JPH0358194B2 - - Google Patents

Info

Publication number
JPH0358194B2
JPH0358194B2 JP58073523A JP7352383A JPH0358194B2 JP H0358194 B2 JPH0358194 B2 JP H0358194B2 JP 58073523 A JP58073523 A JP 58073523A JP 7352383 A JP7352383 A JP 7352383A JP H0358194 B2 JPH0358194 B2 JP H0358194B2
Authority
JP
Japan
Prior art keywords
thermal resistance
low thermal
circuit board
magnesia
resistance circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58073523A
Other languages
Japanese (ja)
Other versions
JPS59198793A (en
Inventor
Akira Kazami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7352383A priority Critical patent/JPS59198793A/en
Publication of JPS59198793A publication Critical patent/JPS59198793A/en
Publication of JPH0358194B2 publication Critical patent/JPH0358194B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は低熱抵抗回路基板、特に厚膜混成集積
回路に用いられる低熱抵抗回路基板に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a low thermal resistance circuit board, particularly to a low thermal resistance circuit board used in a thick film hybrid integrated circuit.

(ロ) 従来技術 本願出願人はすでに特公昭46−13234号公報に
厚膜混成集積回路の組み込みに適した金属基板を
用いた低熱抵抗回路基板を開発した。斯る基板は
アルミニウム板の表面を陽極酸化として酸化アル
ミニウム被膜で被覆したものであり、その表面に
約30μの厚さのエポキシ樹脂で銅箔を接着してい
る構造なので熱抵抗は1cm2の面積あたり1.3℃/
W程度であつた。
(B) Prior Art The applicant of the present application has already developed a low thermal resistance circuit board using a metal substrate suitable for incorporating a thick film hybrid integrated circuit in Japanese Patent Publication No. 13234/1983. Such a board is made by anodizing the surface of an aluminum plate and coating it with an aluminum oxide film, and has a structure in which a copper foil is bonded to the surface with an epoxy resin approximately 30μ thick, so the thermal resistance is 1cm 2 area. 1.3℃/
It was about W.

最近集積化の要請より、更に大出力回路をも組
み込みできる低熱抵抗基板が提案された。この基
板は第1図に示す如く、アルミニウム等の良熱伝
導性金属板1の一主面に多量のアルミナ
(Al2O3)を含有したエポキシ樹脂層2を薄く付
着した構造を有し、樹脂層の厚さが60μと2倍に
なつたにもかかわらず、熱抵抗は0.8℃/Wと改
善されている。
Recently, due to the demand for integration, low thermal resistance substrates that can incorporate even higher output circuits have been proposed. As shown in FIG. 1, this substrate has a structure in which an epoxy resin layer 2 containing a large amount of alumina (Al 2 O 3 ) is thinly adhered to one main surface of a metal plate 1 made of aluminum or the like with good thermal conductivity. Even though the thickness of the resin layer has doubled to 60μ, the thermal resistance has been improved to 0.8°C/W.

しかしながら斯上の基板を用いて混成集積回路
を生産すると大きな問題が生じた。これは一枚の
基板に多数個の混成集積回範を形成した後にプレ
スで各混成集積回路に打抜く工程で、プレス金型
の寿命が従来の基板が100万シヨツトであるのに
対しこの基板では5000シヨツトで摩耗してしまう
のである。この原因はアルミナにある。即ちアル
ミナのモース硬度は9であり、プレス金型を形成
する焼入れ鋼のモース硬度は約6.5でありプレス
金型の側面を削る。
However, major problems arose when producing hybrid integrated circuits using such substrates. This is a process in which a large number of hybrid integrated circuits are formed on a single board, and then each hybrid integrated circuit is punched out using a press. Then, it will wear out after 5000 shots. The cause of this is alumina. That is, the Mohs hardness of alumina is 9, and the Mohs hardness of the hardened steel forming the press die is approximately 6.5, and the side surface of the press die is ground.

(ハ) 発明の目的 本発明は斯る欠点に鑑みてなされ、従来の欠点
を大巾に改善した低熱抵抗回路基板を提供するこ
とを目的とする。
(c) Object of the Invention The present invention was made in view of the above drawbacks, and an object of the present invention is to provide a low thermal resistance circuit board that greatly improves the conventional drawbacks.

(ニ) 発明の構成 本発明による低熱抵抗回路基板は第2図に示す
如く、良熱伝導性金属基板11とその一主面に付
着したマグネシアを含有した絶縁樹脂薄層12よ
り構成されている。
(d) Structure of the Invention As shown in FIG. 2, the low thermal resistance circuit board according to the present invention is composed of a highly thermally conductive metal substrate 11 and a thin insulating resin layer 12 containing magnesia attached to one main surface of the metal substrate 11. .

(ホ) 実施例 本発明による低熱抵抗回路基板は、良熱伝導性
金属基板11とその一主面に設けたマグネシア
(MgO)を含有した絶縁樹脂層12より構成され
ている。
(E) Embodiment A low thermal resistance circuit board according to the present invention is composed of a metal substrate 11 with good thermal conductivity and an insulating resin layer 12 containing magnesia (MgO) provided on one main surface of the metal substrate 11.

金属基板11としてはプレス等の加工容易で、
良熱伝導性のアルミニウムを用いる。
The metal substrate 11 can be easily processed by pressing, etc.
Uses aluminum with good thermal conductivity.

絶縁樹脂層12はエポキシ樹脂、フエノール樹
脂、プチラール樹脂、メラミン樹脂等から1成分
あるいは複数成分の混合したものを用い、その樹
脂に30〜85重量%のマグネシア(MgO)を混入
する。上記30%は熱伝導率から決められ、上記85
%は基板への接着力から夫々決められる。更にこ
の絶縁樹脂層12中にはシリカ、BNを含有させ
ても良い。シリカは粘度コントロールとして30%
重量%以下混入し、BNは更に熱伝導率を向上さ
せるために30重量%以下混入しても良い。
The insulating resin layer 12 is made of one component or a mixture of a plurality of epoxy resins, phenolic resins, petitral resins, melamine resins, etc., and 30 to 85% by weight of magnesia (MgO) is mixed into the resin. The above 30% is determined from the thermal conductivity, and the above 85
The percentage is determined based on the adhesive strength to the substrate. Furthermore, this insulating resin layer 12 may contain silica or BN. Silica is 30% as viscosity control
BN may be mixed in an amount of 30% by weight or less to further improve thermal conductivity.

マグネシア(MgO)は海水の食塩製造に伴つ
て製造された濃縮苦汁より得られる塩化マグネシ
ウム(MgCl2)と高純度生石灰(CaO)の水和物
であるCa(OH)2とで、以下の反応工程を行う。
Magnesia (MgO) is produced by the following reaction between magnesium chloride (MgCl 2 ), which is obtained from concentrated bittern produced during the production of salt from seawater, and Ca(OH) 2 , which is a hydrate of high-purity quicklime (CaO). Perform the process.

MgCl2+Ca(OH)2 →Mg(OH)2+CaCl2 この生成したMg(OH)2を約400℃で脱水反応
してMgOを得る。
MgCl 2 +Ca(OH) 2 →Mg(OH) 2 +CaCl 2This generated Mg(OH) 2 is subjected to a dehydration reaction at approximately 400°C to obtain MgO.

Mg(OH)2MgO+H2O なおこの反応は可逆反応であり、マグネシアは
吸湿してMg(OH)2に戻り好ましくない。そこで
適当な粘度のマグネシア(MgO)とB2O3とを重
量比85:15程度の混合比で混合し約1000℃で焼成
すると、B2O3は液相または気相でMgOの表面に
反応し、3MgO・B2O3または2MgO・B2O3の複
酸化物を形成する。この複酸化物はマグネシア
(MgO)表面を被覆しNDフイラー(商品名)を
形成する。NDフイラーはマグネシア(MgO)と
異なり、吸湿せず安定したフイラーとして利用で
きる。
Mg(OH) 2 MgO+H 2 O This reaction is a reversible reaction, and magnesia absorbs moisture and returns to Mg(OH) 2 , which is not desirable. Therefore, when magnesia (MgO) with an appropriate viscosity and B 2 O 3 are mixed at a weight ratio of about 85:15 and fired at about 1000°C, B 2 O 3 is deposited on the surface of MgO in the liquid or gas phase. Reacts to form a double oxide of 3MgO.B 2 O 3 or 2MgO.B 2 O 3 . This double oxide coats the surface of magnesia (MgO) to form ND filler (trade name). Unlike magnesia (MgO), ND filler does not absorb moisture and can be used as a stable filler.

本発明に依る低熱抵抗回路基板は斯るNDフイ
ラーを30〜85重量%含有したエポキシ樹脂12を
銅箔13の裏面に20〜100μ厚にロールコーター
して仮乾燥した後、アルミニウム板11の一主面
にプレスで熱圧着して形成する。然る後銅箔13
はエツチングして導電路を形成する。なおアルミ
ニウム基板11にスクリーン印刷あるいは塗布に
よつてエポキシ樹脂12を付着する方法もある
が、生産効率の点でロールコーター方法が最も良
い。
The low thermal resistance circuit board according to the present invention is produced by roll coating an epoxy resin 12 containing 30 to 85% by weight of such an ND filler on the back side of a copper foil 13 to a thickness of 20 to 100 μm and temporarily drying it. It is formed by thermocompression bonding on the main surface using a press. Then copper foil 13
are etched to form conductive paths. Although there is a method of attaching the epoxy resin 12 to the aluminum substrate 11 by screen printing or coating, the roll coater method is the best in terms of production efficiency.

斯る本発明の構造に依れば、マグネシアの熱伝
導率86×10-3Cal/℃・cm・secであり、アルミナ
(Al2O3)の熱伝導率70×10-3Cal/℃・cmsecよ
りかなり放熱性が向上する。具体的には第3図に
おいて、点線で示すアルミナフイラーを配合した
エポキシ樹脂と実線で示すNDフイラーを配合し
た本発明のエポキシ樹脂との熱伝導率を比較して
いる。第3図から明らかな様に本発明の低熱抵抗
基板は従来のアルミナフイラーに比較して約60%
程度の熱伝導率の向上を図れる。
According to the structure of the present invention, the thermal conductivity of magnesia is 86×10 -3 Cal/℃・cm・sec, and the thermal conductivity of alumina (Al 2 O 3 ) is 70×10 -3 Cal/℃ - Heat dissipation is significantly improved compared to cmsec. Specifically, in FIG. 3, the thermal conductivity is compared between an epoxy resin blended with an alumina filler indicated by a dotted line and an epoxy resin of the present invention blended with an ND filler indicated by a solid line. As is clear from Figure 3, the low thermal resistance substrate of the present invention is approximately 60% lower than that of the conventional alumina filler.
Thermal conductivity can be improved to a certain degree.

またマグネシアのモース硬度は5.5〜6であり、
プレス金型を形成する焼入れ鋼のモース硬度6.5
に比べて小さいので、プレス金型の摩耗は少なく
プレス金型は従来の100万シヨツト以上に寿命を
延ばすことができる。
In addition, the Mohs hardness of magnesia is 5.5 to 6.
Mohs hardness of the hardened steel that forms the press mold is 6.5
Because it is smaller than the conventional press mold, there is less wear on the press mold, and the life of the press mold can be extended beyond the 1 million shots of conventional press molds.

(ヘ) 効果 本発明に依る低熱抵抗基板では、良熱伝導率の
マグネシアを用いるので、従来より約60%以上高
い熱伝導率を有する基板を実現できる利点を有す
る。この結果混成集積回路への高出力回路の組み
込みが可能となり、更に集積化できる回路範囲と
拡大できる。
(f) Effects The low thermal resistance substrate according to the present invention uses magnesia, which has a good thermal conductivity, and therefore has the advantage of being able to realize a substrate having a thermal conductivity that is about 60% higher than that of the conventional substrate. As a result, it becomes possible to incorporate high-output circuits into the hybrid integrated circuit, and the range of circuits that can be integrated can be further expanded.

またマグネシアをNDフイラーとして用いるの
で吸湿性のあるマグネシアを低熱抵抗基板のフイ
ラーとして利用できる様になつた。
Furthermore, since magnesia is used as an ND filler, magnesia, which has hygroscopic properties, can now be used as a filler for low thermal resistance substrates.

更にマグネシアのモース硬度の低さにより、良
熱伝導性で且つプレス加工容易な低熱抵抗基板を
実現できた。
Furthermore, due to the low Mohs hardness of magnesia, it was possible to realize a low thermal resistance substrate with good thermal conductivity and easy press processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の低熱抵抗回路基板を説明する断
面図、第2図は本発明の低熱抵抗回路基板を説明
する断面図、第3図は従来と本発明の低熱抵抗基
板の熱伝導率を比較する特性図である。 11は良熱伝導性金属基板、12は絶縁樹脂薄
層、13は銅箔である。
Fig. 1 is a cross-sectional view illustrating a conventional low thermal resistance circuit board, Fig. 2 is a sectional view illustrating a low thermal resistance circuit board of the present invention, and Fig. 3 shows the thermal conductivity of the conventional low thermal resistance circuit board and the low thermal resistance circuit board of the present invention. It is a characteristic diagram for comparison. 11 is a metal substrate with good thermal conductivity, 12 is an insulating resin thin layer, and 13 is a copper foil.

Claims (1)

【特許請求の範囲】 1 良熱伝導性金属板の一主面に酸化ボロンでそ
の表面が被覆されたマグネシアを含有したエポキ
シ、フエノール、ブチラール及びメラミン樹脂か
らなる、1成分あるいは複数成分の混合された絶
縁樹脂薄層が付着された低熱抵抗回路基板を準備
する工程と、 焼入れされたプレス金型で前記低熱抵抗回路基
板をプレスする工程と、 前記低熱抵抗回路基板上に高出力回路を組込む
工程とを備えたことを特徴とする混成集積回路の
製造方法。
[Claims] 1. One component or a mixture of multiple components consisting of magnesia-containing epoxy, phenol, butyral, and melamine resin whose surface is coated with boron oxide on one main surface of a metal plate with good thermal conductivity. a step of preparing a low thermal resistance circuit board to which a thin insulating resin layer is attached; a step of pressing the low thermal resistance circuit board with a hardened press mold; and a step of incorporating a high output circuit onto the low thermal resistance circuit board. A method for manufacturing a hybrid integrated circuit, comprising:
JP7352383A 1983-04-25 1983-04-25 Low thermal resistance circuit board Granted JPS59198793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7352383A JPS59198793A (en) 1983-04-25 1983-04-25 Low thermal resistance circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7352383A JPS59198793A (en) 1983-04-25 1983-04-25 Low thermal resistance circuit board

Publications (2)

Publication Number Publication Date
JPS59198793A JPS59198793A (en) 1984-11-10
JPH0358194B2 true JPH0358194B2 (en) 1991-09-04

Family

ID=13520678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7352383A Granted JPS59198793A (en) 1983-04-25 1983-04-25 Low thermal resistance circuit board

Country Status (1)

Country Link
JP (1) JPS59198793A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187144A (en) * 2007-01-31 2008-08-14 Sanyo Electric Co Ltd Circuit device and its manufacturing method

Also Published As

Publication number Publication date
JPS59198793A (en) 1984-11-10

Similar Documents

Publication Publication Date Title
JP5526632B2 (en) Insulating substrate, insulating circuit substrate, semiconductor device, manufacturing method of insulating substrate, and manufacturing method of insulating circuit substrate
JPS62251136A (en) Metal composite laminated board
JP2002322372A (en) Resin composition and metal-based circuit board using the same
JPS60170287A (en) Copper-lined laminated board
JP2003100968A (en) Heat radiation member and its manufacturing method
JPH0358194B2 (en)
JPS6059795A (en) Laminated board for printed circuit
JPH0359593B2 (en)
JPH0810202Y2 (en) Lightweight substrates for semiconductor devices
JP3335970B2 (en) Manufacturing method of glass ceramic substrate
JP3924479B2 (en) Manufacturing method of ceramic circuit board
JPS6010696A (en) Method of producing thin film ceramic circuit board
JPH0412554A (en) Light weight substrate for semiconductor device
JPH09121004A (en) Composite ceramic substrate
JPH0227786A (en) Low heat resistance circuit board
JPH0997862A (en) High-strength circuit board and its manufacturing method
JP3908755B2 (en) High strength circuit board
JP4116656B2 (en) High-strength circuit board and manufacturing method thereof
JP2002076550A (en) Metal base circuit board and its manufacturing method
JPS6260286A (en) Printed circuit board
JP3208905B2 (en) Metallized substrate obtained by laminating copper film on alumina substrate and method for producing the same
JP3046437B2 (en) Circuit board
JP2015046472A (en) Printed wiring board and multilayer printed wiring board
JPS6120737A (en) Metallic base laminated board
JPH03292138A (en) High heat conductivity insulating metal substrate