JPH01159348A - H-shape steel having tight scale and its production - Google Patents

H-shape steel having tight scale and its production

Info

Publication number
JPH01159348A
JPH01159348A JP31614687A JP31614687A JPH01159348A JP H01159348 A JPH01159348 A JP H01159348A JP 31614687 A JP31614687 A JP 31614687A JP 31614687 A JP31614687 A JP 31614687A JP H01159348 A JPH01159348 A JP H01159348A
Authority
JP
Japan
Prior art keywords
scale
steel
tight
shape steel
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31614687A
Other languages
Japanese (ja)
Inventor
Kimio Mine
峰 公雄
Nobuyuki Kondo
信行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31614687A priority Critical patent/JPH01159348A/en
Publication of JPH01159348A publication Critical patent/JPH01159348A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an H-shape steel having tight scale excellent in adhesive strength by subjecting a steel having a specific composition consisting of C, Si, Mn, S, Al, Cr, and Fe to the completion of forming into an H-shape steel at a specific temp. and then to slow cooling. CONSTITUTION:A steel slab having a composition consisting of, by weight, 0.05-0.20% C, 0.01-0.10% Si, 0.20-1.5% Mn,. 0.001-0.010% S, 0.005-0.080% Al, 0.05-0.50% Cr, and the balance Fe with inevitable impurities is heated to 1000-1300 deg.C to undergo hot rolling, by which the forming of the above slab into an H-shape steel is completed at 700-850 deg.C. Then, this formed part is cooled slowly. By this method, an oxide scale of <=10mum thickness containing 60-80% magnetite (Fe3O4) is formed on the surface, by which the H-shape steel having tight scale can be obtained. In this H-shape steel, the peeling of scale is prevented, the formation of red rust on the steel in stock is prevented, and the necessity of descaling before painting is obviated.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、建築用または土木用に用いられるタイトなス
ケールを有するH形鋼及びその製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an H-section steel having a tight scale used for construction or civil engineering, and a method for manufacturing the same.

〈従来の技術〉 熱間圧延されたH形鋼は、その製造工程において曲がり
矯正のために、ロールベンディング法ニよる矯正が施さ
れ、また最終構造物に使用される過程において、曲げ、
溶接および塗装等の加工を受ける。こうした加工を受け
た後に屋内外において長期間にわたり滞留されることが
あり、H形鋼表面のスケールが剥離した面では赤サビが
発生し大問題である。
<Prior art> Hot-rolled H-section steel is straightened by roll bending in order to straighten its bending during its manufacturing process, and is also subjected to bending and straightening during the process of being used in the final structure.
Receives processing such as welding and painting. After undergoing such processing, it may be retained for a long time indoors or outdoors, and red rust occurs on the surface of the H-section steel where the scale has peeled off, which is a big problem.

このために従来は重要な部材に関しては、ショツトブラ
ストあるいはブラッシング等の表面洗浄工程を経る必要
があり、多大な労力とエネルギーをかけていた。
For this reason, in the past, important parts had to undergo surface cleaning processes such as shot blasting or brushing, which required a great deal of labor and energy.

〈発明が解決しようとする問題点〉 基本的にこのH形鋼のスケール剥離を防止する技術は現
在のところ開示されていなかった。
<Problems to be Solved by the Invention> Basically, no technology has been disclosed to date to prevent scale peeling of this H-beam steel.

本発明は、上記のH形鋼のスケール剥離を防止すること
が可能な、タイトなスケールを有するH形鋼゛及びその
製造方法を提供することを目的とする。
An object of the present invention is to provide an H-beam steel having a tight scale that can prevent scale peeling of the H-beam steel, and a method for manufacturing the same.

く問題点を解決するための手段〉 第1の発明のタイトなスケールを有するH形鋼は、 重量比にて、 C; 0.05〜0.20%、  Si : 0.01
〜0.10%、Mn : 0.20〜1.5%、  S
 : 0.001〜0.010%、Af : 0.00
5〜0.080%、Cr : 0.05〜0.50%、
を含有し、残部はFeと不可避的不純物からなる鋼より
成形され、表面に生成した酸化スケールの厚さがlo−
以下であることを特徴とするものであり、第2の発明の
タイトなスケールを有するH形鋼の製造方法は、 重量比にて、 C: 0.05〜0.20%、  Si : 0.01
〜0.10%、Mn : 0.20〜1.5%、  S
 : 0.001〜0.010%、N : 0.005
〜0.080%、Cr : 0.05〜0.50%、を
含有し、残部はFeと不可避的不純物からなる鋼片を1
000−1300℃の温度範囲に加熱して、熱間圧延で
700〜850℃の温度範囲でH形鋼に成形を完了した
後、徐冷するものである。
Means for Solving the Problems〉 The H-beam steel having a tight scale according to the first invention has the following by weight ratio: C: 0.05 to 0.20%, Si: 0.01
~0.10%, Mn: 0.20~1.5%, S
: 0.001-0.010%, Af: 0.00
5-0.080%, Cr: 0.05-0.50%,
The remaining part is Fe and unavoidable impurities, and the thickness of the oxide scale formed on the surface is lo-
The method for producing an H-beam steel having a tight scale according to the second invention is characterized by the following: In terms of weight ratio, C: 0.05 to 0.20%, Si: 0. 01
~0.10%, Mn: 0.20~1.5%, S
: 0.001-0.010%, N: 0.005
~0.080%, Cr: 0.05~0.50%, and the remainder consists of Fe and unavoidable impurities.
After heating to a temperature range of 000-1300°C and completing forming into an H-beam steel by hot rolling at a temperature range of 700-850°C, the steel is slowly cooled.

く作 用〉 H形鋼製品の搬送途上の衝撃あるいは矯正加工、曲げ加
工等により簡単にスケールは剥離し、在庫中に赤サビが
発生するメカニズムは次の通りである。
Effects> Scale easily peels off due to impact during transportation of H-section steel products, straightening processing, bending processing, etc., and the mechanism by which red rust occurs in inventory is as follows.

すなわち、熱間圧延で製造されるH形鋼はSi、Pおよ
びslが高く、スケール地鉄と地鉄界面にファイヤライ
ト層が生成し、熱間でのスケールの脱落を不利にしてい
る。一方、熱間圧延後のH形鋼の表面酸化スケールは厚
さが厚く、そのうえスケールの剥離性を容易にするFe
Sおよびファイヤライト等の界面物質を残存したままで
あり、スケールの地鉄への密着性が弱い欠点があるため
である。
That is, H-shaped steel manufactured by hot rolling has high Si, P, and sl, and a fayalite layer is formed at the interface between the scale base iron and the base metal, making it disadvantageous for scale to fall off during hot rolling. On the other hand, the surface oxidation scale of H-beam steel after hot rolling is thick, and in addition Fe
This is because interfacial substances such as S and fayalite remain, and the adhesion of the scale to the base iron is weak.

本発明者らは、このメカニズムを鋭意研究して、特定成
分系の鋼を用い、一定゛のスケールの特性にすれば、熱
間で生成されたスケールがタイトであり赤サビの発生が
なく、また、スケールを剥離除去することなくミルスケ
ールのまま塗装が行えるタイトなスケールを有するH形
鋼が得られることを見出し本発明に到達したものである
The inventors of the present invention have diligently researched this mechanism, and found that by using steel with a specific composition and having certain scale characteristics, the scale generated during hot heating will be tight and no red rust will occur. Furthermore, the inventors have discovered that it is possible to obtain an H-beam steel having a tight scale that can be coated with mill scale without peeling and removing the scale, resulting in the present invention.

次に、本発明鋼の限定理由について説明する。Next, the reason for the limitation of the steel of the present invention will be explained.

Cは機械的性質、とくに強度を付与するために必要な元
素であり、その下限を0.05%とした。また、0.2
0%を越えると溶接性が劣化するばかりでなく、スケー
ルの剥離性が大となり、本発明の目的であるタイトなス
ケールを付与することが困難になるために上限を0.2
0%とした。
C is an element necessary for imparting mechanical properties, particularly strength, and its lower limit was set at 0.05%. Also, 0.2
If it exceeds 0%, not only will weldability deteriorate, but also the peelability of the scale will increase, making it difficult to provide tight scale, which is the objective of the present invention, so the upper limit is set at 0.2%.
It was set to 0%.

Siは脱酸および強度付与のためには便利な元素である
が、熱間加工中に生じるスケールと地鉄との界面にファ
イヤライトを生じ、熱間圧延中あるいは熱間でのデスケ
ーリングによる熱間スケールの剥離性を劣化させ、スケ
ール疵の原因になるほか、かえって、熱間圧延して冷却
後のスケールの剥離性が大となり、タイトなスケール性
状を付与することができなくなるので、上限を0.10
%とした。一方、工業的に製造するうえで0.01%未
満にするにはコストが高くなり経済的でないので、下限
を0.01%とした。
Although Si is a useful element for deoxidizing and imparting strength, it produces fayalite at the interface between the scale and the base iron during hot working, and it causes heat loss during hot rolling or hot descaling. In addition to deteriorating the peelability of the interscale scale and causing scale defects, it also increases the peelability of the scale after cooling after hot rolling, making it impossible to provide tight scale properties. 0.10
%. On the other hand, in industrial production, if the content is less than 0.01%, the cost would be high and it would be uneconomical, so the lower limit was set at 0.01%.

Mnは機械的性質を付与するのに不可欠な元素であり、
かつ、硫化物MnSを形成し、熱間でFeS+Mn→M
nS + Feの反応を進行させることにより、鋼材の
表面および鋼中でのFeSの生成量と残存量を減少させ
、その効果は0.20%以上必要なので、下限を0.2
0%とした。一方、1.5%を越えると溶接性を劣化さ
せるほか、機械加工性を低下させるので、上限を1.5
%にした。
Mn is an essential element that imparts mechanical properties,
Then, sulfide MnS is formed and FeS+Mn→M is heated.
By advancing the reaction of nS + Fe, the amount of FeS generated and remaining on the surface of the steel material and in the steel is reduced, and the effect requires 0.20% or more, so the lower limit is set to 0.2.
It was set to 0%. On the other hand, if it exceeds 1.5%, it deteriorates weldability and machinability, so the upper limit is set at 1.5%.
%.

Sはスケールと地鉄の界面にFeSを形成し熱間のスケ
ール生長を助長して、スケール量を増加させることによ
りスケールの密着性を劣化させるので、上限を0.01
0%とし、o、ooi%未溝にすると製造コストが過大
になるので、下限を0.010%とした。
S forms FeS at the interface between the scale and the steel base, promotes hot scale growth, increases the amount of scale, and deteriorates the adhesion of the scale, so the upper limit is set to 0.01.
0%, and if o, ooi% were left ungrooved, the manufacturing cost would be excessive, so the lower limit was set at 0.010%.

Mは脱酸剤として効果が大きい元素であり、Siを低下
させた本発明鋼の場合、表面欠陥および内部欠陥を防止
するには必要な元素である。 0.05%未満では十分
に効果を発揮せず表面欠陥の発生が増加するので、下限
を0.005%とした。また、Mを0.080%以上に
するとJV t Os系クラスターの多発による内部品
質劣化をともなうほか、連続鋳造時ノズル閉鎖をきたし
製造困難となるので、上限を0.080%とした。
M is an element that is highly effective as a deoxidizing agent, and in the case of the steel of the present invention with reduced Si, it is a necessary element to prevent surface defects and internal defects. If it is less than 0.05%, the effect will not be sufficiently exhibited and the occurrence of surface defects will increase, so the lower limit was set at 0.005%. Further, if M is 0.080% or more, internal quality is deteriorated due to frequent occurrence of JV t Os clusters, and production becomes difficult due to nozzle closure during continuous casting, so the upper limit was set at 0.080%.

Crは機械的性質を改善するために有効な成分であるば
かりか、スケールの生長を抑制し、また、スケールと地
鉄の界面にCr酸化物が存在するとスケールの密着性を
向上させることを見出した。その効果は0.05%以上
でないと発揮されないので、下限を0.05%とした。
It was discovered that Cr is not only an effective component for improving mechanical properties, but also suppresses scale growth, and also improves scale adhesion when Cr oxide is present at the interface between scale and base steel. Ta. Since the effect is not exhibited unless the content is 0.05% or more, the lower limit was set as 0.05%.

また、0.50%以上でも機械的性質の向上およびスケ
ール密着性の向上には効果を持続するものの、製造コス
トが過大となるので、上限を0.50%とした。
Further, even if the content is 0.50% or more, the effect of improving mechanical properties and scale adhesion continues, but the manufacturing cost becomes excessive, so the upper limit was set to 0.50%.

以上の特定された成分系の鋼を用いることによりタイト
なスケールを有するH形鋼を製造することが可能である
が、さらにスケールの特性を以下にすることにより、ス
ケールの密着性が飛躍的に向上する。
Although it is possible to manufacture H-beam steel with tight scale by using steel with the above-specified composition system, by further adjusting the scale characteristics to the following, the adhesion of the scale can be dramatically improved. improves.

すなわち、第1図に示すように、スケールの厚さを種々
に変えて、スケールの密着性をみると、スケールの厚さ
がLOnを越えると密着性が劣化することがわかった。
That is, as shown in FIG. 1, when the scale thickness was varied and the scale adhesion was examined, it was found that when the scale thickness exceeded LOn, the adhesion deteriorated.

これは、スケールが厚くなるにつれスケール層内および
スケール地鉄界面にボイドが形成されスケールが剥離し
やすい状態になるためである。したがって、タイトなス
ケールを有するH形鋼とするためにはスケールの厚さは
10−以下にすることが必要である。
This is because as the scale becomes thicker, voids are formed within the scale layer and at the interface between the scale base and the scale, making it easier for the scale to peel off. Therefore, in order to obtain an H-beam steel with a tight scale, it is necessary to set the scale thickness to 10 - or less.

なお第1図の実験には、素材が第1表の114Bの組成
を有し、スケールの組成はマグネタイト(Pesos)
を重量比で40〜90%含有するH形鋼を供した。また
、スケールの密着性は後述のゴバン目試験により測定し
た。
In the experiment shown in Figure 1, the material had the composition 114B in Table 1, and the scale composition was magnetite (Pesos).
An H-beam steel containing 40 to 90% by weight of Moreover, the adhesion of the scale was measured by the cross-cut test described below.

次に、第2図に示すように、スケール組成中のマグネタ
イト(p、o4)の割合を種々に変えて、スケールの密
着性をみると、マグネタイトが重量比で60%以上にな
ると、密着性はすぐれた値を示すことがわかった。マグ
ネタイトの量が90%を越えても特にスケール密着性を
劣化させることはないが、このようなスケール組成は、
熱間圧延後の冷却速度からみて困難であり、狙い通りに
安定して製造し得ない、それゆえ、タイトなスケール組
成としてマグネタイトの下限を0.60%、上限を90
%とした。
Next, as shown in Figure 2, when looking at the adhesion of the scale by varying the ratio of magnetite (p, o4) in the scale composition, it was found that when the weight ratio of magnetite was 60% or more, the adhesion increased. was found to exhibit excellent values. Even if the amount of magnetite exceeds 90%, it does not particularly deteriorate scale adhesion, but such a scale composition
It is difficult in terms of the cooling rate after hot rolling, and cannot be produced stably as intended.Therefore, as a tight scale composition, the lower limit of magnetite is set at 0.60% and the upper limit is set at 90%.
%.

従来のH形鋼表面のスケールにおけるマグネタイトit
は、25〜45%程度であり、本発明の範囲のものはな
かった。
Magnetite it on the scale of conventional H-beam steel surface
was about 25 to 45%, and none was within the scope of the present invention.

なお第2図の実験には、素材が第1表の鋼Bの組成を存
し、スケールの厚さが5〜10 amのH形鋼を供した
。また、スケールの密着性はゴバン目試験により測定し
た。
In the experiment shown in FIG. 2, an H-beam steel having the composition of steel B shown in Table 1 and having a scale thickness of 5 to 10 am was used. In addition, the adhesion of the scale was measured by a cross-cut test.

スケールの組成及び厚さはスケールの生成過程と生成後
のスケールの変態挙動を制御することによって、ある一
定の範囲内におさめることができる。スケールの生成は
地鉄の成分と熱サイクルによって制御でき、生成後のス
ケールの変態挙動は冷却パターンおよび低温加熱等によ
り制御できる。
The composition and thickness of the scale can be kept within a certain range by controlling the scale generation process and the transformation behavior of the scale after generation. The generation of scale can be controlled by the composition of the base iron and the thermal cycle, and the transformation behavior of scale after generation can be controlled by cooling patterns, low-temperature heating, etc.

そして、本発明鋼の綱片から熱間圧延により製造したH
形鋼のスケールの組成及び厚さを本発明の範囲内におさ
めるには、その鋼片を1000〜1300℃の温度範囲
に加熱して、熱間圧延で700〜850°Cの温度範囲
でH形鋼に成形を完了した後、徐冷することにより達成
することができる。
The H
In order to keep the scale composition and thickness of the section steel within the range of the present invention, the steel slab is heated to a temperature range of 1000 to 1300°C, and then hot rolled to a temperature range of 700 to 850°C. This can be achieved by slowly cooling the steel after forming it into a section.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

第1表に供試材の化学成分を示す。供試材として本発明
鋼A、Bのほかに、比較鋼として現在製品として使用さ
れているCおよびDを用いた。
Table 1 shows the chemical composition of the sample materials. In addition to the present invention steels A and B, C and D, which are currently used as products, were used as comparative steels.

各供試鋼を用いて250X 150X 3.2X 4.
5鰭の寸法のH形鋼に熱間圧延し、スケールの密着性を
調査した結果を第2表に示す。本発明鋼は比較鋼に比べ
てスケールの密着性が非常に良好であることが明らかで
ある。また、スケールの厚さおよびマグネタイト量に関
しては、第1図および第2図からもわかるように、それ
ぞれ10t1m以下および60%以上においてすぐれた
スケール密着性が得られた。
250X 150X 3.2X 4.
Table 2 shows the results of hot rolling an H-beam steel with a size of 5 fins and investigating the scale adhesion. It is clear that the steel of the present invention has much better scale adhesion than the comparative steel. Regarding the scale thickness and the amount of magnetite, as can be seen from FIGS. 1 and 2, excellent scale adhesion was obtained when the scale thickness was 10 t1 m or less and 60% or more, respectively.

次に、各供試鋼片を第3表に示す加熱温度および仕上げ
温度で通常の圧延を行い、徐冷した。その後表面疵の発
生状況および90度曲げ試験によるスケールの剥離脱落
状況を観察し、その結果を第3表に記した。これから、
本発明法の範囲内の成分系の素材を使用し、加熱および
圧延、冷却条件を制御すれば、スケール密着性が優れた
H形鋼を製造し得ることがわかる。
Next, each test piece was subjected to normal rolling at the heating temperature and finishing temperature shown in Table 3, and then slowly cooled. Thereafter, the occurrence of surface flaws and the peeling and falling off of scale by a 90 degree bending test were observed, and the results are shown in Table 3. from now,
It can be seen that an H-beam steel with excellent scale adhesion can be produced by using a material with components within the range of the method of the present invention and by controlling heating, rolling, and cooling conditions.

〈発明の効果〉 以上のように、本発明鋼は従来にないスケール密着性が
優れたタイトなスケールを有するHIM及びその製造方
法を提供するものであり、在庫中の赤サビ発生等の問題
の発生がないこと、また、塗装前のスケール処理工程を
必要としないこと等、工業的に極めて有効な発明である
<Effects of the Invention> As described above, the steel of the present invention provides an HIM having tight scales with unprecedented scale adhesion and a method for manufacturing the same, and eliminates problems such as occurrence of red rust during inventory. This invention is industrially extremely effective, as it does not cause any generation and does not require a scale treatment process before painting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスケール厚さとスケール密着性との関係を示す
グラフ、第2図はマグネタイト(FesO4)量とスケ
ール密着性との関係を示すグラフである。 特許出願人   川崎製鉄株式会社 第1図 m2図
FIG. 1 is a graph showing the relationship between scale thickness and scale adhesion, and FIG. 2 is a graph showing the relationship between the amount of magnetite (FesO4) and scale adhesion. Patent applicant Kawasaki Steel Corporation Figure 1 m2

Claims (3)

【特許請求の範囲】[Claims] (1)重量比にて、 C:0.05〜0.20%、Si:0.01〜0.10
%、Mn:0.20〜1.5%、S:0.001〜0.
010%、Al:0.005〜0.080%、Cr:0
.05〜0.50%、を含有し、残部はFeと不可避的
不純物からなる鋼より成形され、表面に生成した酸化ス
ケールの厚さが10μm以下であることを特徴とするタ
イトなスケールを有するH形鋼。
(1) In weight ratio, C: 0.05 to 0.20%, Si: 0.01 to 0.10
%, Mn: 0.20-1.5%, S: 0.001-0.
010%, Al: 0.005-0.080%, Cr: 0
.. 0.05 to 0.50%, with the remainder being Fe and unavoidable impurities, and has a tight scale characterized by the thickness of the oxide scale formed on the surface being 10 μm or less. Shaped steel.
(2)表面に生成した酸化スケールが、60〜90%の
マグネタイト(Fe_3O_4)を含有することを特徴
とする特許請求の範囲第1項記載のタイトなスケールを
有するH形鋼。
(2) The H-section steel having a tight scale according to claim 1, wherein the oxide scale generated on the surface contains 60 to 90% magnetite (Fe_3O_4).
(3)重量比にて、 C:0.05〜0.20%、Si:0.01〜0.10
%、Mn:0.20〜1.5%、S:0.001〜0.
010%、Al:0.005〜0.080%、Cr:0
.05〜0.50%、を含有し、残部はFeと不可避的
不純物からなる鋼片を1000〜1300℃の温度範囲
に加熱して、熱間圧延で700〜850℃の温度範囲で
H形鋼に成形を完了した後、徐冷することを特徴とする
タイトなスケールを有するH形鋼の製造方法。
(3) Weight ratio: C: 0.05-0.20%, Si: 0.01-0.10
%, Mn: 0.20-1.5%, S: 0.001-0.
010%, Al: 0.005-0.080%, Cr: 0
.. 05 to 0.50%, with the remainder consisting of Fe and unavoidable impurities.The steel slab is heated to a temperature range of 1000 to 1300°C, and then hot rolled to form an H-beam steel in a temperature range of 700 to 850°C. A method for producing an H-beam steel having a tight scale, which comprises slowly cooling the steel after forming the steel.
JP31614687A 1987-12-16 1987-12-16 H-shape steel having tight scale and its production Pending JPH01159348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31614687A JPH01159348A (en) 1987-12-16 1987-12-16 H-shape steel having tight scale and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31614687A JPH01159348A (en) 1987-12-16 1987-12-16 H-shape steel having tight scale and its production

Publications (1)

Publication Number Publication Date
JPH01159348A true JPH01159348A (en) 1989-06-22

Family

ID=18073780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31614687A Pending JPH01159348A (en) 1987-12-16 1987-12-16 H-shape steel having tight scale and its production

Country Status (1)

Country Link
JP (1) JPH01159348A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356639A (en) * 1989-07-21 1991-03-12 Kawasaki Steel Corp Hot rolled wide flang shape excellent in adhesive strength of coated film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024320A (en) * 1983-07-19 1985-02-07 Nippon Steel Corp Production of hot rolled steel sheet having excellent scale adhesion
JPS6077921A (en) * 1983-10-05 1985-05-02 Nippon Steel Corp Production of hot-rolled steel plate having high adhesion to scale
JPS6077922A (en) * 1983-10-05 1985-05-02 Nippon Steel Corp Production of hot-rolled steel plate having high adhesion to scale
JPS61194112A (en) * 1985-02-21 1986-08-28 Nippon Steel Corp Manufacture of hot rolled steel sheet having superior adhesion to scale

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024320A (en) * 1983-07-19 1985-02-07 Nippon Steel Corp Production of hot rolled steel sheet having excellent scale adhesion
JPS6077921A (en) * 1983-10-05 1985-05-02 Nippon Steel Corp Production of hot-rolled steel plate having high adhesion to scale
JPS6077922A (en) * 1983-10-05 1985-05-02 Nippon Steel Corp Production of hot-rolled steel plate having high adhesion to scale
JPS61194112A (en) * 1985-02-21 1986-08-28 Nippon Steel Corp Manufacture of hot rolled steel sheet having superior adhesion to scale

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356639A (en) * 1989-07-21 1991-03-12 Kawasaki Steel Corp Hot rolled wide flang shape excellent in adhesive strength of coated film

Similar Documents

Publication Publication Date Title
JPS60262918A (en) Manufacture of surface treating raw sheet without causing stretcher strain
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
JPS62202024A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic properties
JPH04173945A (en) Manufacture of high strength hot-dip galvanized steel sheet excellent in bendability
JPS5822329A (en) Production of austenitic stainless steel sheet and strip
JPS5826408B2 (en) Manufacturing method for low yield ratio, high tensile strength hot rolled steel sheet with excellent workability
JPH01184229A (en) Production of steel sheet for di can having excellent stretch flanging property
JPH01159348A (en) H-shape steel having tight scale and its production
JP3598981B2 (en) Ferritic stainless steel sheet and its manufacturing method
JPS5871360A (en) Manufacture of austenitic stainless steel with superior corrosion resistance and workability and its plate
JP2000073192A (en) Production of ferritic stainless steel sheet
JPH0372032A (en) Production of sheet steel
JPS6320414A (en) Production of high-toughness high-tensile steel plate
JPH11279781A (en) Production of austenitic stailness steel plate not having pattern on surface
JPH0692617B2 (en) Method for producing hot rolled high strength steel sheet with a composite structure having excellent surface properties and workability
JPS59159928A (en) Carburization hardening treatment of case hardened steel
JP3434079B2 (en) Wire for descaling
JPH01123058A (en) Alloying hot dip galvanized steel sheet for superdrawing excellent in resistance to secondary working brittleness and its production
JPH01198459A (en) Manufacture of high-strength hot dip galvanized steel sheet
JPH10121141A (en) Production of hot rolled steel sheet excellent in fishscale resistance and scale and enamel adhesion
JPH0192317A (en) Manufacture of high-strength sheet metal excellent in stretch-flange workability
JPH02263928A (en) Production of cr-ni stainless steel sheet excellent in stress corrosion cracking resistance and surface quality
JPS61257421A (en) Production of extra-high tensile steel plate
JPS63140039A (en) Production of steel sheet for di can
JPS5933175B2 (en) Manufacturing method of high-tensile wire rod