior art] Because the secondary scale of steel sheets manufactured by hot rolling steel slabs obtained by continuous casting or ingot-forming cannot be avoided in part due to forming, pickling has traditionally been used. After that, the material was subjected to surface treatments such as phosphate treatment, then molded and processed into products such as drums and pipes, and then the surface was coated. However, since it is economically disadvantageous, recently Japanese Patent Publication No. 31734/1983 has been proposed as a method for producing hot rolled steel sheets with excellent scale adhesion that does not require a surface treatment process. This method contains 0.02-0.1% Cr and 0.1% Ni.
0.02 to 0.1% was added and the winding temperature was 450 to 750°C. [Problems to be Solved by the Invention] The method disclosed in Japanese Patent Publication No. 54-31734 has the following problems. There are welding problems in the applications to which it is applied, and there is no mention of countermeasures against penetrator cracking during flash butt welding and nugget fracture in spot welds, and Ni is expensive and economically disadvantageous. The present invention solves the above-mentioned problem of weldability and provides a method for inexpensively producing a hot-rolled steel sheet with high strength and excellent scale adhesion suitable for light processing applications. [Means for Solving the Problems] The inventors of the present invention have conducted various studies to solve the above-mentioned problems, and have found that: a. Decrease the thickness of the scale...Regardless of the composition of the scale, the deformability at room temperature is , it is inferior to the matrix of local railways. Therefore, it is necessary to make it as thin as possible. b Scale composition: Fe 2 O 3 , Fe 3 O 4 , and FeO exist, but Fe 2 O 3 , which has high hardness at room temperature and poor deformability, should be avoided. Fe 3 O 4 is produced by the transformation of FeO, which is stable at high temperatures (above 570°C), but the amount and transformation process are important and affect scale adhesion. When FeO has good compatibility with the matrix, which is the base iron, scale adhesion improves, partly because it is soft. c Scale/substrate interface or just below the interface...P,
This is influenced by the concentration phenomenon of S, Cu, etc., the amount of other iron cementite directly under the interface, and the presence of oxides and nitrides. obtained new knowledge. The present invention has been made based on this new knowledge, and the features of the means are as follows. C0.03~0.25wt%, 0.04<Si≦0.5wt%,
Mn0.2~2.0wt%, P≦0.025wt%, S≦
After melting steel containing 0.015wt%, Al≦0.08wt%, and Cr≦0.1wt%, with the balance consisting of Fe and unavoidable elements, the steel slab obtained by continuous casting method or ingot forming method is heated in a heating furnace. After being charged into cold pieces or reheated and hot-rolled at a temperature below (Ar 3 + 50℃), water injection cooling is started within 5 seconds and rapid cooling is performed at a cooling rate of 40℃/second or higher. below 600℃ and 360℃
A method for producing a hot rolled steel sheet with excellent scale adhesion, characterized by rolling at a temperature above. C0.03~0.25wt%, 0.04<Si≦0.5wt%,
Mn0.2~2.0wt%, P≦0.025wt%, S≦
After melting steel containing 0.015wt%, Al≦0.08wt%, and Cr≦0.1wt%, with the balance consisting of Fe and unavoidable elements, the steel slab obtained by continuous casting method or ingot forming method is heated in a heating furnace. After being charged into cold pieces or reheated and hot-rolled at a temperature below (Ar 3 + 50℃), water injection cooling is started within 5 seconds and rapid cooling is performed at a cooling rate of 40℃/second or higher. A method for producing a hot-rolled steel sheet with excellent scale adhesion, characterized by rolling at a temperature of less than 360°C, and then cooling at a rate of 0.5°C/min or more. [Effects] The effects brought about by limiting the components and hot rolling conditions in the present invention will be described. By setting the C content to 0.03 to 0.25%, the hot rolled steel sheet according to the present invention can be used in applications such as the strength required for the brake and accelerator pedal arms, frames, etc. of automobile suspensions.
Adhesion of the next scale is obtained. In other words, if it is less than 0.03%, there will be problems with the strength of the target steel plate, and if it is less than 0.25%.
In the case of super steel, Fe 3 C (cementite) also increases near the scale/substrate interface, worsening the adhesion of secondary scale. By controlling Mn to 0.2 to 2.0%, the desired strength of the steel plate can be ensured without deteriorating scale adhesion. That is, if it is less than 0.2%, the desired strength of the steel plate cannot be obtained, and if it exceeds 2.0%, economic efficiency is lost and scale adhesion deteriorates. The reason why Si is set at 0.04 to 0.5% is that Si is added as an element that plays a very important role in terms of weldability. In other words, if Mn/Si is in the range of 4 to 23, penetrator cracking will not occur during flash butt welding. Also, the smaller the value of C+Mn/20+Si/30+2P+4S, the less likely the nugget fracture will occur in the spot weld. Also, the strength is Ceq=C+Mn/6
It is proportional to +Si/4, and in order to obtain the desired strength, especially when manufacturing high-strength steel plates, C,
It is preferable for spot welding to have more Si than Mn, and the amount of addition needs to be determined with consideration to Mn/Si. For these reasons, by setting the Si addition amount to 0.05 to 0.5%, Mn/Si=4 to 23 can be reliably obtained without deteriorating scale adhesion. By setting the P content to 0.025% or less and the S content to 0.015% or less, P and S will not scale/scale during heating and hot rolling.
This prevents the secondary scale from condensing at the interface of the substrate and impairing the adhesion of the secondary scale. For the purpose of the present invention, it is preferable that both P and S are small. However, since the processing cost increases for both P removal and S removal, the content may be appropriately determined to be less than this value in consideration of economical tolerance. Next, when Al is deoxidized in the molten steel processing process for manufacturing steel sheets, which is the objective of the present invention, the inclusion of Al is unavoidable, so as a result of investigating the influence of Al on scale adhesion, it was found that scale adhesion can be maintained well. It was recognized that the acceptable range of Al that could be produced was 0.08% or less. In the present invention, by setting Cr to 0.1% or less, fine chromium carbide is formed and the amount of cementite is reduced, so the scale is even greater than that of a hot rolled steel sheet manufactured under the hot rolling conditions described below without adding Cr. This is because adhesion is improved. Figures 8 and 10 show the scale adhesion of hot-rolled steel sheets with Cr added.
As shown in the figure. The effect of this addition of Cr on improving adhesion is limited to 0.1%, and beyond this, economical efficiency is lost. Furthermore, it is preferable to add the elements Nb, Mo, V, and Zr within an economically acceptable range in order to satisfy the required material properties, especially the desire to improve strength. Next, the hot rolling conditions will be described. C: 0.09-0.15wt%, Si: 0.07-0.20wt%,
Mn: 0.40-0.75wt%, P: 0.014-0.016wt%,
Scale adhesion, scale thickness,
The scale composition was investigated and the relationships are summarized and shown in Figures 1 and 2. Scale thickness ≦8μ, Fe 2 O 3 ≦3
%, Fe 3 O 4 ≧85%, and the scale adhesion rating Gr is 5 or less, passing the test. [Gr: The peeling status of the taping-type scale on the outer surface of a bent steel plate piece bent at 90° by pressing a punch with radius R = 1.5 x plate thickness is classified into 9 areas and ranked as a score]. However, even if all of the above conditions are not satisfied, if one condition is significantly large or small, the scale adhesion is passed. In the present invention, the rolling finishing temperature is set to (Ar 3 +50
℃) The reason for the following limitations is to keep the temperature low within a range that does not leave a mixed grain structure or a rolled structure, and to reduce the scale thickness. FIG. 3 shows the relationship between scale thickness and rolling finishing temperature. The upper solid line represents the upper limit, and the lower solid line represents the lower limit, so data exists between the two solid lines. As shown in FIG. 3, by setting the temperature to 840°C or less, the scale thickness can be reduced to 8μ or less. The reason why the winding temperature is set to 500℃ or less in the present invention is as shown in Figure 6, which shows the scale adhesion and finishing temperature.
The relationship between the winding temperature is shown below, and there is no sample that passes the scale adhesion test when the winding temperature exceeds 500°C. Furthermore, as shown in Figures 4 and 5, which have the same surface shape as Figure 3, if the winding temperature is 500℃ or less, it is possible to reduce the amount of Fe 2 O 3 produced to 3% or less and the scale thickness to 8μ or less. It is. Generally, the amount of scale produced (y) is y=K・√t (t: time), K=k・e -Q/RT (k: constant determined by atmospheric conditions, etc., Q: 33000 cal/mol, R: Gas constant, T:
temperature). Therefore, it is preferable that the residence time at high temperature be short, and according to the findings obtained from experiments by the present inventors, the time from finish rolling to the start of cooling needs to be 5 seconds or less. In addition, the reason why the winding temperature was set to 600°C or less in the above is that due to the effect of scale adhesion due to the addition of Cr, the scale thickness and the amount of Fe 2 O 3 produced that were specified in the case of no Cr addition were relaxed, and the allowable The upper limit of the winding temperature is 600℃. The cooling rate during cooling after finish rolling was set to 40° C./s or more in order to reduce the scale thickness while ensuring scale adhesion. Observation of the scale layer under a microscope shows that if the cooling rate is slow (less than 40℃/sec), FeO→
Fe 3 O 4 + α− due to Fe transformation (occurs below 570℃)
Fe exists on the scale surface side, and transformation starts during cooling and progresses from the scale surface side.
When the cooling rate is fast, α-Fe is observed on the entire scale layer or on the steel substrate interface side, indicating that transformation is proceeding from the steel substrate side and that the formed Fe 3 O 4 is compatible with the steel substrate. This is thought to be due to the improved scale adhesion. This phenomenon also depends on the winding temperature; above 500°C, transformation proceeds from the scale surface regardless of the cooling rate, resulting in poor scale adhesion. If the cooling rate is 40℃/s or more, the winding temperature is 500℃ or less. Even if the cooling rate is faster than 0.5℃/min after winding, or the winding temperature is 500℃ or less.
Even if it is cooled at a slow cooling rate of less than 0.5°C/min after winding at temperatures below 500°C and above 360°C, transformation proceeds from both the scale surface and the substrate interface, and the scale remains α throughout the entire surface.
It becomes Fe 3 O 4 containing -Fe, and has good scale adhesion. However, if the winding temperature is less than 360℃ and the subsequent cooling rate is less than 0.5℃/min, α-Fe will proceed only from the base steel side, but
Fe exists in the form of islands, and scale adhesion is poor, which is not preferable. However, even in the case of winding at a cooling rate of 40°C/s or more and less than 360°C, if the cooling rate is 0.5°C/min or more after winding, the transformation of FeO to Fe 3 O 4 can be suppressed and FeO Adhesion is good if the main scale is used. This is because FeO is soft and FeO//α−
The orientation relationship of Fe (substrate) is (100) [011] FeO //
(100) [001] = -Fe is considered to have good consistency and good adhesion. To cool at a cooling rate of 0.5°C/min or higher after winding, place the product in a well-ventilated place in the yard, stop stacking, use natural ventilation or forced air cooling with a fan, use N 2 in a box, Cooling means such as forced cooling using a fan using Ar gas, water spray cooling, immersion cooling, etc. or a combination thereof can be used. [Example] The composition of the steel used in the comparative example of the example of the present invention
Mn/Si is shown in Table 1. Steel A has a composition system based on Al-Si-K, and steel B has a composition system in which Cr is added to the composition of steel A. Table 2 shows the hot rolling conditions of Examples and Comparative Examples using the above steel. In Comparative Example 1, steel A was rolled at a rolling temperature of 870°C and the coil was wound at 550°C, and the scale adhesion in the longitudinal direction is shown in FIG. There was significant scale peeling on the inner and outer windings and ends of the coil, and the scale adhesion criterion (Gr≦5, hereinafter referred to as Gr≦5) was not satisfied. Comparative example 2 uses steel B with a rolling temperature of 870°C.
Figure 8 shows the scale adhesion in the longitudinal and width directions of a coil wound at 650°C. There is large peeling of scale on the inner and outer parts and parts of the ends of the coil.
Gr≦5 is not satisfied. In Example 1, steel B was rolled at a rolling temperature of 870°C, and the scale adhesion in the longitudinal and width directions of a coil wound at 550°C is shown in FIG. Gr≦5 was satisfied in the entire length and width directions of the coil, and the scale adhesion was improved compared to Comparative Examples 1 and 2, and there was an improvement effect by adding Cr and lowering the winding temperature. Comparative Example 3 uses steel A at a rolling temperature of
The coil was heated at 830℃ and wound at 450℃.
Figure 10 shows the scale adhesion in the width direction. Gr≦5 is satisfied in the entire length and width directions of the coil, and the scale adhesion is greatly improved compared to Comparative Example 1, and there is an improvement effect by low temperature rolling and low temperature winding.
Example 2 uses steel B with a rolling temperature of 830°C.
Figure 11 shows the scale adhesion in the longitudinal and width directions of a coil wound at 450°C. Gr≦5 is satisfied in the entire length and width directions of the coil, and the scale adhesion is further improved than in Example 1 and Comparative Example 3, and there is an improvement effect due to the addition of Cr, low-temperature rolling, and low-temperature winding. Table 3 below shows the composition and hot rolling conditions of the steel used in other Examples and Comparative Examples of the present invention, as well as the scale adhesion evaluation results. Comparative examples C-2, D-2, E-2, F-2 are
Satisfying Gr≦5, Comparative Examples C-1, D-1, E-1,
Scale adhesion is greatly improved compared to F-1, and there are improvement effects due to low-temperature rolling, water cooling started quickly after rolling, improved cooling rate, and low-temperature winding. Examples C-3, C-4, C-5, and D-4 are hot-rolled steel sheets manufactured based on Claim 1, and satisfy Gr≦5, and Comparative Examples C-1 and D-1. The scale adhesion was greatly improved compared to Comparative Example C-
2, D-2, E-2, and F-3, the scale adhesion was further improved, and the rolling temperature, cooling temperature, winding temperature, and Cr addition had the effect of improving. Comparative example D-3 satisfies Gr≦5, Comparative example D-
Scale adhesion is improved compared to Comparative Example D-
The scale adhesion was further improved than in Example 2, and in addition to the rolling temperature, cooling rate, and degree of winding, forced cooling after winding had an improvement effect. Example D-5 is a hot-rolled steel sheet manufactured based on claim 2, which satisfies Gr≦5, has greatly improved scale adhesion compared to Comparative Example D-1, and has a significantly improved scale adhesion compared to Comparative Example D-1. 2. The scale adhesion was further improved than D-3, and there were improvements in the rolling temperature, cooling rate, winding temperature, addition of Cr, and forced cooling after winding.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 * 評点 ≦5…合格
>5…不合格
〔発明の効果〕 本発明は熱間圧延後酸洗をしないスケール密着
性に優れた熱延鋼板の製造方法であり、前記した
構成によつてフラツシユバツト溶接時のペネトレ
ーター割れ又スポツト溶接時のナゲツト内破断の
ない、しかも軟加工用に適した高強度でスケール
密着性にすぐれた熱延鋼板を安価に確実に得るこ
とができるものである。このため後工程でのスケ
ールによる粉塵の発生が少なく、コイル全長、全
巾でスケール密着性が良好なため、自動車の足廻
り部品やフレーム等の製造にあたつて更に歩留が
高まりコスト低減が可能となり、必要に応じて塗
装することが可能であり、極めて経済性に富む。
[Table] * Score ≦5…Pass
>5... Reject [Effect of the invention] The present invention is a method for producing a hot rolled steel sheet with excellent scale adhesion without pickling after hot rolling, and the above-described structure prevents penetrator cracks and spots during flash butt welding. It is possible to reliably obtain a hot-rolled steel sheet at a low cost that does not cause internal nugget fracture during welding, has high strength suitable for soft processing, and has excellent scale adhesion. As a result, there is less dust generated by scale in subsequent processes, and scale adhesion is good over the entire length and width of the coil, further increasing yields and reducing costs when manufacturing automobile suspension parts and frames. This makes it possible to paint as needed, making it extremely economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスケール密着性評点とスケール厚み、
スケール組成Fe2O3%との関係を示す。第2図は
スケール密着性評点とスケール厚み、スケール組
成Fe3O4%との関係を示す。第3図は圧延仕上げ
温度とスケール厚みの関係を示す。第4図は捲取
り温度とスケール厚みの関係を示す。第5図は捲
取り温度とスケール組成Fe2O3%との関係を示
す。第6図はスケール密着性評点と圧延仕上げ温
度、捲取り温度との関係を示す。第7図は比較例
1のコイル長手・巾方向のスケール密着性を示
す。第8図は比較例2のコイル長手・巾方向のス
ケール密着性を示す。第9図は実施例1のコイル
長手・巾方向のスケール密着性を示す。第10図
は比較例3のコイル長手・巾方向のスケール密着
性を示す。第11図は実施例2のコイル長手・巾
方向のスケール密着性を示す。
Figure 1 shows the scale adhesion rating and scale thickness.
The relationship with scale composition Fe 2 O 3 % is shown. FIG. 2 shows the relationship between the scale adhesion score, scale thickness, and scale composition Fe 3 O 4 %. Figure 3 shows the relationship between rolling finishing temperature and scale thickness. FIG. 4 shows the relationship between winding temperature and scale thickness. FIG. 5 shows the relationship between the winding temperature and the scale composition Fe 2 O 3 %. FIG. 6 shows the relationship between the scale adhesion score, rolling finishing temperature, and winding temperature. FIG. 7 shows the scale adhesion of Comparative Example 1 in the longitudinal and width directions of the coil. FIG. 8 shows the scale adhesion of Comparative Example 2 in the longitudinal and width directions of the coil. FIG. 9 shows the scale adhesion of Example 1 in the longitudinal and width directions of the coil. FIG. 10 shows the scale adhesion of Comparative Example 3 in the longitudinal and width directions of the coil. FIG. 11 shows the scale adhesion of Example 2 in the longitudinal and width directions of the coil.

Claims (1)

【特許請求の範囲】 1 C0.03〜0.25wt%、0.04<Si≦0.5wt%、
Mn0.2〜2.0wt%、P≦0.025wt%、S≦0.015wt
%、Al≦0.08wt%、Cr≦0.1wt%を含有し、残部
がFe及び不可避的元素からなる鋼を溶製後、連
続鋳造法或いは造塊法にて得た鋼片を加熱炉に装
入するかもしくは一旦冷片としたのち再加熱し、
(Ar3+50℃)以下の温度で熱間圧延した後、5
秒以内に注水冷却を開始し冷却速度40℃/秒以上
の急冷で600℃以下360℃以上の温度で捲きとるこ
とを特徴とするスケール密着性に優れた熱延鋼板
の製造方法。 2 C0.03〜0.25wt%、0.04<Si≦0.5wt%、
Mn0.2〜2.0wt%、P≦0.025wt%、S≦0.015wt
%、Al≦0.08wt%、Cr≦0.1wt%を含有し、残部
がFe及び不可避的元素からなる鋼を溶製後、連
続鋳造法或いは造塊法にて得た鋼片を加熱炉に装
入するかもしくは一旦冷片としたのち再加熱し、
(Ar3+50℃)以下の温度で熱間圧延した後、5
秒以内に注水冷却を開始し冷却速度40℃/秒以上
の急冷で360℃未満の温度で捲きとりその後、冷
却速度を0.5℃/分以上とすることを特徴とする
スケール密着性に優れた熱延鋼板の製造方法。
[Claims] 1 C0.03-0.25wt%, 0.04<Si≦0.5wt%,
Mn0.2~2.0wt%, P≦0.025wt%, S≦0.015wt
%, Al≦0.08wt%, Cr≦0.1wt%, and the balance is Fe and unavoidable elements. After melting the steel, the steel slab obtained by continuous casting method or ingot forming method is loaded into a heating furnace. or reheat it after cooling it,
After hot rolling at a temperature below (Ar 3 +50℃), 5
A method for producing a hot-rolled steel sheet with excellent scale adhesion, characterized by starting water injection cooling within seconds, rapidly cooling at a cooling rate of 40°C/second or more, and rolling at a temperature of 600°C or lower and 360°C or higher. 2 C0.03~0.25wt%, 0.04<Si≦0.5wt%,
Mn0.2~2.0wt%, P≦0.025wt%, S≦0.015wt
%, Al≦0.08wt%, Cr≦0.1wt%, and the balance is Fe and unavoidable elements. After melting the steel, the steel slab obtained by continuous casting method or ingot forming method is loaded into a heating furnace. or reheat it after cooling it,
After hot rolling at a temperature below (Ar 3 +50℃), 5
Heat with excellent scale adhesion, characterized by starting water injection cooling within seconds, rapidly cooling at a cooling rate of 40°C/second or more, and rolling it up at a temperature below 360°C, followed by a cooling rate of 0.5°C/minute or more. Method of manufacturing rolled steel plate.
JP3150085A 1985-02-21 1985-02-21 Manufacture of hot rolled steel sheet having superior adhesion to scale Granted JPS61194112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3150085A JPS61194112A (en) 1985-02-21 1985-02-21 Manufacture of hot rolled steel sheet having superior adhesion to scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3150085A JPS61194112A (en) 1985-02-21 1985-02-21 Manufacture of hot rolled steel sheet having superior adhesion to scale

Publications (2)

Publication Number Publication Date
JPS61194112A JPS61194112A (en) 1986-08-28
JPH0359125B2 true JPH0359125B2 (en) 1991-09-09

Family

ID=12332951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3150085A Granted JPS61194112A (en) 1985-02-21 1985-02-21 Manufacture of hot rolled steel sheet having superior adhesion to scale

Country Status (1)

Country Link
JP (1) JPS61194112A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145754A (en) * 1986-12-10 1988-06-17 Ngk Spark Plug Co Ltd Metallic fitting for ignition plug body and its production
JPS63266046A (en) * 1986-12-10 1988-11-02 Ngk Spark Plug Co Ltd Steel for metallic fixture of essentially spark plug use and its production
JPH01159348A (en) * 1987-12-16 1989-06-22 Kawasaki Steel Corp H-shape steel having tight scale and its production
JPH06104853B2 (en) * 1989-01-10 1994-12-21 新日本製鐵株式会社 Tight-scale steel sheet manufacturing method
JP2006021077A (en) * 2004-07-06 2006-01-26 Matsushita Electric Ind Co Ltd Electrical dust precipitation unit
JP5679112B2 (en) * 2011-02-08 2015-03-04 Jfeスチール株式会社 Hot rolled steel sheet with excellent scale adhesion and method for producing the same
CN112962051A (en) * 2021-01-29 2021-06-15 安徽合力股份有限公司合肥铸锻厂 Boronizing method for austenitic stainless steel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693820A (en) * 1979-12-27 1981-07-29 Kawasaki Steel Corp Production of hot-rolled steel-belt having thin skin scale
JPS57143433A (en) * 1981-03-02 1982-09-04 Kobe Steel Ltd Manufacture of hot rolled high tensile steel plate with low yield ratio
JPS57145925A (en) * 1981-03-03 1982-09-09 Kobe Steel Ltd Production of high strength hot rolled steel plate
JPS5855528A (en) * 1981-09-29 1983-04-01 Kawasaki Steel Corp Preparation of hot-rolled steel sheet having excellent acid-pickling property and workability
JPS5871330A (en) * 1981-10-20 1983-04-28 Kawasaki Steel Corp Production of hot rolled steel strip having excellent uniformity in material quality
JPS59208019A (en) * 1983-05-12 1984-11-26 Sumitomo Metal Ind Ltd Manufacture of hot-rolled high-tension steel sheet for working
JPS6179731A (en) * 1984-09-28 1986-04-23 Kawasaki Steel Corp Manufacture of hot-rolled high-tension steel sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693820A (en) * 1979-12-27 1981-07-29 Kawasaki Steel Corp Production of hot-rolled steel-belt having thin skin scale
JPS57143433A (en) * 1981-03-02 1982-09-04 Kobe Steel Ltd Manufacture of hot rolled high tensile steel plate with low yield ratio
JPS57145925A (en) * 1981-03-03 1982-09-09 Kobe Steel Ltd Production of high strength hot rolled steel plate
JPS5855528A (en) * 1981-09-29 1983-04-01 Kawasaki Steel Corp Preparation of hot-rolled steel sheet having excellent acid-pickling property and workability
JPS5871330A (en) * 1981-10-20 1983-04-28 Kawasaki Steel Corp Production of hot rolled steel strip having excellent uniformity in material quality
JPS59208019A (en) * 1983-05-12 1984-11-26 Sumitomo Metal Ind Ltd Manufacture of hot-rolled high-tension steel sheet for working
JPS6179731A (en) * 1984-09-28 1986-04-23 Kawasaki Steel Corp Manufacture of hot-rolled high-tension steel sheet

Also Published As

Publication number Publication date
JPS61194112A (en) 1986-08-28

Similar Documents

Publication Publication Date Title
JP5283504B2 (en) Method for producing high-strength steel sheet having excellent ductility and steel sheet produced thereby
JPH0510411B2 (en)
JPH0359125B2 (en)
JPH028349A (en) High tensile hot rolled steel strip having excellent cold workability and weldability and having &gt;=55kgf/mm2 tensile strength
JPS61276930A (en) Production of cold rolled dead soft steel sheet having good elongation and deep drawability
JPH09310165A (en) Thin steel sheet for working excellent in fatigue characteristic and its production
JP3543200B2 (en) Manufacturing method of steel sheet for metal saw substrate
JPH0317892B2 (en)
JPH0571650B2 (en)
JPH10245667A (en) Production of grain oriented extremely thin silicon steel sheet having ultralow core loss
JPH0143005B2 (en)
JPH1017994A (en) High strength alloyed galvanized steel sheet for deep drawing excellent in secondary working embrittlement resistance
JPH0137454B2 (en)
JP3048739B2 (en) Method for producing high strength alloyed hot-dip galvanized steel sheet with excellent stretch flangeability
JPH08143969A (en) Production of cold rolled steel sheet excellent in workability
JPH07138638A (en) Production of high-strength hot rolled steel sheet having good workability and weldability
JPH0250908A (en) Method for preventing intergranular oxidation of high-strength cold-rolled steel sheet
JPS5985820A (en) Production of unidirectional silicon steel plate having excellent surface characteristic
JPS61257421A (en) Production of extra-high tensile steel plate
JPS5980727A (en) Manufacture of cold rolled steel sheet with high drawability by continuous annealing
JPS6063319A (en) Production of hot rolled steel sheet having excellent scale adhesion
JPH0578752A (en) Manufacture of high strength cold rolled steel sheet excellent in chemical convertibility and stretch-flanging property
JPH06248340A (en) Production of hot rolled steel sheet excellent in workability
JPH03183726A (en) Production of hot rolled steel plate excellent stretch flange formability
JPH0250978B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees