JPH0412554A - Light weight substrate for semiconductor device - Google Patents

Light weight substrate for semiconductor device

Info

Publication number
JPH0412554A
JPH0412554A JP11616290A JP11616290A JPH0412554A JP H0412554 A JPH0412554 A JP H0412554A JP 11616290 A JP11616290 A JP 11616290A JP 11616290 A JP11616290 A JP 11616290A JP H0412554 A JPH0412554 A JP H0412554A
Authority
JP
Japan
Prior art keywords
alloy
plate material
insulating plate
semiconductor device
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11616290A
Other languages
Japanese (ja)
Other versions
JP2689685B2 (en
Inventor
Hideaki Yoshida
秀昭 吉田
Makoto Chokai
誠 鳥海
Hirokazu Tanaka
宏和 田中
Masao Umezawa
梅沢 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP11616290A priority Critical patent/JP2689685B2/en
Priority to EP91107032A priority patent/EP0455229B1/en
Priority to DE69127927T priority patent/DE69127927T2/en
Priority to KR1019910007202A priority patent/KR0173783B1/en
Publication of JPH0412554A publication Critical patent/JPH0412554A/en
Application granted granted Critical
Publication of JP2689685B2 publication Critical patent/JP2689685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Die Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To produce a light weight and good heat transmissive substrate for a highly integrated and large power semiconductor device by using a particular insulating plate, a heat sink plate, a circuit forming thin plate, and a Cu or Ni plated layer to constitute the substrate. CONSTITUTION:An insulating plate C is made of an AlN sintered plate with surface oxidized layer C-1, and one side of the insulating plate C is fixed to a heat sink plate A made of Al or an Al alloy to form lamination and the other side thereof to a circuit forming thin plate B made of Al or an Al alloy to form lamination, each using solder D made of an Al-Si alloy or Al-Ge alloy. Further, the surface of the circuit forming thin plate B is partially at a predeter mined section thereof or wholly plated with Cu or Ni. With this, a light weight and superior heat radiation (heat transmission) substrate can be obtained that meets the requirements for loading a highly integrated and high power semicon ductor device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、軽量にして、熱伝導性(放熱性)にすぐれ
、したがって半導体装置の高集積化および大電力化に十
分対応することができる半導体装置用基板に関するもの
である。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is lightweight and has excellent thermal conductivity (heat dissipation), and is therefore fully compatible with higher integration and higher power consumption of semiconductor devices. The present invention relates to a substrate for a semiconductor device.

〔従来の技術〕[Conventional technology]

従来、一般に、半導体装置用基板としては、例えば第2
図に概略説明図で示されるように、酸化アルミニウム(
以下A 1’ 2 0 aで示す)焼結体がらなる絶縁
板材C′の両側面に、それぞれCu薄板材B′を液相接
合し、この液相接合は、例えば前記Cu薄板材の接合面
に酸化銅(Cu 20 )を形成しておき、前記Ag2
O3焼結体製絶縁板材と重ね合せた状態で、1065〜
1085℃に加熱して接合面に前記Cu 20とCuと
の間で液相を発生させて結合することからなり、また前
記Cu薄板材のうち、前記絶縁板材C′の一方側が回路
形成用導体となり、同他方側がヒートシンク板材A′と
のはんだ付は用となるものであり、この状態で、通常P
b−Sn合金からなるはんだ材(一般に450℃以下の
融点をもつものをはんだという)D′を用いて、Cuか
らなるヒートシンク板材A′に接合してなる構造のもの
が知られている。
Conventionally, generally, as a substrate for a semiconductor device, for example, a second
Aluminum oxide (
A Cu thin plate material B' is liquid phase bonded to both sides of an insulating plate material C' made of a sintered body (hereinafter referred to as A1'20a), and this liquid phase bonding is performed, for example, by bonding the bonding surface of the Cu thin plate material. Copper oxide (Cu 20 ) is formed on the Ag2
1065 ~ when stacked with O3 sintered insulating plate material
The Cu 20 and Cu are heated to 1085° C. to generate a liquid phase on the bonding surface and bonded. Also, among the Cu thin plates, one side of the insulating plate C' is a conductor for circuit formation. Therefore, it is useful to solder the other side to the heat sink plate material A', and in this state, normally P
A structure is known in which a solder material D' (generally referred to as solder having a melting point of 450 DEG C. or less) made of a b-Sn alloy is bonded to a heat sink plate material A' made of Cu.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、近年の半導体装置の高集積化および大電力化に
伴って、装置自体が大型化し、重量化する傾向にあり、
したがってこれを構成する部材の軽量化が強く望まれて
いるが、上記の従来半導体装置用基板においては、これ
の構成材であるAg2O3焼結体が約15〜20W/m
−にの相対的に高い熱伝導度を有し、かつCuが約39
0W/m−にの一段と高い熱伝導度をもつことから、す
ぐれた熱伝導性(放熱性)を示すが、これを構成するヒ
ートシンク板材A′および薄板材B′がいずれも重質の
Cuてあり、さらにこれに重質のPb−5n合金はんだ
材D′が加わるために、これらの要求に対応することが
できないのが現状である。
However, as semiconductor devices have become more highly integrated and have more power in recent years, the devices themselves tend to become larger and heavier.
Therefore, there is a strong desire to reduce the weight of the members constituting this, but in the above-mentioned conventional semiconductor device substrate, the Ag2O3 sintered body that is the constituent material of this substrate is approximately 15 to 20 W/m
- has a relatively high thermal conductivity and Cu is about 39
Since it has a higher thermal conductivity of 0 W/m-, it exhibits excellent thermal conductivity (heat dissipation), but the heat sink plate material A' and thin plate material B' that make up this are both made of heavy Cu material. However, since the heavy Pb-5n alloy solder material D' is added to this, it is currently impossible to meet these demands.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、すぐれ
た熱伝導性をもった上で、さらに軽量の半導体装置用基
板を開発すべく研究を行なった結果、ヒートシンク板材
および薄板材として、Cuのもつ熱伝導度:約390W
/m−にと同様に150〜250W/m−にの高い熱伝
導度を有し、かつCuより一段と軽量の純AIや、例え
ばAI!−2,5%Mg−0,2%Cr合金およびAl
−1%Mn合金などのAl1合金を用いると共に、絶縁
板材として、AlI2O3焼結体と同等に軽量で、それ
より高い熱伝導度を有する窒化アルミニウム(以下Aρ
Nで示す)系焼結体を適用しくちなみに、A i) 2
0 a焼結体の熱伝導度は15〜20W/m−にである
のに対して、AIN系焼結体のそれは50〜270W/
m−K)、このAIN系焼結体製絶縁板材の両面に、A
I−13%Si合金、Aff−7,5%Si合金、1l
l−9,5%Si−1%Mg合金、およびAl −7,
5%Si−1o%Ge合金などのAl1−Si系合金や
、A、17−15%Ge合金などのAl1−Ge系合金
からなるろう材(以上重量%、以下%は重量%を示す)
を、箔材、あるいは前記ヒートシンク板材および薄板材
の接合面にクラッドした状態で用いて、ヒートシンク板
材および薄板材をそれぞれ積層接合し、この場合Al1
N系焼結体製絶縁板材に対するヒートシンク板材および
薄板材のろう付は密着性を向上させるために、Al1N
系焼結体製絶縁板材の少なくとも接合面に、通常の条件
でのエツチング処理により粗面化した状態で表面酸化層
を形成しておき、さらに上記の通りAIN系焼結体製絶
縁板材の一方面に、表面酸化層を介してろう付けされた
AIまたはA47合金の薄板材の表面の所定部分または
全面に回路形成用および部品はんだ付は用としてCuま
たはN1メツキ層を形成した構造にすると、構成部材す
べてが軽量にして熱伝導性の良好なAlまたはAl合金
とAIIN系焼結体で構成されることになることから、
基板全体が軽量化され、かつ放熱性のすぐれたものにな
るという研究結果を得るに至ったのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a lightweight semiconductor device substrate with excellent thermal conductivity, and as a result, as a heat sink plate material and a thin plate material, Thermal conductivity of Cu: approx. 390W
Pure AI, which has a high thermal conductivity of 150 to 250 W/m-, similar to Cu/m-, and is much lighter than Cu, for example, AI! -2,5%Mg-0,2%Cr alloy and Al
In addition to using Al1 alloy such as -1%Mn alloy, aluminum nitride (hereinafter referred to as Aρ
By the way, A i) 2
The thermal conductivity of the 0a sintered body is 15-20W/m-, while that of the AIN-based sintered body is 50-270W/m-.
m-K), A on both sides of this AIN-based sintered insulation plate material
I-13%Si alloy, Aff-7, 5%Si alloy, 1l
l-9,5%Si-1%Mg alloy, and Al-7,
Brazing filler metal made of Al1-Si alloy such as 5%Si-1o%Ge alloy or Al1-Ge alloy such as A, 17-15%Ge alloy (the above weight %, below % indicates weight %)
The heat sink plate material and the thin plate material are laminated and bonded using foil or clad on the bonding surface of the heat sink plate material and the thin plate material, and in this case, Al1
When brazing the heat sink plate material and thin plate material to the N-based sintered insulating plate material, Al1N is used to improve adhesion.
A surface oxidation layer is formed on at least the bonding surface of the insulating plate material made of AIN based sintered body in a roughened state by etching treatment under normal conditions, and then one of the insulating plate made of AIN based sintered body is formed as described above. On the other hand, if a Cu or N1 plating layer is formed on a predetermined part or the entire surface of a thin sheet material of AI or A47 alloy that is brazed through a surface oxidation layer for circuit formation and component soldering, Since all of the structural members are made of Al or Al alloy, which is lightweight and has good thermal conductivity, and an AIIN-based sintered body,
The research results showed that the entire board was lighter and had better heat dissipation.

この発明は、上記研究結果にもとづいてなされたもので
あって、第1図に概略説明図で示されるように、 絶縁板材Cを、平均層厚=0.2〜20−の表面酸化層
C−1を有するAIN系焼結@体で構成し、この場合の
Al1N系焼結体は、 酸化イツトリウム(以下Y2O3で示す)および酸化カ
ルシウム(以下CaOで示す)のうちの1種または2種
:0.1−io重量%、を含有し、残りがAINと不可
避不純物からなる組成もつものが望ましく、 上記絶縁板材Cの一方面にApまたはAl合金からなる
ヒートシンク板材Aを、また上記絶縁板材Cの他方面に
同じくAIまたはAl合金からなる回路形成用薄板材B
を、それぞれAj!−5I系合金またはAl−Ge系合
金からなるろう材りを用いて積層接合し、 さらに、上記回路形成用薄板材Bの表面の所定部分また
(よ全面にCuまたはNiメツキ層を形成してなる放熱
性にすぐれた半導体装置用軽量基板に特徴を有するもの
である。
This invention was made based on the above research results, and as shown in the schematic diagram in FIG. -1, and the Al1N-based sintered body in this case is composed of one or two of yttrium oxide (hereinafter referred to as Y2O3) and calcium oxide (hereinafter referred to as CaO): It is desirable to have a composition containing 0.1-io% by weight and the rest consisting of AIN and unavoidable impurities, and a heat sink plate material A made of Ap or Al alloy on one side of the insulating plate material C, and a heat sink plate material A made of Ap or Al alloy on one side of the above insulating plate material C. On the other side of the circuit forming thin plate material B also made of AI or Al alloy.
, respectively Aj! -5I alloy or Al-Ge alloy brazing material is used for lamination and bonding, and furthermore, a Cu or Ni plating layer is formed on a predetermined portion or the entire surface of the thin plate material B for circuit formation. This is a lightweight substrate for semiconductor devices with excellent heat dissipation properties.

さらに、この発明の基板の構成部材について、以下に詳
述する。
Furthermore, the constituent members of the substrate of the present invention will be described in detail below.

(a)絶縁板材 絶縁板材を構成するAl1N系焼結体は、通常の粉末畑
金法にて製造されるか、その製造に際しては、原料粉末
として用いられるAFN粉末に、Y2O3粉末およびC
aO粉末のうちの1種または2種を配合するのが望まし
く、これら粉末の配合によって、焼結性が一段と改善さ
れてAgN系焼結体の強度が向上するようになるほか、
後工程てのAgN系焼結体表面部の酸化層の形成に際し
て、酸化が促進されて緻密組織を有する酸化層のすみや
かな形成が可能となるものであり、しかし、その配合割
合が0.1%未満では前記の作用に所望の効果が得られ
ず、一方その配合割合が10%を越えると自体の熱伝導
性が低下するようになることから、その配合割合(含有
割合と同し)を0.1〜lO%としなければならない。
(a) Insulating plate material The Al1N-based sintered body constituting the insulating plate material is manufactured by the usual powder field metal method, or when manufacturing it, Y2O3 powder and C
It is desirable to blend one or two of the aO powders, and by blending these powders, the sinterability is further improved and the strength of the AgN-based sintered body is improved.
During the formation of an oxide layer on the surface of the AgN-based sintered body in the post-process, oxidation is promoted and an oxide layer with a dense structure can be formed quickly.However, if the blending ratio is 0.1 If the blending ratio is less than 10%, the desired effect cannot be obtained, while if the blending ratio exceeds 10%, the thermal conductivity of the material itself will decrease. Must be between 0.1 and 10%.

(b)  絶縁板材表面部に形成される酸化層この表面
酸化層は、絶縁板材とAr1またはA9合金のヒートシ
ンク板材および薄板材とのAl −8i系合金またはA
l1−Ge系合金からなるろう材によるろう付は密着性
を向上させるために形成されるが、その平均層厚が0.
211ID未満では十分な密着性を確保することができ
ず、一方その平均層厚が20血を越えると、Al1N系
焼結体のもつすぐれた熱伝導性が損なわれるようになる
ので、その平均層厚を0.2〜20血としなければなら
ない。
(b) Oxide layer formed on the surface of the insulating plate material.
Brazing with a brazing material made of l1-Ge alloy is formed to improve adhesion, but when the average layer thickness is 0.
If the average layer thickness is less than 211 ID, sufficient adhesion cannot be ensured, while if the average layer thickness exceeds 20 mm, the excellent thermal conductivity of the Al1N sintered body will be impaired. The thickness must be between 0.2 and 20 blood.

また、表面酸化層は、例えば主成分としてフッ酸(HF
)またはフッ化アンモン(HF−NH3)などを3〜1
0%含有する液温:15〜30℃の酸性水溶液中、ある
いは同しく主成分として水酸化ナトリウム(N a O
H)または水酸化カリウム(KOH)などを3〜10%
含有する液温:30〜90℃のアルカリ性水溶液中に、
所定時間浸漬のエツチング処理を施してJIS規格で1
.6〜25S程度の表面粗さに粗面化した状態で、IN
系焼結体製絶縁板材に、 酸素分圧: 10’〜1気圧、水蒸気分圧: 10−3
気圧以下の雰囲気中で、1100〜1500℃の温度に
、層厚に応じた所定時間保持、 の条件で酸化処理を施すことにより形成されるものであ
り、Ag2O3を主成分とするものである。
In addition, the surface oxidation layer has, for example, hydrofluoric acid (HF) as the main component.
) or ammonium fluoride (HF-NH3) etc.
0% in an acidic aqueous solution at a temperature of 15 to 30°C, or sodium hydroxide (N a O
H) or potassium hydroxide (KOH) etc. 3-10%
In an alkaline aqueous solution containing liquid temperature: 30 to 90°C,
Etching treatment by immersion for a predetermined period of time to meet JIS standard 1
.. In a state where the surface is roughened to a roughness of about 6 to 25S,
Oxygen partial pressure: 10' to 1 atm, water vapor partial pressure: 10-3 to the system sintered insulating plate material
It is formed by performing oxidation treatment at a temperature of 1100 to 1500° C. for a predetermined time depending on the layer thickness in an atmosphere below atmospheric pressure, and has Ag2O3 as its main component.

〔実 施 例〕〔Example〕

つぎに、この発明の半導体装置用基板を実施例により具
体的に説明する。
Next, the substrate for a semiconductor device of the present invention will be explained in detail with reference to Examples.

まず、原料粉末として、いずれも1〜3血の平均粒径を
有するAIN粉末、Y2O3粉末、およびCaO粉末を
用い、これら原料粉末をそれぞれ第1表に示される配合
組成に配合し、ボールミルにて72時時間式混合し、乾
燥した後、さらにこれに有機バインダーを添加して混合
し、ドクターブレード法によりグリーンシートに形成し
、ついで常圧のN2雰囲気中、温度二1800℃に2時
間保持の条件で焼結して、実質的に配合組成と同一の成
分組成を有し、かつ幅:50mmX厚さ:0.83mm
X長さニア5m+1の寸法をもったAgN系焼結体を形
成し、ついで、これらのAgN系焼結体に、主成分とし
てNaOHを7%含有する液温:60℃のアルカリ性水
溶液中に30〜40分間浸漬のエツチング処理を施して
、その表面粗さをJIS規格で6.3〜12.55に粗
面化した状態で、酸素分圧:0.1〜1気圧、水蒸気分
圧:lX1O〜lXl0−”気圧の雰囲気中、1350
〜1450℃の温度に所定時間保持の条件で酸化処理を
施して第1表に示される平均層厚の表面酸化層を形成す
ることにより絶縁板材を製造した。
First, AIN powder, Y2O3 powder, and CaO powder, all of which have an average particle size of 1 to 3, were used as raw material powders. These raw material powders were blended into the composition shown in Table 1, and then milled in a ball mill. After 72 hours of mixing and drying, an organic binder was added and mixed, formed into a green sheet by a doctor blade method, and then kept at a temperature of 1800°C for 2 hours in an N2 atmosphere at normal pressure. Sintered under the conditions, having substantially the same composition as the blended composition, and width: 50 mm x thickness: 0.83 mm
AgN-based sintered bodies having dimensions of X length near 5 m + 1 were formed, and then these AgN-based sintered bodies were soaked in an alkaline aqueous solution containing 7% NaOH as a main component at a temperature of 60°C. After being subjected to etching treatment by immersion for ~40 minutes, the surface roughness was roughened to 6.3 to 12.55 according to JIS standards, oxygen partial pressure: 0.1 to 1 atm, water vapor partial pressure: lX1O In an atmosphere of ~lXl0-”atmosphere, 1350
An insulating plate material was manufactured by performing oxidation treatment under conditions of holding the temperature at a temperature of -1450° C. for a predetermined time to form a surface oxidized layer having an average layer thickness shown in Table 1.

さらに、ヒートシンク板材として、いずれも幅:50m
+wX厚さ:3龍×長さ: 75mmの寸法を有し、ま
た薄板材として、いずれも幅:45m!IX厚さ:1■
、x長さ=70順を有し、かつ (a)  純AI。
In addition, as a heat sink plate material, width: 50m
+wX Thickness: 3 Dragons x Length: 75mm, and as a thin plate, each has a width of 45m! IX thickness: 1■
, x length = 70 order, and (a) pure AI.

(b)  AM−2,5%Mg−0,2%C「合金(以
下、Al −Mg −Cr合金という)、 (c)AI−1%Mn合金(以下、Al−Mn合金とい
う)、 (d)  Al−0,02%Ni合金(以下、A(1−
Ni合金という)、 (e)  Al−0,0(15%B合金(以下、Al7
−B合金という)、 以上(a)〜(e)のうちのいずれかからなる板材を用
意し、またろう材として、厚さ: 50It1aを有し
、かつ、 (a)  Al−13%Si合金、 (b)AI−7,5%St合金、 (c)  Al−15%Ge合金、 以上(a)〜(C)のうちのいずれかからなる箔材を用
意し、ろう材として、 (d)Al−9,5%Si−1%Mg合金(以下、Al
−51−Mg合金という)、 (e)  All−7,5%Si−10%Ge合金(以
下、Ail −5I −Ge合金という)、上記(d)
または(e)を適用する場合には、上記のヒートシンク
板材および薄板材の圧延加工時に30伽の厚さにクラッ
ドしてろう付は板材(プレージングシート)とした状態
で用い、ついでこれらの構成部材を第1表に示される組
合せで第1図に示される状態に積み重ね、この状態で真
空中、430〜610℃に10分間保持の条件でろう付
けして積層接合体とし、これに温度;350℃に30分
間保持後常温まで炉令の熱処理を施し、引続いて前記積
層接合体を構成する薄板材の表面全面に、厚さ:0.5
伽のCuまたはNiメツキ層を通常の無電解メツキ法に
より形成することにより本発明基板1〜22をそれぞれ
製造した。
(b) AM-2,5%Mg-0,2%C alloy (hereinafter referred to as Al-Mg-Cr alloy), (c) AI-1%Mn alloy (hereinafter referred to as Al-Mn alloy), ( d) Al-0,02%Ni alloy (hereinafter referred to as A(1-
(referred to as Ni alloy), (e) Al-0,0 (15% B alloy (hereinafter referred to as Al7
-B alloy), a plate material made of any of the above (a) to (e) is prepared, and has a thickness of 50It1a as a brazing material, and (a) Al-13%Si alloy , (b) AI-7,5%St alloy, (c) Al-15%Ge alloy, Prepare a foil material made of any of the above (a) to (C), and use it as a brazing material (d )Al-9,5%Si-1%Mg alloy (hereinafter referred to as Al
-51-Mg alloy), (e) All-7,5%Si-10%Ge alloy (hereinafter referred to as Ail-5I-Ge alloy), (d) above.
Or, when (e) is applied, the above heat sink plate material and thin plate material are clad to a thickness of 30 mm during rolling processing and brazed as a plate material (plating sheet), and then these configurations are used. The members are stacked in the combination shown in Table 1 in the state shown in FIG. After being held at 350°C for 30 minutes, a furnace-grade heat treatment was performed to bring the temperature to room temperature.
Substrates 1 to 22 of the present invention were each manufactured by forming a Cu or Ni plating layer by a conventional electroless plating method.

一方、比較の目的で、第2図に示されるように、幅:5
0鰭×厚さ: 0.63龍×長さ=751の寸法をもっ
た純度:96%のA II 20 a焼結体からなる絶
縁板材を用い、これの両側から幅:45wX厚さ:0.
3mmX長さ: 70o+*の寸法をもった無酸素銅薄
板材(2枚)ではさんだ状態で重ね合わせ、この状態で
酸素:1容量%含有のAr雰囲気中、温度;1075℃
に50分間保持の条件で加熱し、この酸化性雰囲気で表
面に形成したC u 20と母材のCuとの共晶による
液相を接合面に発生させて接合し、ついでこの接合体を
、厚さ:300血の箔材としたP b−60%Sn合金
からなるはんだ材を用いて、幅:50m+*X厚さ=3
1X長さ: 75mmの寸法をもった無酸素銅からなる
ヒートシンク板材の片面にはんだ付けすることにより従
来基板を製造した。
Meanwhile, for comparison purposes, as shown in Figure 2, width: 5
An insulating board material made of A II 20a sintered body with purity: 96% with dimensions of 0 fin x thickness: 0.63 length x length = 751 is used, and width: 45 w x thickness: 0 from both sides. ..
Two oxygen-free copper thin plates having dimensions of 3mm x length: 70o+* are sandwiched and overlapped, and in this state, the temperature is 1075°C in an Ar atmosphere containing 1% by volume of oxygen.
Heating was carried out under conditions of holding for 50 minutes, and in this oxidizing atmosphere, a liquid phase was generated on the joint surface due to the eutectic of Cu 20 formed on the surface and Cu of the base material, and the joined body was bonded. Thickness: 300 Using solder material made of Pb-60%Sn alloy as foil material, width: 50m + * x thickness = 3
A conventional board was manufactured by soldering to one side of a heat sink plate made of oxygen-free copper with dimensions of 1X length: 75 mm.

ついで、本発明基板1〜22および従来基板について、
一般に半導体装置用基板の評価試験として採用されてい
る試験、すなわち温度=125℃に加熱後、−55℃に
冷却を1サイクルとする繰り返し加熱試験を行ない、絶
縁板材に割れが発生するに至るまでのサイクル数を20
サイクル毎に観察して測定し、またレーザ・フラッシュ
法による熱伝導度の測定、および絶縁板材とヒートシン
ク板材の接合強度の#j定を行ない、さらに本発明基板
1〜22の重量を測定し、従来基板の重量を1とし、こ
れに対する相対比を求めた。これらの結果を第1表に示
した。
Next, regarding the present invention substrates 1 to 22 and the conventional substrate,
A test that is generally adopted as an evaluation test for semiconductor device substrates, that is, a repeated heating test with one cycle of heating to 125°C and cooling to -55°C, until cracks occur in the insulating plate material. 20 cycles
Observe and measure each cycle, measure the thermal conductivity by the laser flash method, and determine the bonding strength between the insulating plate material and the heat sink plate material, and further measure the weight of the substrates 1 to 22 of the present invention, The weight of the conventional substrate was assumed to be 1, and the relative ratio to this was determined. These results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明基板1〜22は、い
ずれも従来基板と同等のすぐれた熱伝導性および接合強
度を示し、苛酷な条件下での加熱・冷却の繰り返しによ
っても、絶縁板材に割れの発生が見られないのに対して
ζ従来基板ではAp203焼結体とCu間の大きな熱膨
張係数差に原因して絶縁板材に比較的早期に割れが発生
するものであり、また本発明基板1〜22は、従来基板
に比して約65%の重量減を示し、軽量化の著しいこと
が明らかである。
From the results shown in Table 1, all of the substrates 1 to 22 of the present invention exhibit excellent thermal conductivity and bonding strength equivalent to conventional substrates, and even after repeated heating and cooling under severe conditions, the insulation While no cracks are observed in the plate material, in the conventional board, cracks occur relatively early in the insulating plate material due to the large difference in coefficient of thermal expansion between the Ap203 sintered body and the Cu. The substrates 1 to 22 of the present invention exhibit a weight reduction of about 65% compared to the conventional substrate, and it is clear that the weight reduction is significant.

上述のように、この発明の半導体装置用基板は、軽量に
して、放熱性(熱伝導性)にすぐれ、かつ構成部材の接
合も強固なので、半導体装置の高集積化および大電力化
に十分対応することができ、かつ苛酷な条件下での実用
に際してもセラミック質の絶縁板材に割れなどの欠陥発
生なく、信頼性のきわめて高いものであるなど工業上有
用な効果をもたらすものである。
As mentioned above, the semiconductor device substrate of the present invention is lightweight, has excellent heat dissipation (thermal conductivity), and has strong bonding of component parts, so it is fully compatible with higher integration and higher power consumption of semiconductor devices. Furthermore, even when used under harsh conditions, the ceramic insulating plate material does not suffer from defects such as cracks, and is highly reliable, resulting in industrially useful effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の半導体装置用基板の概略説明図、第
2図は従来半導体装置用基板の概略説明図である。 A、A’ ・・・ヒートシンク板材、 B、B’ ・・薄板材、   c、  c’ ・・・絶
縁板材、C−1・・・表面酸化層、  D・・・ろう材
、D′・・・はんだ材。
FIG. 1 is a schematic explanatory diagram of a semiconductor device substrate of the present invention, and FIG. 2 is a schematic explanatory diagram of a conventional semiconductor device substrate. A, A'... Heat sink plate material, B, B'... Thin plate material, c, c'... Insulating plate material, C-1... Surface oxidation layer, D... Brazing metal, D'...・Solder material.

Claims (2)

【特許請求の範囲】[Claims] (1)平均層厚:0.2〜20μmの表面酸化層を有す
る窒化アルミニウム系焼結体からなる絶縁板材、上記絶
縁板材の一方面に、Al−Si系合金またはAl−Ge
系合金からなるろう材にて積層接合されたAlまたはA
l合金からなるヒートシンク板材、 上記絶縁板材の他方面に、同じくAl−Si系合金また
はAl−Ge系合金からなるろう材にて積層接合された
AlまたはAl合金からなる回路形成用薄板材、 さらに、上記回路形成用薄板材の表面の所定部分または
全面に形成されたCuまたはNiメッキ層、 で構成されたことを特徴とする半導体装置用軽量基板。
(1) An insulating plate material made of an aluminum nitride-based sintered body having a surface oxidation layer of average layer thickness: 0.2 to 20 μm, one surface of the insulating plate material is coated with Al-Si alloy or Al-Ge.
Al or A laminated and bonded with a brazing filler metal made of a based alloy
A heat sink plate material made of l alloy; A thin plate material for circuit formation made of Al or Al alloy laminated and bonded to the other side of the insulating plate material with a brazing material also made of Al-Si alloy or Al-Ge alloy; A lightweight substrate for a semiconductor device, comprising: a Cu or Ni plating layer formed on a predetermined portion or the entire surface of the thin plate material for circuit formation.
(2)上記窒化アルミニウム系焼結体が、 酸化イットリウムおよび酸化カルシウムのうちの1種ま
たは2種:0.1〜10重量%、 を含有し、残りが窒化アルミニウムと不可避不純物から
なる組成を有することを特徴とする上記特許請求の範囲
第(1)項記載の半導体装置用軽量基板。
(2) The aluminum nitride-based sintered body has a composition containing one or two of yttrium oxide and calcium oxide: 0.1 to 10% by weight, and the remainder consisting of aluminum nitride and inevitable impurities. A lightweight substrate for a semiconductor device according to claim (1).
JP11616290A 1990-05-02 1990-05-02 Lightweight substrates for semiconductor devices Expired - Fee Related JP2689685B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11616290A JP2689685B2 (en) 1990-05-02 1990-05-02 Lightweight substrates for semiconductor devices
EP91107032A EP0455229B1 (en) 1990-05-02 1991-04-30 Ceramic substrate used for an electric or electronic circuit
DE69127927T DE69127927T2 (en) 1990-05-02 1991-04-30 Ceramic substrate used for an electrical or electronic circuit
KR1019910007202A KR0173783B1 (en) 1990-05-02 1991-05-02 Ceramic board for molding of electric or electronic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11616290A JP2689685B2 (en) 1990-05-02 1990-05-02 Lightweight substrates for semiconductor devices

Publications (2)

Publication Number Publication Date
JPH0412554A true JPH0412554A (en) 1992-01-17
JP2689685B2 JP2689685B2 (en) 1997-12-10

Family

ID=14680313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11616290A Expired - Fee Related JP2689685B2 (en) 1990-05-02 1990-05-02 Lightweight substrates for semiconductor devices

Country Status (1)

Country Link
JP (1) JP2689685B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965193A (en) * 1994-04-11 1999-10-12 Dowa Mining Co., Ltd. Process for preparing a ceramic electronic circuit board and process for preparing aluminum or aluminum alloy bonded ceramic material
EP1243569A2 (en) 1994-04-11 2002-09-25 Dowa Mining Co., Ltd. Electrical circuit having a metal-bonded-ceramic material or MBC component as an insulating substrate
JP2009060103A (en) * 2007-08-30 2009-03-19 Ngk Insulators Ltd Bonding structure, and manufacturing method thereof
JP2010010564A (en) * 2008-06-30 2010-01-14 Mitsubishi Materials Corp Method for manufacturing power module substrate and power module substrate
CN108137420A (en) * 2015-11-06 2018-06-08 三菱综合材料株式会社 Ceramic/Aluminum conjugant, power module substrate and power module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965193A (en) * 1994-04-11 1999-10-12 Dowa Mining Co., Ltd. Process for preparing a ceramic electronic circuit board and process for preparing aluminum or aluminum alloy bonded ceramic material
US6183875B1 (en) 1994-04-11 2001-02-06 Dowa Mining Co., Ltd. Electronic circuit substrates fabricated from an aluminum ceramic composite material
EP1243569A2 (en) 1994-04-11 2002-09-25 Dowa Mining Co., Ltd. Electrical circuit having a metal-bonded-ceramic material or MBC component as an insulating substrate
JP2009060103A (en) * 2007-08-30 2009-03-19 Ngk Insulators Ltd Bonding structure, and manufacturing method thereof
JP2010010564A (en) * 2008-06-30 2010-01-14 Mitsubishi Materials Corp Method for manufacturing power module substrate and power module substrate
CN108137420A (en) * 2015-11-06 2018-06-08 三菱综合材料株式会社 Ceramic/Aluminum conjugant, power module substrate and power module

Also Published As

Publication number Publication date
JP2689685B2 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
JP2001168482A (en) Ceramics circuit substrate
WO1996029736A1 (en) Silicon nitride circuit substrate
WO2011049067A1 (en) Substrate for power module, substrate with heat sink for power module, power module, method for producing substrate for power module, and method for producing substrate with heat sink for power module
JP6822247B2 (en) Manufacturing method of insulated circuit board with heat sink
WO2016158046A1 (en) Method for manufacturing substrate for power module with heat sink
JP6658400B2 (en) Method for producing ceramic / Al-SiC composite material joined body and method for producing substrate for power module with heat sink
JP2658435B2 (en) Lightweight substrates for semiconductor devices
JP2001044345A (en) Board integral structure
JP6124103B2 (en) Silicon nitride circuit board and manufacturing method thereof
JP2022023954A (en) Ceramic/aluminum bonded body, insulating circuit board, led module and ceramic member
JPH0412554A (en) Light weight substrate for semiconductor device
JPH0810202Y2 (en) Lightweight substrates for semiconductor devices
JP6432373B2 (en) Power module substrate with heat sink, power module, and method for manufacturing power module substrate with heat sink
JP2018046265A (en) Method for manufacturing insulation circuit board, insulation circuit board, power module, led module, and thermoelectric module
JP4018264B2 (en) Method for manufacturing aluminum-aluminum nitride insulating substrate
JP4557398B2 (en) Electronic element
JP2010215465A (en) Aluminum nitride substrate, method for producing the same, and circuit board and semiconductor device
KR0173783B1 (en) Ceramic board for molding of electric or electronic circuit
JPH0723964Y2 (en) Lightweight substrate for semiconductor device
TWI780113B (en) METHOD OF MANUFACTURING CERAMIC/Al-SiC COMPOSITE MATERIAL BONDED BODY AND METHOD OF MANUFACTURING POWER MODULE SUBSTRATE WITH HEAT SINK
JP2607700Y2 (en) Lightweight substrates for semiconductor devices
JP2705689B2 (en) Method of manufacturing lightweight substrate for semiconductor device
JP6756189B2 (en) Manufacturing method for power module board with heat sink and power module board with heat sink
JP2002201072A (en) AlN SINTERED COMPACT AND AlN CIRCUIT SUBSTRATE USING IT
JP2607699Y2 (en) Lightweight substrates for semiconductor devices

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees