JPS61276930A - Production of cold rolled dead soft steel sheet having good elongation and deep drawability - Google Patents
Production of cold rolled dead soft steel sheet having good elongation and deep drawabilityInfo
- Publication number
- JPS61276930A JPS61276930A JP11666485A JP11666485A JPS61276930A JP S61276930 A JPS61276930 A JP S61276930A JP 11666485 A JP11666485 A JP 11666485A JP 11666485 A JP11666485 A JP 11666485A JP S61276930 A JPS61276930 A JP S61276930A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- rolling
- steel sheet
- deep drawability
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
自動車ボディなどのプレス加工、それもとりわけ伸びと
深絞り性の要求される部位に使用して好適な冷延鋼板の
製造に関連してこの明細書には、連続焼鈍法の有用な適
用の下に、材質の異方性が少なくて、伸びと深絞り性に
すぐれ、しかも耐時効性や、耐2次加工ぜい性にもずぐ
れる冷延鋼板の適切な製法についての開発研究の成果を
述べる。[Detailed Description of the Invention] (Industrial Application Field) This invention relates to the production of cold-rolled steel sheets suitable for press working of automobile bodies, especially in areas where elongation and deep drawability are required. The specification states that the continuous annealing method is useful for producing materials with less anisotropy, excellent elongation and deep drawability, and excellent aging resistance and secondary processing brittleness. This paper describes the results of research and development on an appropriate manufacturing method for cold-rolled steel sheets.
〈従来の技術)
プレス加工用鋼板は、従来、低炭素(C:0.02〜0
. Q7wt%;以下単に%であられす)Δβキルド鋼
を素材として、一般に箱焼鈍法で製造されていたが、最
近はプレス性の一層の向上と高生産性を得るためC<0
.01%の極低炭素鋼を素材として連続焼鈍法で製造さ
れるようになっている。<Conventional technology> Conventionally, steel sheets for press working have a low carbon content (C: 0.02 to 0
.. Q7wt% (hereinafter referred to simply as %) Δβ killed steel was generally manufactured by box annealing, but recently, in order to further improve pressability and high productivity, C<0
.. It is manufactured using a continuous annealing method using 0.1% ultra-low carbon steel.
極低炭素鋼では、鋼中に固溶して鋼板の延性、絞り性、
や耐時効性を劣化させているCやNを固定するため、T
i、Nb、V、Zr及びTaなどの炭窒化物形成元素が
添加される。従来これらの元素は高価なこともあって単
独で添加されることが多く、最もポピユラーに使用され
ているT1とNbの性質を比較ずろと、次のとおりであ
る。In ultra-low carbon steel, solid solution in the steel improves the ductility, drawability, and
In order to fix C and N that deteriorate aging resistance, T
Carbonitride forming elements such as i, Nb, V, Zr and Ta are added. Conventionally, these elements are often added alone because they are expensive, and the properties of T1 and Nb, which are most commonly used, are compared as follows.
T1添加鋼はNb添加鋼に比べ、再結晶温度が低し・こ
と、酸洗などの脱スケール性の良好な600℃以下の低
記巻取りを行っても全伸び(11り、ランクフォード値
(r値)などの機械的性質が良好であることなどの利点
がある。Compared to Nb-added steel, T1-added steel has a lower recrystallization temperature and has good descaling properties such as pickling. It has advantages such as good mechanical properties such as (r value).
一方Nb添加鋼はT1添加鋼に比べ、r値の異方性が少
ないこと、塗装前処理である化成処理性が良好であるこ
となどの特色がある。On the other hand, compared to T1-added steel, Nb-added steel has characteristics such as less anisotropy in r value and good chemical conversion treatment properties as a pre-painting treatment.
これらTi、Nb両者の利点を同時に発揮することに関
し特公昭58−107414号公報に開示されている。Japanese Patent Publication No. Sho 58-107414 discloses how to exhibit the advantages of both Ti and Nb at the same time.
この場合T1の含有量の上限を、大部分が優先的にTi
Nとして消費され、固溶Cについては残りの有効Ti(
total Ti−TiasTiN)とNbで固定する
こにより非時効性と深絞り性を確保する七ころにあり、
事実、伸び、下値と6に良好で異方性が少なく、さらに
再結晶温度も低いことなどの特徴があり、これまでのと
ころ冷延鋼板としては高く評価される。In this case, the upper limit of the content of T1 is set so that most of the content is preferentially Ti.
The remaining effective Ti (
By fixing with total Ti-TiasTiN) and Nb, it ensures non-aging properties and deep drawability.
In fact, it has characteristics such as good elongation, low value of 6, low anisotropy, and low recrystallization temperature, so it has been highly evaluated as a cold-rolled steel sheet so far.
(発明が解決しようとする問題点)
実際に」−記開示に従う有効T1の範囲で実験すると、
鋼中CがT1で有効に結合されずして、ときとして絞り
性の著しい劣化や固溶C残留による時効性の劣化を引起
すことが究明された。(Problem to be Solved by the Invention) Actually, when experimenting within the range of effective T1 according to the above disclosure,
It has been found that C in steel is not effectively bonded at T1, sometimes resulting in significant deterioration of drawability and deterioration of aging property due to residual solid solution C.
また熱延板でのα細粒化と、Nb、 Tiなどの完全析
出が、伸びと深絞り性の向上を最大限度に引き出すため
に必要なところ、これを従来通り高温巻取りにて対処し
ようとするときにはα粗大化と、脱スケール性の劣化を
来す不利も不可避である。In addition, α-grain refinement and complete precipitation of Nb, Ti, etc. in hot-rolled sheets are necessary to maximize the improvement of elongation and deep drawability, so we will deal with this by high-temperature coiling as usual. When doing so, the disadvantages of coarsening of α and deterioration of descaling properties are unavoidable.
そこでTi、 Nbの複合添加の効果をより一層十分に
発揮させて、さらに伸びと深絞り性の良好な、極低炭素
鋼冷延板の製造方法を確立することがこの発明の目的で
ある。Therefore, it is an object of the present invention to establish a method for manufacturing an ultra-low carbon steel cold-rolled sheet that further exhibits the effects of the combined addition of Ti and Nb and has good elongation and deep drawability.
(問題点を解決するだめの手段)
発明者らは、この実状に鑑み、前述の極低炭素Ti、
NN、1合添加鋼の有利な点を損うことなくフツス加工
性、とりわけ伸びと深絞り性がともに良好でなおかつ材
質の異方性が少なく、さらに耐時効性や耐2次加工ぜい
性を向上させる方法を検討した。(Unfortunate means to solve the problem) In view of this actual situation, the inventors developed the above-mentioned ultra-low carbon Ti,
Without sacrificing the advantages of steel with NN and 1 alloys, it has good workability, especially both elongation and deep drawability, and has little anisotropy in the material, as well as good aging resistance and secondary processing brittleness. We considered ways to improve this.
発明者らは、T1とNbの複合添加効果についてより詳
細に副査した結果、スラブ加熱の段階又は、熱間仕上圧
延の前段階である、粗圧延時にて、TiSとTiNが優
先的に析出し、固溶Cについては残りの有効T1とNb
で固定されることが判明した。As a result of a more detailed side investigation on the combined addition effect of T1 and Nb, the inventors found that TiS and TiN preferentially precipitate during slab heating or during rough rolling, which is a stage prior to hot finish rolling. However, for solid solution C, the remaining effective T1 and Nb
It turned out to be fixed.
つまり有効T1としては(total Ti−Ti a
s TiN−Tias Ti5)を用いるべきであるこ
とがわかった。In other words, the effective T1 is (total Ti-Ti a
It was found that s TiN-Tias Ti5) should be used.
また、とくに仕上げ圧延後の冷却はα細粒化と、Nb、
Tiなどの析出にとってもっとも重要な影響を及ぼし
、とりわけ仕上圧延後冷却開始までの時間は短い程効果
が顕著である。In addition, cooling after finish rolling is particularly effective for α grain refinement, Nb,
It has the most important effect on the precipitation of Ti, etc., and the effect is particularly significant as the time from finish rolling to the start of cooling is short.
実験の結果0.5秒以内に冷却を開始することによりR
β、下値ともに向」ニし1.これは熱延直後の急冷によ
り、フェライト生成およびNbやT1の析出に対する過
飽和度が犬となり、α細粒化、NllやT1の析出が促
進されることがたしかめられた。As a result of the experiment, by starting cooling within 0.5 seconds, R
Both β and the lower price are positive.1. It has been confirmed that the rapid cooling immediately after hot rolling reduces the degree of supersaturation for ferrite formation and precipitation of Nb and T1, promoting α grain refinement and precipitation of Nll and T1.
なお0.5秒以内に急冷を開始した後巻取温度まで均一
冷却することによって本発明の効果は発揮されるが、冷
却途中700〜800℃の温度範囲で数秒具」−の空冷
を与えるかあるいは巻取温度を高めにすることもこの発
明の効果をあげるのに役立つ。Although the effects of the present invention can be achieved by uniformly cooling the material to the coiling temperature after starting rapid cooling within 0.5 seconds, it is also possible to provide air cooling for several seconds in the temperature range of 700 to 800°C during cooling. Alternatively, increasing the winding temperature also helps to increase the effects of this invention.
かくして極低炭素鋼のC,N、S、TiおよびNb量を
限定するとともにさらに熱間圧延とその後の冷却条件お
よび連続焼鈍の加熱冷却条件を厳密に限定することによ
り、はじめてプレス加工用鋼板として十分満足できるも
のが得られたのである。In this way, by limiting the amounts of C, N, S, Ti, and Nb in ultra-low carbon steel, and by strictly limiting the hot rolling and subsequent cooling conditions, and the heating and cooling conditions of continuous annealing, we were able to create a steel sheet for press working for the first time. I was able to get something that I was completely satisfied with.
この発明は C: 0.0050%以下、Si:1.0
%以下、Mn:1.0 %以下。This invention has C: 0.0050% or less, Si: 1.0
% or less, Mn: 1.0% or less.
八!・O,[]05〜0.10%、P:0.15%以下
。Eight! -O, []05-0.10%, P: 0.15% or less.
N : 0.0050%以下、 S:0.015
%以下。N: 0.0050% or less, S: 0.015
%below.
を含有する組成になる鋼の熱間圧延を、Ar3点以」−
の仕上圧延温度で完了し、その直後0.5秒以内に冷却
を開始して、巻取りに至るまでを平均冷却速度H℃/s
以」−で冷却し、710℃以下の温度で巻取り、その後
圧下率50%以」二の冷間圧延を施した」−で、400
〜600℃までの加熱速度を5℃/S以上として加熱し
、700℃〜Ac3点の温度域で1秒間以上均熱するヒ
ートザイクルで連続焼鈍を行うことを特徴とする伸びと
深絞り性の良好な極低炭素鋼冷延板の製造方法である。Hot rolling of steel with a composition containing
Finish rolling is completed at a temperature of
It was cooled at a temperature of 710°C or lower, and then cold-rolled at a reduction rate of 50% or less.
A method of elongation and deep drawability characterized by continuous annealing in a heat cycle in which heating is performed at a heating rate of 5°C/S or more up to ~600°C and soaked for 1 second or more in the temperature range of 700°C to Ac 3 points. This is a method for producing a good ultra-low carbon steel cold-rolled plate.
すてに明らかなようにこの発明では、Ti、Nbの有効
性の解明が、出発材の成分を限定ずろ重要事項であり、
この解明に至る経緯から順次にこの発明の作用につき、
説明を進める。As is clear, in this invention, elucidation of the effectiveness of Ti and Nb is more important than limiting the starting material components.
From the circumstances that led to this elucidation, we will sequentially explain the effects of this invention.
Proceed with the explanation.
(作 用)
さて発明者らが行ったラボ実験の結果について先ず説明
する。(Function) First, the results of a laboratory experiment conducted by the inventors will be explained.
化学成分としてSi : tr −0,02%、Mn:
0.10−0.12%、 P :0.007〜0.01
0%、 Aj!:0.02〜0.04%は同一レベル
にし、さらに、N : 0.0027%。Chemical components: Si: tr -0.02%, Mn:
0.10-0.12%, P: 0.007-0.01
0%, Aj! : 0.02 to 0.04% at the same level, and furthermore, N: 0.0027%.
C: 0.0020%において、S:0.006%、0
.013%および0.01.8 %の3水準、またTi
:0.015%。C: 0.0020%, S: 0.006%, 0
.. 0.013% and 0.01.8%, and Ti
:0.015%.
0、025 %および0.034 %の3水準そしてN
b: 0.008%、 0.020%の2水準の都合1
8鋼種を実験室的に溶製し、分塊圧延で30mm厚のシ
ートバーとし、次いで熱間圧延において7パスで2.8
mm厚とし、900±5℃で仕上げた。3 levels of 0.025% and 0.034% and N
b: Two levels of 0.008% and 0.020% convenience 1
Eight steel types were melted in the laboratory, bloomed into a sheet bar with a thickness of 30 mm, and then hot rolled in 7 passes to form a sheet bar of 2.8 mm.
mm thick and finished at 900±5°C.
この鋼板を圧延終了後2秒後に水スプレーを用いて35
℃/Sで550℃まで冷却した。Two seconds after the end of rolling, this steel plate was
It was cooled down to 550°C at °C/S.
次いでただちに550℃の炉中に装入し、511r保持
した後炉冷処理を行った。この処理により巻取り温度5
50℃のシミュレーションを行った。Then, it was immediately charged into a furnace at 550°C, maintained at 511r, and then subjected to furnace cooling treatment. This process results in a winding temperature of 5
A simulation was performed at 50°C.
次いで酸洗後圧工率75%の冷間圧延を行った。Then, after pickling, cold rolling was performed at a rolling ratio of 75%.
続いて連続焼鈍処理として抵抗加熱装置により700℃
まで12℃/Sで加熱し以後3℃/Sの加熱速度で78
0℃まで加熱し、780℃に25秒間保持した後室温ま
で5℃/Sで冷却した。Subsequently, continuous annealing treatment is performed at 700℃ using a resistance heating device.
Heating at 12°C/S until 78°C, then at a heating rate of 3°C/S.
It was heated to 0°C, held at 780°C for 25 seconds, and then cooled to room temperature at a rate of 5°C/S.
次いて該鋼板に0.75%の調質圧延を施した後引張試
験に供した。Next, the steel plate was subjected to 0.75% temper rolling and then subjected to a tensile test.
試験項目として深絞り性の尺度に下値(ランクツ」−ト
値)を用い、また耐時効性の尺度にはAI (時効指数
)を用いた。As a test item, the lower value (Rank't value) was used as a measure of deep drawability, and AI (aging index) was used as a measure of aging resistance.
第1図、第2図にその結果を示すように各実験鋼の材質
は、Ti、S、Nb量に対して大きく変化している。As the results are shown in FIGS. 1 and 2, the materials of each experimental steel varied greatly with respect to the amounts of Ti, S, and Nb.
プレス加工用鋼板として要求される材質として下≧1.
6.AI≦3.OIt);7mm2を目安とすると、こ
(但しN =0.0027%)の領域であり、なおかつ
Nb量0.008 %の場合であることが分る。The following materials are required for press working steel plates: ≧1.
6. AI≦3. It can be seen that if 7 mm2 is used as a guideline, this is the region (N = 0.0027%) and the Nb content is 0.008%.
ずなわぢ同−C量、同−Nb量でもSの増加により絞り
性、耐時効性が劣化しSの増加に見合うだけのTiの増
量が必要であることがわかる。It can be seen that even with the same amount of -C and -Nb of Zunawaji, the drawability and aging resistance deteriorate due to an increase in S, and it is necessary to increase the amount of Ti to match the increase in S.
一方Nt4の効果についてはNbの増量によりTI量が
少なく、S量が多くとも、へl低下すなわち耐時効性の
改善は可能であるが、下値については向」二効果がほと
んどないことも知られる。On the other hand, regarding the effect of Nt4, even if the amount of TI is small and the amount of S is large by increasing the amount of Nb, it is possible to lower the aging resistance, that is, improve the aging resistance, but it is also known that there is almost no positive effect on the lower value. .
C: 加工用鋼板として最も重要な、全伸び(Eβ)お
よびランクフォード値(r)を向上させるためCは少な
いほどよくC50,0050%より好しくはC50,0
035%がよい。Cが増加すると、これを炭化物として
固定するため、多量のTI。C: In order to improve the total elongation (Eβ) and Lankford value (r), which are the most important values for a steel plate for processing, the less C the better, preferably C50,0 from 50%.
035% is good. When C increases, a large amount of TI is required to fix it as carbide.
Nbを必要とし、生成する析出物TiC,NbCなどの
析出強化により加工性が劣化するばかりでなく、連続焼
鈍時の再結晶温度上昇等の悪影響が現れる。Nb is required, and not only the workability deteriorates due to precipitation strengthening of TiC, NbC, etc., which are generated, but also adverse effects such as an increase in the recrystallization temperature during continuous annealing occur.
Sl: 深絞り用高強度鋼板の強度」二昇のために添
加してもよいが、過度の添加は耐2次加工ぜい性、化成
処理性の劣化を起すため好ましくなくその上限を1.0
%とする。Sl: It may be added to increase the strength of high-strength steel sheets for deep drawing, but excessive addition causes deterioration of secondary processing brittleness and chemical conversion treatment properties, so the upper limit should be set to 1. 0
%.
Mn: MnもSiと全く同様の理由により」−眼を
1.0%とする。Mn: For the same reason as Si, Mn is set to 1.0%.
N; Nは、Sと同様に熱延前にT1で固定されるため
N中、独では有害ではない。しかし多量の添加により形
成されたTiNは、全伸び、下値を低下させるためその
上限を0.0050%とするが、より好ましい範囲は、
0.0035%以下である。N: Like S, N is fixed at T1 before hot rolling, so it is not harmful by itself during N. However, since TiN formed by adding a large amount reduces the total elongation and lower value, the upper limit is set at 0.0050%, but the more preferable range is:
It is 0.0035% or less.
またNを固定しえないほどT1が少量の場合、NはA[
Nとして固定される。この場合熱延巻取温度が710℃
以下では、八βNの凝集が進行せずしてその結果連続焼
鈍後硬質なものとなりプレス加工性が劣ることとなる。Also, if T1 is so small that N cannot be fixed, N becomes A[
Fixed as N. In this case, the hot rolling coiling temperature is 710℃
Below, the agglomeration of 8βN does not proceed, and as a result, the product becomes hard after continuous annealing, resulting in poor press workability.
S: Sはこの発明においてはT1量との関係において
最も重要な元素である。Sは熱間圧延前のたとえばスラ
ブどして加熱中にTiS として無害化されるが、第1
図、第2図の結果に示す如く過剰のSはそれを固定する
た必のTl量が増加し、材質劣化の原因となるため」―
限を0.015 %とする。S: In this invention, S is the most important element in relation to the amount of T1. S is rendered harmless as TiS during heating, for example, in a slab before hot rolling, but in the first
As shown in the results in Figure 2, excess S increases the amount of Tl needed to fix it, causing material deterioration.
The limit is set to 0.015%.
Ti: Tiはこの発明の化学成分の中で、最も重要
な元素である。TiはA、i!やNbに先立って熱間圧
延前にSやNを固定する。第1図、第2図にてすてに詳
しく鋭門したAf+<、Tiの下限はSとNを固定する
量ずなわち
れる。Ti: Ti is the most important element among the chemical components of this invention. Ti is A, i! S and N are fixed prior to hot rolling. Af+<, which was discussed in detail in FIGS. 1 and 2, the lower limit of Ti is equal to the amount that fixes S and N.
TIの」1限については有効Ti (=total T
i−Ti as TiN−Ti as Ti5)の一部
が、TiCを形成することを考慮すると、析出するTi
C及びさらに固溶状態で存在するT1が、材質低下や合
金コストアップ及び生産性、ずなわぢ再結晶温度上昇に
よる生産性低下を引起さないような範囲に限定ずべきで
ある。これらを考慮するとTiの上限は
となる。For the first limit of TI, the effective Ti (=total T
Considering that a part of i-Ti as TiN-Ti as Ti5) forms TiC, the precipitated Ti
C and T1 present in a solid solution state should be limited to a range that does not cause deterioration in material quality, increase in alloy cost, productivity, or decrease in productivity due to increase in recrystallization temperature. Considering these, the upper limit of Ti is as follows.
Nb: NbはTi量が少ない場合にCを固定するた
めに重要でありCとの関連で最低
低Nh量は、TiCでCを固定できない場合に固溶Cの
うち20%しか、Nbで固定しえないように思われるが
我々の経験では、残留している80%の固溶Cの大部分
も、析出したNbCの周囲で析出前段階と思われる特殊
な雰囲気を形成し時効性や延性に悪影響を及ぼすことは
ないことが確められた。Nb: Nb is important for fixing C when the amount of Ti is small, and in relation to C, the lowest amount of Nh means that if TiC cannot fix C, only 20% of the solid solution C will be fixed by Nb. Although it may seem impossible, in our experience, most of the remaining 80% solid solution C forms a special atmosphere around the precipitated NbC, which seems to be in the pre-precipitation stage, resulting in decreased aging and ductility. It was confirmed that there was no adverse effect on the
NbをTiと複合添加することにより、T1単独添加鋼
の欠点である下値、IEIlの異方性を小さくする。例
えば下値の平均値下がT7程度のT1単独鋼では圧延方
向(ro)、圧延直角方向(r9o)が約2.1あるに
もかかわらず、対角方向(「4.)は1.3程度であり
、異方性ど
なる。これに対しこの発明に従って、Nbを添加した鋼
では、△rが0.2〜0.4程度になり、異方性が非常
に小さくなり、プレス時の割れを激減させる。しかしな
がらNbの過剰の添加は第1図、第2図に示したように
熱延低温巻取での材質劣化を引起すばかりでなく、再結
晶温度の著しい上昇やコストアップを引起すのでその上
限をCと当量すなわち
Al: Alは溶鋼中の0を固定しTi、 Nbの歩留
りを向上させるため最低0.005%必要である。By adding Nb in combination with Ti, the lower value and anisotropy of IEIl, which are the drawbacks of steel with only T1 added, are reduced. For example, in a T1 single steel with an average lower value of about T7, the rolling direction (ro) and the rolling direction (r9o) are about 2.1, but the diagonal direction (4.) is about 1.3. On the other hand, in the steel to which Nb is added according to the present invention, △r is about 0.2 to 0.4, and the anisotropy is extremely small, making it difficult to crack during pressing. However, excessive addition of Nb not only causes material deterioration during hot-rolling and low-temperature coiling as shown in Figures 1 and 2, but also causes a significant increase in recrystallization temperature and cost increase. Therefore, the upper limit is equivalent to C, that is, Al: Al is required to be at least 0.005% in order to fix 0 in molten steel and improve the yield of Ti and Nb.
−力落鋼中Nにつき上述のようにT1で大部分が固定さ
れるため、Al2の多量の添加はコストアップとなり、
このため上限を0.10%とする。- As mentioned above, most of the N in force-dropped steel is fixed at T1, so adding a large amount of Al2 increases the cost.
Therefore, the upper limit is set to 0.10%.
P: Pはr値を低下させることなく強度上昇に最も有
効な元素であるが、耐2次加工ぜい性のためには過度の
添加は好しくなくその」1限を0.15%とする。P: P is the most effective element for increasing strength without reducing the r value, but excessive addition is not desirable for secondary processing brittleness, and the first limit is 0.15%. do.
次に熱間圧延条件に関して、熱間圧延前のスラブ加熱温
度はとくに限定しないが、S、NをT1で固定するため
1280℃以下好しくは1230 ’l:以下さらに好
しくは1150℃以下が望ましい。Next, regarding hot rolling conditions, the heating temperature of the slab before hot rolling is not particularly limited, but in order to fix S and N at T1, it is preferably 1280°C or lower, preferably 1230°C or lower, and more preferably 1150°C or lower. desirable.
なお、いわゆるスラブ直送圧延や、30mm厚程度のン
ートハーとして鋳込みそのまま熱間圧延を行っても同様
の効果が期待できる。Note that similar effects can be expected by performing so-called direct slab rolling or hot rolling as it is cast as a slab having a thickness of about 30 mm.
熱間圧延の仕」−は温度はAr3点以上でないと、材質
劣化を来す。During hot rolling, if the temperature is not above Ar 3, the material will deteriorate.
この仕上圧延後、巻取りまでの冷却パターンの変化にま
り熱延鋼板のフェライト (α)粒径が大きく変化する
。一般に圧延終了後巻取りまでの冷却速度が遅いとα粒
が粗大化し、この発明のTI。After this finish rolling, the ferrite (α) grain size of the hot-rolled steel sheet changes significantly due to changes in the cooling pattern until coiling. In general, if the cooling rate from completion of rolling to coiling is slow, the α grains become coarse, and the TI of the present invention.
Nb複合添加鋼ではこの傾向が特に顕著となる。α粒が
粗大化するき粒界面積が減少し焼鈍後に(11、1)集
合組織が発達せずr値が劣るばかりでなく、焼鈍後の結
晶粒径も大きくなるため、耐2次加工ぜい性も劣る。This tendency is particularly noticeable in Nb composite added steel. As the α grains become coarser, the grain boundary area decreases and the (11,1) texture does not develop after annealing, resulting in an inferior r value, and the grain size after annealing also increases, resulting in poor secondary processing resistance. It is also inferior in quality.
このため、仕」二圧延終了後できるだけ速やかに具体的
には0.5秒間以内に急冷を開始し、なおかつ冷却開始
から巻取りまでの平均冷却速度を10℃/S以上とする
必要がある。仕」二圧延終了後0.5秒以内に急冷を開
始することによりTi及びNbの析出も促進される。For this reason, it is necessary to start rapid cooling as soon as possible after finishing the second rolling, specifically within 0.5 seconds, and to make the average cooling rate from the start of cooling to coiling to be 10° C./S or more. The precipitation of Ti and Nb is also promoted by starting rapid cooling within 0.5 seconds after the completion of secondary rolling.
巻取り温度は600℃以下の低温で行っても材質は良好
であるが600℃以上の高温巻取りを行うとさらに材質
は向上する。Although the material quality is good even if the winding temperature is as low as 600° C. or lower, the material quality is further improved if the winding is performed at a high temperature of 600° C. or higher.
巻取り温度が710℃を越えると材質向上効果が飽和す
るばかりでなくデスケーリング性が著しく劣化ずろので
その上限を71θ℃とする。If the winding temperature exceeds 710°C, not only the effect of improving the material quality will be saturated, but also the descaling property will deteriorate significantly, so the upper limit is set at 71θ°C.
次に冷間圧延条件については絞り性を向」ニさせるため
デスケーリング後の冷間圧延率は50%以上を要し、よ
り好ましくは70%〜90%である。Next, regarding the cold rolling conditions, in order to improve drawability, the cold rolling rate after descaling must be 50% or more, more preferably 70% to 90%.
さらに連続焼鈍条件としてはすでに述べたように、C,
N及びS@に応じてTi、 Nb量を限定することによ
り著しく深絞り性にすく、耐時効性や異方性の良好な鋼
板が製造できるが、これらの元素の限定のみでは耐2次
加工ぜい性の改善は十分ではない。Furthermore, as already mentioned, the continuous annealing conditions are C,
By limiting the amounts of Ti and Nb in accordance with N and S@, it is possible to produce steel sheets that are extremely easy to deep draw and have good aging resistance and anisotropy, but limiting these elements alone will result in poor secondary processing resistance. Improvement in vulnerability is not sufficient.
とくにこの発明で目脂した加工用鋼板は自動車のハイル
ーフ、エンジンのオイルパン等の強加工部位に使用され
る例が多いため耐2次加工ぜい性の改善は不可欠である
。耐2次加工ぜい性が劣ると強度のプレス加工後に強い
衝撃によってぜい性的に鋼板が破壊され、車体の安全上
好しくないからである。In particular, since the processed steel sheets treated with the present invention are often used in heavily processed parts such as automobile high roofs and engine oil pans, it is essential to improve the resistance to secondary processing. This is because if the secondary processing brittleness resistance is poor, the steel plate will be brittle and destroyed by a strong impact after strong press working, which is not good for the safety of the vehicle body.
耐2次加工ぜい性を改善する方法としてB(ボロン)添
加、sb <アンチモン)添加等が考えられる。しかし
前者の場合著しく再結晶温度が−に昇すること、後者の
場合コストアップになることの問題点がある。Addition of B (boron), addition of sb < antimony, etc. can be considered as a method of improving the resistance to secondary processing brittleness. However, in the former case, there is a problem that the recrystallization temperature rises significantly to -, and in the latter case, the cost increases.
この発明では前述の熱間圧延時の冷却制御とさらにここ
で説明する連続焼鈍の加熱制御を組合せることにより、
この問題点を解決している。In this invention, by combining the cooling control during hot rolling described above and the heating control during continuous annealing described here,
This problem has been resolved.
具体的には加熱中の400〜600℃までの加熱速度を
5℃/S以」−1に限定する。Specifically, the heating rate from 400 to 600°C during heating is limited to 5°C/S or higher.
これらの温度域は鋼中に固溶しているPが著しく粒界偏
析し易い温度域であり、この温度域を急熱することによ
りPの粒界偏析が抑制され、粒界強度が上昇し耐2次加
工ぜい性が向上することから限定をする必要がある。冷
却中の600〜400℃の温度域については加熱時の如
く特別な限定をしなくても耐2次加工ぜい性は良好であ
るが、該温度域を10℃/S以上で急冷すればさらに向
上する。These temperature ranges are temperature ranges in which P dissolved in steel is extremely likely to segregate at grain boundaries, and rapid heating in this temperature range suppresses grain boundary segregation of P and increases grain boundary strength. It is necessary to limit the amount because it improves the resistance to secondary processing brittleness. In the temperature range of 600 to 400°C during cooling, the secondary processing embrittlement resistance is good even without special restrictions as in the case of heating, but if the temperature range is rapidly cooled at 10°C/S or more, Further improvement.
連続焼鈍時の最高加熱温度は深絞り性を確保ずるため、
700℃以上で1秒間以上の均熱が必要である。一方A
C3点(約920〜930℃)を越えると、深絞り性が
急激に低下するので加熱温度は700〜Ac3とする。The maximum heating temperature during continuous annealing is set to ensure deep drawability.
Soaking at 700°C or higher for 1 second or more is required. On the other hand, A
If the temperature exceeds the C3 point (approximately 920 to 930°C), the deep drawability decreases rapidly, so the heating temperature is set to 700 to Ac3.
(実施例)
C: 0.0025%、Si:0.01%、Mn:0.
16%、P:0.010%、S:0.005%、l:o
、035%、−=、0.019%)その他不可避的不純
物の鋼を転炉出鋼し連続鋳造でスラブとした。次いでこ
のスラブを1250℃に再加熱した後、890℃で3.
2mm厚に仕上げ、引続き直ちに0.3〜1秒後に30
℃/Sで急冷を開始し、520〜650℃の各温度で巻
取った。(Example) C: 0.0025%, Si: 0.01%, Mn: 0.
16%, P: 0.010%, S: 0.005%, l:o
, 035%, -=, 0.019%) The steel containing other unavoidable impurities was tapped from a converter and made into a slab by continuous casting. The slab was then reheated to 1250°C and then heated to 890°C for 3.
Finished to a thickness of 2mm, then immediately after 0.3 to 1 second
Rapid cooling was started at a temperature of 520 to 650°C, and winding was performed at each temperature of 520 to 650°C.
酸洗後75%の圧下率で冷間圧延を行い0.8mm厚の
冷延板を得た。After pickling, cold rolling was performed at a rolling reduction of 75% to obtain a cold rolled sheet with a thickness of 0.8 mm.
次いで800℃にて連続焼鈍を行った。なお、400℃
までの加熱速度は15℃/S、600〜800℃までの
加熱速度は4℃/Sとし800℃にて4O3均熱し80
0℃から600℃まで1.5℃/Sで冷却し、600℃
以下の温度域は約5℃/Sの冷却とした。Continuous annealing was then performed at 800°C. In addition, 400℃
The heating rate is 15℃/S until 600-800℃, and the heating rate is 4℃/S from 600 to 800℃.
Cool from 0℃ to 600℃ at 1.5℃/S, and then cool to 600℃
The following temperature range was cooled at approximately 5° C./S.
その後0.5%調質圧延後の結果を表1に示す。Table 1 shows the results after 0.5% temper rolling.
なお表1では、供試鋼(A>の成績のほかC,Ti又は
Nb量が不適切な表2に掲げた比較鋼の結果と対比して
示した。In Table 1, in addition to the results of the test steel (A>), the results are shown in comparison with the results of the comparative steel listed in Table 2, which has an inappropriate amount of C, Ti, or Nb.
ここに鋼(B)はC1また(C)および(D)はT1そ
して、鋼(ε)および(F)はNbが外れた比較鋼で、
供試鋼(八)について仕上圧延後の急冷開始が後れた場
合とともに材質が劣る。Here, steel (B) is C1, (C) and (D) are T1, and steel (ε) and (F) are comparative steels with Nb removed.
Regarding sample steel (8), the material quality was inferior as well as when the start of quenching after finish rolling was delayed.
(発明の効果)
この発明により自動車車体などのプレス加工用鋼板が必
要とする伸びと深絞り性を満足する極低炭素鋼冷延板が
安定に製造でき、その効果は絶大なるものがある。(Effects of the Invention) According to the present invention, it is possible to stably produce an ultra-low carbon steel cold-rolled sheet that satisfies the elongation and deep drawability required for steel sheets for press forming of automobile bodies, etc., and the effects thereof are tremendous.
第1図は、鋼板のr値に及ぼすTi、S、Nb量の効果
を示す図表、
第2図は、鋼板の八1に及ぼずTi、S、Nb量の効果
を示す図表である。FIG. 1 is a chart showing the effect of the amounts of Ti, S, and Nb on the r value of a steel sheet, and FIG. 2 is a chart showing the effect of the amounts of Ti, S, and Nb on the r value of a steel sheet.
Claims (1)
以下、Mn:1.0wt%以下、 Ti:[(48/14)N(%)+(48/32)S(
%)]〜[3・(48/12)C(%)+(48/14
)N(%)+(48/32)S(%)]wt%Nb:[
0.2・(93/12)C(%)]〜[(93/12)
C(%)]wt%Al:0.005〜0.10wt%、
P:0.15wt%以下、N:0.0050wt%以下
、S:0.015wt%以下、を含有する組成になる鋼
の熱間圧延を、Ar_3点以上の仕上圧延温度で完了し
、その直後0.5秒以内に冷却を開始して、巻取りに至
るまでを平均冷却速度10℃/s以上で冷却し、710
℃以下の温度で巻取り、その後圧下率50%以上の冷間
圧延を施した上で、400〜600℃までの加熱速度を
5℃/s以上として加熱し、700℃〜Ac_3点の温
度域で1秒間以上均熱するヒートサイクで連続焼鈍を行
うことを特徴とする、伸びと深絞り性の良好な極低炭素
鋼冷延板の製造方法。[Claims] 1. C: 0.0050wt% or less, Si: 1.0wt%
Hereinafter, Mn: 1.0 wt% or less, Ti: [(48/14)N (%) + (48/32)S(
%)] ~ [3・(48/12)C(%)+(48/14
)N(%)+(48/32)S(%)]wt%Nb:[
0.2・(93/12)C(%)]~[(93/12)
C (%)] wt% Al: 0.005 to 0.10 wt%,
Immediately after completing hot rolling of steel with a composition containing P: 0.15 wt% or less, N: 0.0050 wt% or less, S: 0.015 wt% or less at a finishing rolling temperature of Ar_3 points or higher, Start cooling within 0.5 seconds and cool at an average cooling rate of 10 ° C / s or more until winding, 710
It is rolled up at a temperature below ℃, then cold rolled with a reduction rate of 50% or more, and then heated at a heating rate of 5℃/s or higher from 400 to 600℃, and then rolled in a temperature range of 700℃ to Ac_3 points. A method for producing an ultra-low carbon cold-rolled steel sheet with good elongation and deep drawability, characterized by carrying out continuous annealing in a heat cycle where it is soaked for at least 1 second.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11666485A JPS61276930A (en) | 1985-05-31 | 1985-05-31 | Production of cold rolled dead soft steel sheet having good elongation and deep drawability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11666485A JPS61276930A (en) | 1985-05-31 | 1985-05-31 | Production of cold rolled dead soft steel sheet having good elongation and deep drawability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61276930A true JPS61276930A (en) | 1986-12-06 |
Family
ID=14692835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11666485A Pending JPS61276930A (en) | 1985-05-31 | 1985-05-31 | Production of cold rolled dead soft steel sheet having good elongation and deep drawability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61276930A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63190141A (en) * | 1987-02-02 | 1988-08-05 | Sumitomo Metal Ind Ltd | High-tensile cold-rolled steel sheet having superior formability and its production |
JPS6462440A (en) * | 1987-08-31 | 1989-03-08 | Sumitomo Metal Ind | Cold rolled high-tensile steel sheet having superior workability and its production |
US4956025A (en) * | 1988-01-14 | 1990-09-11 | Nippon Steel Corporation | Process for producing cold-rolled high strength steel sheet having excellent formability and conversion-treatability |
JPH0452229A (en) * | 1990-06-19 | 1992-02-20 | Nippon Steel Corp | Highly efficient production of cold rolled steel sheet extremely excellent in workability |
KR100435466B1 (en) * | 1999-12-21 | 2004-06-10 | 주식회사 포스코 | A method for manufacturing p added extra low carbon cold rolled steel sheet with superior deep drawability |
JP2012167374A (en) * | 2012-03-16 | 2012-09-06 | Sumitomo Metal Ind Ltd | Method for manufacturing cold-rolled steel sheet |
JP2013100606A (en) * | 2013-01-10 | 2013-05-23 | Nippon Steel & Sumitomo Metal Corp | Method for producing cold-rolled steel sheet |
-
1985
- 1985-05-31 JP JP11666485A patent/JPS61276930A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63190141A (en) * | 1987-02-02 | 1988-08-05 | Sumitomo Metal Ind Ltd | High-tensile cold-rolled steel sheet having superior formability and its production |
JPH0567684B2 (en) * | 1987-02-02 | 1993-09-27 | Sumitomo Metal Ind | |
JPS6462440A (en) * | 1987-08-31 | 1989-03-08 | Sumitomo Metal Ind | Cold rolled high-tensile steel sheet having superior workability and its production |
US4956025A (en) * | 1988-01-14 | 1990-09-11 | Nippon Steel Corporation | Process for producing cold-rolled high strength steel sheet having excellent formability and conversion-treatability |
JPH0452229A (en) * | 1990-06-19 | 1992-02-20 | Nippon Steel Corp | Highly efficient production of cold rolled steel sheet extremely excellent in workability |
JPH07103423B2 (en) * | 1990-06-19 | 1995-11-08 | 新日本製鐵株式会社 | Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability |
KR100435466B1 (en) * | 1999-12-21 | 2004-06-10 | 주식회사 포스코 | A method for manufacturing p added extra low carbon cold rolled steel sheet with superior deep drawability |
JP2012167374A (en) * | 2012-03-16 | 2012-09-06 | Sumitomo Metal Ind Ltd | Method for manufacturing cold-rolled steel sheet |
JP2013100606A (en) * | 2013-01-10 | 2013-05-23 | Nippon Steel & Sumitomo Metal Corp | Method for producing cold-rolled steel sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3858146B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet | |
JPS60174852A (en) | Cold rolled steel sheet having composite structure and superior deep drawability | |
JP3610883B2 (en) | Method for producing high-tensile steel sheet with excellent bendability | |
US4857117A (en) | Method of manufacturing a cold-rolled steel sheet having a good deep drawability | |
JPH0123530B2 (en) | ||
JPS61276931A (en) | Production of cold rolled steel sheet having extra-deep drawing having baking hardenability | |
JPS61276930A (en) | Production of cold rolled dead soft steel sheet having good elongation and deep drawability | |
JP3864663B2 (en) | Manufacturing method of high strength steel sheet | |
JPH02163318A (en) | Production of high-tension cold rolled steel sheet having excellent press formability | |
JP2621744B2 (en) | Ultra-high tensile cold rolled steel sheet and method for producing the same | |
JPH08325644A (en) | Production of high strength hot rolled steel sheet | |
JP3299287B2 (en) | High strength steel sheet for forming and its manufacturing method | |
JPS5980726A (en) | Production of high strength cold rolled steel sheet having excellent deep drawability and small plate anisotropy | |
JPH04120243A (en) | High tensile strength cold rolled steel sheet and its production | |
JPH08143969A (en) | Production of cold rolled steel sheet excellent in workability | |
JPH06108155A (en) | Production of cold-rolled steel sheet for ultradeep drawing | |
JPH0681045A (en) | Production of cold rolled steel sheet excellent in workability and baking hardenability | |
JPS61276929A (en) | Production of cold rolled dead soft steel sheet having good formability | |
JP4332960B2 (en) | Manufacturing method of high workability soft cold-rolled steel sheet | |
JPS61276932A (en) | Production of cold rolled steel sheet for extra-deep drawing having extremely excellent resistance to brittleness by secondary operation | |
JP2003013176A (en) | High-ductility cold-rolled steel sheet superior in press formability and strain aging hardening characterisitics, and manufacturing method therefor | |
JPS61295324A (en) | Production of hot rolled steel sheet for ultra-deep drawing | |
JP2002003951A (en) | Method for manufacturing cold rolled steel sheet having small anisotropy | |
JPS61264134A (en) | Manufacture of steel sheet for press working having superior resistance to secondary operation brittleness | |
JPH0320407A (en) | Method for preventing oxidation of grain boundary in high strength cold-rolled steel sheet |