JP2658435B2 - Lightweight substrates for semiconductor devices - Google Patents

Lightweight substrates for semiconductor devices

Info

Publication number
JP2658435B2
JP2658435B2 JP1263710A JP26371089A JP2658435B2 JP 2658435 B2 JP2658435 B2 JP 2658435B2 JP 1263710 A JP1263710 A JP 1263710A JP 26371089 A JP26371089 A JP 26371089A JP 2658435 B2 JP2658435 B2 JP 2658435B2
Authority
JP
Japan
Prior art keywords
alloy
silicon oxide
substrate
oxide
plate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1263710A
Other languages
Japanese (ja)
Other versions
JPH03125463A (en
Inventor
秀昭 吉田
誠 鳥海
通男 湯澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP1263710A priority Critical patent/JP2658435B2/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to EP90119255A priority patent/EP0422558B1/en
Priority to DE69033718T priority patent/DE69033718T2/en
Priority to DE69034139T priority patent/DE69034139T2/en
Priority to KR1019900015989A priority patent/KR0173782B1/en
Priority to EP00104809A priority patent/EP1020914B1/en
Priority to US07/594,596 priority patent/US5130498A/en
Publication of JPH03125463A publication Critical patent/JPH03125463A/en
Application granted granted Critical
Publication of JP2658435B2 publication Critical patent/JP2658435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Die Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、軽量にして、熱伝導性(放熱性)にすぐ
れ、したがって半導体装置の高集積化および大電力化に
十分対応することができる半導体装置用基板に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is lightweight and has excellent thermal conductivity (heat dissipation), and therefore can sufficiently cope with high integration and high power of a semiconductor device. The present invention relates to a semiconductor device substrate.

〔従来の技術〕[Conventional technology]

従来、一般に、半導体装置用基板としては、例えば第
2図に概略説明図で示されるように、酸化アルミニウム
(Al2O3で示す)焼結体からなる絶縁板材C′の両側面
に、それぞれCu薄板材B′を液相接合し、この液相接合
は、例えば前記Cu薄板材の接合面に酸化銅(Cu2O)を形
成しておき、前記Al2O3焼結体製絶縁板材と重ね合せた
状態で、1065〜1085℃に加熱して接合面に前記Cu2OとCu
との間で液相を発生させて結合することからなり、また
前記Cu薄板材のうち、前記絶縁板材C′の一方側が回路
形成用導体となり、同他方側がヒートシンク板材A′と
のはんだ付け用となるものであり、この状態で、通常Pb
−Sn合金からなるはんだ材(一般に450℃以下の融点を
もつものをはんだという)D′を用いて、Cuからなるヒ
ートシンク板材A′に接合してなる構造のものが知られ
ている。
2. Description of the Related Art Conventionally, a semiconductor device substrate is generally provided on both side surfaces of an insulating plate material C 'made of a sintered body of aluminum oxide (indicated by Al 2 O 3 ), for example, as schematically shown in FIG. The liquid-phase joining of the Cu sheet material B 'is performed, for example, by forming copper oxide (Cu 2 O) on the joining surface of the Cu sheet material, and forming the insulating sheet material made of the Al 2 O 3 sintered body. in superposition state with the Cu 2 O and Cu in the bonding surface is heated to from 1,065 to 1,085 ° C.
And a liquid phase is generated between them, and one side of the insulating plate material C 'is used as a circuit forming conductor and the other side is used for soldering with the heat sink plate material A'. In this state, usually Pb
A structure is known in which a solder material (generally, a material having a melting point of 450 ° C. or less is called a solder) D ′ made of a Sn alloy is joined to a heat sink plate material A ′ made of Cu.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、近年の半導体装置の高集積化および大電力化
に伴って、装置自体が大型化し、重量比する傾向にあ
り、したがってこれを構成する部材の軽量化が強く望ま
れているが、上記の従来半導体装置用基板においては、
これの構成材であるAl2O3焼結体が約15〜20W/m・Kの相
対的に高い熱伝導度を有し、かつCuが約390W/m・Kの一
段と高い熱伝導度をもつことから、すぐれた熱伝導性
(放熱性)を示すが、これを構成するヒートシンク板材
A′および薄板材B′がいずれも重質のCuであり、さら
にこれに重質のPb−Sn合金はんだ材D′が加わるため
に、これらの要求に対応することができないのが現状で
ある。
However, with the recent trend toward higher integration and higher power of semiconductor devices, the devices themselves tend to be larger and have a weight ratio. Therefore, it is strongly desired to reduce the weight of members constituting the devices. In conventional semiconductor device substrates,
The constituent material, Al 2 O 3 sintered body, has a relatively high thermal conductivity of about 15 to 20 W / mK, and Cu has a much higher thermal conductivity of about 390 W / mK. Therefore, the heat sink plate material A 'and the thin plate material B' are heavy copper, and further have a heavy Pb-Sn alloy. At present, these requirements cannot be met due to the addition of the solder material D '.

〔課題を解決するための手段〕[Means for solving the problem]

そこで、本発明者等は、上述のような観点から、すぐ
れた熱伝導性をもった上で、さらに軽量の半導体装置用
基板を開発すべく研究を行なった結果、ヒートシンク板
材および薄板材として、Cuのもつ熱伝導度:約390W/m・
Kと同様に150〜250W/m・Kの高い熱伝導度を有し、か
つCuより一段と軽量の純Alや、例えばAl−2.5%Mg−0.2
%Cr合金およびAl−1%Mn合金などのAl合金を用いると
共に、絶縁板材として、Al2O3焼結体と同等に軽量で、
それより高い熱伝導度を有する窒化アルミニウム(以下
AlNで示す)系焼結体を適用し(ちなみに、Al2O3焼結体
の熱伝導度は15〜20W/m・Kであるのに対して、AlN系焼
結体のそれは50〜270W/m・K)、このAlN系焼結板材の
両面に、Al−13%Si合金、Al−7.5%Si合金、Al−9.5%
Si−1%Mg合金、およびAl−7.5%Si−10%Ge合金など
のAl−Si系合金や、Al−15%Ge合金などのAl−Ge系合金
からなるろう材(以上重量%、以下%は重量%を示す)
を、箔材、あるいは前記ヒートシンク板材および薄板材
の接合面にクラッドした状態で用いて、ヒートシンク板
材および薄板材をそれぞれ積層接合し、この場合AlN系
焼結板材に対するヒートシンク板材および薄板材のろう
付け密着性を向上させるために、AlN系焼結板材の少な
くとも接合面に、表面酸化層を形成すると共に、この表
面酸化層形成面には酸化けい素(以下SiO2で示す)系被
覆層を形成しておき、さらに上記の通りAlN系焼結板材
の一方面に、表面酸化層およびSiO2系被覆層を介してろ
う付けされたAlまたはAl合金の薄板材の表面の所定部分
または全面に回路形成用および部品はんだ付け用として
CuまたはNiメッキ層を形成した構造にすると、構成部材
すべてが軽量にして熱伝導性の良好なAlまたはAl合金と
AlN系焼結体で構成されることになることから、基板全
体が軽量化され、かつ放熱性のすぐれたものになるとい
う研究結果を得るに至ったのである。
Therefore, the present inventors have conducted research to develop a lighter substrate for a semiconductor device with excellent thermal conductivity from the above viewpoint, and as a result, as a heat sink plate material and a thin plate material, Thermal conductivity of Cu: about 390W / m ・
Similar to K, it has a high thermal conductivity of 150 to 250 W / mK, and is much lighter than pure Cu, such as Al-2.5% Mg-0.2
% With an Al alloy such as Cr alloy and Al-1% Mn alloys, as an insulating plate, with Al 2 O 3 sintered body equivalent lightweight,
Aluminum nitride with higher thermal conductivity
The thermal conductivity of the Al 2 O 3 sintered body is 15 to 20 W / m · K, whereas that of the AlN based sintered body is 50 to 270 W. / m ・ K), Al-13% Si alloy, Al-7.5% Si alloy, Al-9.5%
Al-Si alloys such as Si-1% Mg alloy and Al-7.5% Si-10% Ge alloy, and Al-Ge alloys such as Al-15% Ge alloy (more than weight%, below % Indicates% by weight)
Is used in a state where it is clad on the joining surface of the heat sink plate material and the thin plate material, and the heat sink plate material and the thin plate material are respectively laminated and joined, in this case, the brazing of the heat sink plate material and the thin plate material to the AlN-based sintered plate material In order to improve adhesion, a surface oxide layer is formed on at least the joint surface of the AlN-based sintered plate material, and a silicon oxide (hereinafter referred to as SiO 2 ) -based coating layer is formed on the surface oxide layer-formed surface. In addition, as described above, a circuit is formed on a predetermined portion or the entire surface of the Al or Al alloy sheet material brazed on one surface of the AlN-based sintered sheet material via a surface oxide layer and a SiO 2 -based coating layer. For forming and soldering parts
When a structure with a Cu or Ni plating layer is formed, all the components are lightweight and Al or Al alloy with good thermal conductivity is used.
As a result of being made of an AlN-based sintered body, a research result was obtained that the entire substrate was reduced in weight and had excellent heat dissipation.

この発明は、上記研究結果にもとづいてなされたもの
であって、第1図に概略説明図で示されるように、 絶縁板材Cを、平均層厚:0.2〜20μmの表面酸化層C
−Sを有するAlN系焼結板材C−Bの少なくとも両面に
平均層厚:0.01〜10μmのSiO2系被覆層C−Cを形成し
たもので構成し、 この場合AlN系焼結板材C−Bは、 酸化イットリウム(以下Y2O3で示す)および酸化カル
シウム(以下CaOで示す)のうちの1種または2種:0.1
〜10重量%、 を含有し、残りがAlNと不可避不純物からなる組成もつ
ものが望ましく、 また、SiO2系被覆層C−Cとしては、 (a) 実質的にSiO2からなるもの、 (b) 酸化ジルコニウム(以下ZrO2で示す):1〜50
%、 を含有し、残りがSiO2と不可避不純物からなる組成をも
つもの、 (c) 酸化チタニウム(以下TiO2で示す):1〜50%、 を含有し、残りがSiO2と不可避不純物からなる組成をも
つもの、 以上(a)〜(c)のいずれかで構成されることが望
ましく、 上記絶縁板材Cの一方面にはAlまたはAl合金からなる
ヒートシンク板材Aを、また上記絶縁板材Cの他方面に
同じくAlまたはAl合金からなる回路形成用薄板材Bを、
それぞれAl−Si系合金またはAl−Ge系合金からなるろう
材Dを用いて積層接合し、 さらに、上記回路形成用薄板材Bの表面の所定部分ま
たは全面にCuまたはNiメッキ層を形成してなる放熱性に
すぐれた半導体装置用軽量基板に特徴を有するものであ
る。
The present invention has been made based on the above research results. As shown in the schematic explanatory view of FIG. 1, an insulating plate material C is formed by forming a surface oxide layer C having an average layer thickness of 0.2 to 20 μm.
The average layer thickness at least on both sides of the AlN sintered plate C-B with -S: constituted by those forming the SiO 2 based coating layer C-C of 0.01 to 10 [mu] m, this case AlN sintered plate C-B Is one or two of yttrium oxide (hereinafter referred to as Y 2 O 3 ) and calcium oxide (hereinafter referred to as CaO): 0.1
-10% by weight, with the balance being composed of AlN and unavoidable impurities. Also, the SiO 2 -based coating layer CC is as follows: (a) substantially composed of SiO 2 , (b) ) Zirconium oxide (hereinafter ZrO 2 ): 1-50
%, And contains, those having a composition balance being SiO 2 and unavoidable impurities, (c) (shown below TiO 2) Titanium oxide: from 1% to 50%, containing, remainder SiO 2 and unavoidable impurities It is preferable that the insulating plate C be composed of any one of the above (a) to (c). A heat sink plate A made of Al or an Al alloy is provided on one surface of the insulating plate C, and the insulating plate C On the other side of the same, a circuit-forming thin plate material B also made of Al or an Al alloy,
Lamination joining is performed using a brazing material D made of an Al-Si alloy or an Al-Ge alloy, respectively. Further, a Cu or Ni plating layer is formed on a predetermined portion or the entire surface of the circuit-forming thin plate material B. The present invention is characterized by a lightweight substrate for a semiconductor device having excellent heat dissipation.

さらに、この発明の基板の構成部材について、以下に
詳述する。
Further, the components of the substrate of the present invention will be described in detail below.

(a) AlN系焼結板材 このAlN系焼結板材は、通常の粉末冶金法にて製造さ
れるが、その製造に際しては、原料粉末として用いられ
るAlN粉末に、Y2O3粉末およびCaO粉末のうちの1種また
は2種を配合するのが望ましく、これら粉末の配合によ
って、焼結性が一段と改善されてAlN系焼結板材の強度
が向上するようになるほか、後工程でのAlN系焼結板材
表面部の酸化層の形成に際して、酸化が促進されて緻密
組織を有する酸化層のすみやかな形成が可能となるもの
であり、しかし、その配合割合が0.1%未満では前記の
作用に所望の効果が得られず、一方その配合割合が10%
を越えると自体の熱伝導性が低下するようになることか
ら、その配合割合(含有割合と同じ)を0.1〜10%とし
なければならない。
(A) AlN-based sintered plate material This AlN-based sintered plate material is manufactured by a usual powder metallurgy method. In the manufacture, AlN powder used as a raw material powder is mixed with Y 2 O 3 powder and CaO powder. It is desirable to mix one or two of these, and by mixing these powders, the sinterability is further improved and the strength of the AlN-based sintered plate material is improved. In the formation of an oxide layer on the surface of the sintered plate material, oxidation is promoted and an oxide layer having a dense structure can be formed promptly. Effect is not obtained, while its blending ratio is 10%
If the ratio exceeds 1, the thermal conductivity of the composition itself will decrease, so that the blending ratio (the same as the content ratio) must be 0.1 to 10%.

(b) AlN系焼結板材表面部に形成される酸化層 この表面酸化層は、AlN系焼結板材とAlまたはAl合金
のヒートシンク板材および薄板材とのAl−Si系合金また
はAl−Ge系合金からなるろう材によるろう付け密着性
を、SiO2系被覆層との共存において向上させるために形
成されるが、その平均層厚が0.2μm未満ではSiO2系被
覆層との間に十分な密着性を確保することができず、一
方その平均層厚が20μmを越えると、AlN系焼結板材の
もつすぐれた熱伝導性が損なわれるようになるので、そ
の平均層厚を0.2〜20μmとしなければならない。
(B) Oxide layer formed on the surface of the AlN-based sintered plate material This surface oxide layer is formed of an Al-Si-based alloy or an Al-Ge-based alloy of the AlN-based sintered plate material and a heat sink plate material and a thin plate material of Al or an Al alloy. the brazing adhesion by brazing material made of an alloy, are formed to improve the coexistence with SiO 2 based coating layer, the average layer thickness is less than 0.2μm sufficient between the SiO 2 based coating layer If the average layer thickness exceeds 20 μm, the excellent thermal conductivity of the AlN-based sintered plate material will be impaired, so the average layer thickness should be 0.2 to 20 μm. There must be.

また、表面酸化層は、AlN系焼結板材に、 酸素分圧:10-2〜1気圧、水蒸気分圧:10-3気圧以下の雰
囲気中で、1100〜1500℃の温度に、層厚に応じた所定時
間保持、 の条件で酸化処理を施すことにより形成されるものであ
り、Al2O3を主成分とするものである。
The surface oxide layer is formed on an AlN-based sintered plate at a temperature of 1100 to 1500 ° C in an atmosphere having an oxygen partial pressure of 10 -2 to 1 atm and a steam partial pressure of 10 -3 atm or less. It is formed by subjecting it to an oxidation treatment under the following conditions of holding for a predetermined time, and is mainly composed of Al 2 O 3 .

(c) SiO2系被覆層 SiO2系被覆層は、Al2O3を主成分とする表面酸化層、
並びにAl−Si系合金またはAl−Ge系合金からなるろう材
との密着性にすぐれたものであり、AlN系焼結板材とAl
またはAl合金のヒートシンク板材および薄板材とのろう
付け接合には不可欠の介在層であるが、その平均層厚が
0.01μm未満では所望の接合強度を確保することができ
ず、一方その平均層厚が10μmを越えると熱伝導性(放
熱性)が損なわれるようになるので、その平均層厚を0.
01〜10μmとしなければならない。
(C) SiO 2 -based coating layer The SiO 2 -based coating layer is a surface oxide layer mainly composed of Al 2 O 3 ,
Also, it has excellent adhesion to the brazing material made of Al-Si alloy or Al-Ge alloy, and AlN sintered plate material and Al
Alternatively, it is an indispensable intervening layer for brazing to aluminum alloy heat sink plate and thin plate, but the average layer thickness is
If the average thickness is less than 0.01 μm, the desired bonding strength cannot be ensured. On the other hand, if the average thickness exceeds 10 μm, the thermal conductivity (heat dissipation) is impaired.
It must be between 01 and 10 μm.

また、SiO2系被覆層は、これを実質的にSiO2で構成し
てもすぐれた接合強度が得られるが、SiO2に、ZrO2また
はTiO2を1〜50%の割合で含有させると、密着性が一段
と向上するようになり、基板が実用時に加熱と冷却の繰
り返しによる熱衝撃にさらされた場合にも表面酸化層と
ろう材間に長期に亘ってすぐれた密着性が保持されるよ
うになるが、その含有割合が1%未満では上記の作用に
所望の効果が得られず、その含有割合が50%を越えると
ろう材との密着性に劣化傾向が現われはじめるので、そ
の含有割合は1〜50%としなければならない。
Further, the SiO 2 -based coating layer can obtain excellent bonding strength even when it is substantially composed of SiO 2. However, when ZrO 2 or TiO 2 is contained in SiO 2 at a ratio of 1 to 50%, The adhesiveness is further improved, and even when the substrate is subjected to thermal shock due to repeated heating and cooling in practical use, excellent adhesiveness is maintained between the surface oxide layer and the brazing material for a long time. However, if the content is less than 1%, the desired effect cannot be obtained in the above-mentioned action, and if the content exceeds 50%, the adhesiveness to the brazing material tends to deteriorate, so that the The proportion must be between 1 and 50%.

さらに、このSiO2系被覆層は、これがSiO2で構成され
る場合には、例えば、 (a) ターゲット材質:純度99.9%の高純度石英ガラ
ス、 ターゲット寸法:直径3mm×高さ10mm、 電力:100W、 AlN系焼結板材の回転数:10r.p.m.、 の条件での高周波スパッタ法、 (b) エチルシリケート:347gと、エチルアルコール:
500gと、0.3%HCl水溶液:190.2gの割合の混合液を、500
r.p.m.で回転するAlN系焼結板材の表面に10秒間ふりか
け、温度:800℃に10分間保持する焼成を1サイクルと
し、これを所定厚さになるまで繰り返し行なうことから
なるゾルゲル法、 (c) 反応ガス:Si2H6/O2=0.015(容量比)、 反応容器内圧力:0.2torr、 AlN系焼結板材の温度:150℃、 光:水銀ランプ発生光、 の条件での光化学蒸着法(以下光CVD法という)、 以上(a)〜(c)のうちのいずれかの方法で形成す
るのがよく、またZrO2やTiO2を含有したSiO2系被覆層
も、上記の(a)〜(c)のいずれかの方法を用い、そ
れぞれターゲット材質、混合液、あるいは反応ガスの組
成を所定組成に調製することにより形成することができ
る。
Further, when this SiO 2 -based coating layer is composed of SiO 2 , for example, (a) target material: high-purity quartz glass having a purity of 99.9%, target dimensions: diameter 3 mm × height 10 mm, power: High frequency sputtering method under the conditions of 100 W, rotation speed of AlN-based sintered plate material: 10 rpm, (b) ethyl silicate: 347 g, ethyl alcohol:
500 g and a mixture of 0.3% HCl aqueous solution: 190.2 g in a ratio of 500
A sol-gel method consisting of sprinkling the surface of an AlN-based sintered plate material rotating at rpm for 10 seconds, firing at a temperature of 800 ° C. for 10 minutes as one cycle, and repeating this until a predetermined thickness is obtained, (c) Reaction gas: Si 2 H 6 / O 2 = 0.015 (volume ratio), pressure in the reaction vessel: 0.2 torr, temperature of AlN-based sintered plate: 150 ° C, light: light generated by a mercury lamp, photochemical vapor deposition method (Hereinafter referred to as a photo-CVD method), and is preferably formed by any one of the above methods (a) to (c). The SiO 2 -based coating layer containing ZrO 2 or TiO 2 is also formed by the above-mentioned (a). ) To (c), the target material, the mixed solution, or the composition of the reaction gas is adjusted to a predetermined composition to form the target gas.

〔実 施 例〕〔Example〕

つぎに、この発明の半導体装置用基板を実施例により
具体的に説明する。
Next, the semiconductor device substrate of the present invention will be specifically described with reference to examples.

まず、原料粉末として、いずれも1〜3μmの平均粒
径を有するAlN粉末、Y2O3粉末、およびCaO粉末を用い、
これら原料粉末をそれぞれ第1表に示される配合組成に
配合し、ボールミルにて72時間湿式混合し、乾燥した
後、さらにこれに有機バインダーを添加して混合し、ド
クターブレート法によりグリーンシートに形成し、つい
で常圧のN2雰囲気中、温度:1800℃で2時間保持の条件
で焼結して、実質的に配合組成と同一の成分組成を有
し、かつ幅:50mm×厚さ:0.63mm×長さ:75mmの寸法をも
ったAlN系焼結板材を形成し、ついで、これらのAlN系焼
結板材に、酸素分圧:0.1〜1気圧、水蒸気分圧:1×10-5
〜1×10-3気圧の雰囲気中、1350〜1450℃の温度に所定
時間保持の条件で酸化処理を施して第1表に示される平
均層厚の表面酸化層を形成し、さらに引続いて、前記表
面酸化層上に、通常の高周波スパッタ法、ゾルゲル法、
および光CVD法のうちのいずれかの方法にて、同じく第
1表に示される組成および平均層厚を有するSiO2系被覆
層を形成することにより絶縁板材A〜Vをそれぞれ製造
した。
First, as a raw material powder, AlN powder, Y 2 O 3 powder, and CaO powder, each having an average particle diameter of 1 to 3 μm,
Each of these raw material powders was blended into the blending composition shown in Table 1, wet-mixed for 72 hours in a ball mill, dried, then further added with an organic binder and mixed, and formed into a green sheet by a doctor blade method. and, then in a N 2 atmosphere at atmospheric pressure and a temperature and sintered under the conditions of 2 hour hold at 1800 ° C., has a substantially compounded same component composition and composition, and width: 50 mm × thickness: 0.63 mm × Length: An AlN-based sintered plate having a dimension of 75 mm was formed, and then these AlN-based sintered plates were subjected to an oxygen partial pressure of 0.1 to 1 atm and a steam partial pressure of 1 × 10 −5.
An oxidation treatment is carried out at a temperature of 1350-1450 ° C. for a predetermined time in an atmosphere of 1 × 10 −3 atm to form a surface oxide layer having an average layer thickness shown in Table 1, and subsequently On the surface oxide layer, a normal high-frequency sputtering method, a sol-gel method,
Insulating plate materials A to V were manufactured by forming an SiO 2 -based coating layer having the composition and average layer thickness shown in Table 1 by any one of the methods described above and the photo-CVD method.

さらに、ヒートシンク板材として、いずれも幅:50mm
×厚さ:3mm×長さ:75mmの寸法を有し、また薄板材とし
て、いずれも幅:45mm×厚さ:1mm×長さ:70mmを有し、か
つ (a) 純Al、 (b) Al−2.5%Mg−0.2%Cr合金(以下、Al−Mg−Cr
合金という)、 (c) Al−1%Mn合金(以下、Al−Mn合金という)、 (d) Al−0.02%Ni合金(以下、Al−Ni合金とい
う)、 (e) Al−0.005%B合金(以下、Al−B合金とい
う)、 以上(a)〜(e)のうちのいずれかからなる板材を
用意し、またろう材として、厚さ:50μmを有し、か
つ、 (a) Al−13%Si合金、 (b) Al−7.5%Si合金、 (c) Al−15%Ge合金、 以上(a)〜(c)のうちのいずれかからなる箔材を
用意し、ろう材として、 (d) Al−9.5%Si−1%Mg合金(以下、Al−Si−Mg
合金という)、 (e) Al−7.5%Si−10%Ge合金(以下、Al−Si−Ge
合金という)、 上記(d)または(e)を適用する場合には、上記の
ヒートシンク板材および薄板材の圧延加工時に30μmの
厚さにクラッドしてろう付け板材(ブレージングシー
ト)とした状態で用い、ついでこれらの構成部材を第2
表に示される組合せで第1図に示される状態に積み重
ね、この状態で真空中、430〜610℃に10分間保持の条件
でろう付けして積層接合体とし、これに温度:350℃に30
分間保持後常温まで炉令の熱処理を施し、引続いて前記
積層接合体を構成する薄板材の表面全面に、厚さ:0.5μ
mのCuまたはNiメッキ層を通常の無電解メッキ法により
形成することにより本発明基板1〜22をそれぞれ製造し
た。
In addition, as a heat sink plate material, each width: 50 mm
× Thickness: 3mm × Length: 75mm, and as a thin sheet material, all have width: 45mm × thickness: 1mm × length: 70mm, and (a) pure Al, (b) Al-2.5% Mg-0.2% Cr alloy (hereinafter, Al-Mg-Cr
Alloy), (c) Al-1% Mn alloy (hereinafter referred to as Al-Mn alloy), (D) Al-0.02% Ni alloy (hereinafter referred to as Al-Ni alloy), (e) Al-0.005% B alloy (hereinafter referred to as Al-B alloy), any of the above (a) to (e) A plate material made of the above material is prepared, and has a thickness of 50 μm as a brazing material, and (a) Al-13% Si alloy, (b) Al-7.5% Si alloy, (c) Al-15% Ge alloy, a foil material comprising any of the above (a) to (c) is prepared, and as a brazing material, (d) an Al-9.5% Si-1% Mg alloy (hereinafter, Al-Si-Mg)
Alloy), (e) Al-7.5% Si-10% Ge alloy (hereinafter, Al-Si-Ge
When applying the above (d) or (e), the heat sink plate material and the thin plate material are clad to a thickness of 30 μm at the time of rolling and used as a brazing plate material (brazing sheet). Then, these components are changed to the second
The combinations shown in the table are stacked in the state shown in FIG. 1 and brazed in this state in vacuum at a temperature of 430 to 610 ° C. for 10 minutes to form a laminated joint.
After holding for minutes, heat treatment of furnace order to normal temperature, subsequently, on the entire surface of the thin plate material constituting the laminated joint, thickness: 0.5μ
Substrates 1 to 22 of the present invention were manufactured by forming a Cu or Ni plating layer of m by a usual electroless plating method.

一方、比較の目的で、第2図に示されるように、幅:5
0mm×厚さ:0.63mm×長さ:75mmの寸法をもった純度:96%
のAl2O3焼結体からなる絶縁板材を用い、これの両側か
ら幅:45×厚さ:0.3mm×長さ:70mmの寸法をもった無酸素
銅薄板材(2枚)ではさんだ状態で重ね合わせ、この状
態で酸素:1容量%含有のAr雰囲気中、温度:1075℃に50
分間保持の条件で加熱し、この酸化性雰囲気で表面に形
成したCu2Oと母材のCuとの共晶による液相を接合面に発
生させて接合し、ついでこの接合体を、厚さ:300μmの
箔材とした Pb−60%Sn合金からなるはんだ材を用いて、幅:50mm×
厚さ:3mm×長さ:75mmの寸法をもった無酸素銅からなる
ヒートシンク板材の片面にはんだ付けすることにより従
来基板を製造した。
On the other hand, for comparison purposes, as shown in FIG.
Purity with dimensions of 0mm x thickness: 0.63mm x length: 75mm: 96%
Using an insulating plate made of Al 2 O 3 sintered body from above, sandwiched between two oxygen-free thin copper plates with dimensions of width: 45 x thickness: 0.3 mm x length: 70 mm from both sides In this state, oxygen is added in an Ar atmosphere containing 1% by volume, at a temperature of 1075 ° C. and 50 ° C.
Heating under the condition of holding for 1 minute, in this oxidizing atmosphere, a liquid phase by eutectic of Cu 2 O formed on the surface and Cu of the base material is generated on the bonding surface and bonded, and then the bonded body is : 300μm foil material Using a solder material consisting of Pb-60% Sn alloy, width: 50mm ×
A conventional substrate was manufactured by soldering to one surface of a heat sink plate made of oxygen-free copper having a thickness of 3 mm and a length of 75 mm.

ついで、本発明基板1〜22および従来基板について、
一般に半導体装置用基板の評価試験として採用されてい
る試験は、すなわち温度:125℃で加熱後、−55℃に冷却
を1サイクルとする繰り返し加熱試験を行ない、絶縁板
材に割れが発生するに至るまでのサイクル数を20サイク
ル毎に観察して測定し、またレーザ・フラッシュ法によ
る熱伝導度の測定、および絶縁板材とヒートシンク板材
の接合強度の測定を行ない、さらに本発明基板1〜22の
重量を測定し、従来基板の重量を1とし、これに対する
相対比を求めた。これらの結果を第2表に示した。
Next, regarding the substrates 1 to 22 of the present invention and the conventional substrate,
In general, a test adopted as an evaluation test for a substrate for a semiconductor device is a repeated heating test in which heating is performed at a temperature of 125 ° C. and then cooling is performed at −55 ° C. as one cycle, leading to cracking of the insulating plate material. Observe and measure the number of cycles up to every 20 cycles, measure the thermal conductivity by the laser flash method, measure the bonding strength between the insulating plate material and the heat sink plate material, and further measure the weight of the substrates 1 to 22 of the present invention. Was measured, the weight of the conventional substrate was set to 1, and the relative ratio to this was determined. Table 2 shows the results.

〔発明の効果〕〔The invention's effect〕

第2表に示される結果から、本発明基板1〜22は、い
ずれも従来基板と同等のすぐれた熱伝導性および接合強
度を示し、苛酷な条件下での加熱・冷却の繰り返しによ
っても、絶縁板材に割れの発生が見られないのに対し
て、従来基板ではAl2O3焼結体とCu間の大きな熱膨張係
数差に原因して絶縁板材に比較的早期に割れが発生する
ものであり、また本発明基板1〜22は、従来基板に比し
て約65%の重量減を示し、軽量化の著しいことが明らか
である。
From the results shown in Table 2, all of the substrates 1 to 22 of the present invention exhibited excellent thermal conductivity and bonding strength equivalent to those of the conventional substrate, and were insulated by repeated heating and cooling under severe conditions. Cracks are not seen in the plate material, whereas in the conventional substrate, cracks occur relatively early in the insulating plate material due to the large difference in thermal expansion coefficient between the Al 2 O 3 sintered body and Cu. In addition, the substrates 1 to 22 of the present invention show a weight reduction of about 65% as compared with the conventional substrate, and it is clear that the weight reduction is remarkable.

上述のように、この発明の半導体装置用基板は、軽量
にして、放熱性(熱伝導性)にすぐれ、かつ構成部材の
接合も強固なので、半導体装置の高集積化および大電力
化に十分対応することができ、かつ苛酷な条件下での実
用に際してもセラミック質の絶縁板材に割れなどの欠陥
発生なく、信頼性のきわめて高いものであるなど工業上
有用な効果をもたらすものである。
As described above, the substrate for a semiconductor device of the present invention is lightweight, has excellent heat dissipation (thermal conductivity), and has strong bonding of constituent members, so that it can sufficiently cope with high integration and high power of the semiconductor device. In addition, even when used under severe conditions, the ceramic insulating plate does not have defects such as cracks, and has industrially useful effects such as extremely high reliability.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の半導体装置用基板の概略説明図、第
2図は従来半導体装置用基板の概略説明図である。 A,A′……ヒートシンク板材、 B,B′……薄板材、C,C′……絶縁板材、 C−B……AlN系焼結板材、 C−S……表面酸化層、 C−C……SiO2系被覆層、 D……ろう材、D′……はんだ材。
FIG. 1 is a schematic explanatory view of a semiconductor device substrate of the present invention, and FIG. 2 is a schematic explanatory view of a conventional semiconductor device substrate. A, A ': heat sink plate, B, B': thin plate, C, C ': insulating plate, CB: AlN-based sintered plate, CS: surface oxide layer, CC ...... SiO 2 based coating layer, D ...... brazing material, D '...... solder material.

フロントページの続き (56)参考文献 特開 昭61−119094(JP,A) 特開 昭62−46986(JP,A) 特開 平2−205345(JP,A) 特開 平2−306653(JP,A) 実開 平3−57945(JP,U)Continuation of the front page (56) References JP-A-61-119094 (JP, A) JP-A-62-146986 (JP, A) JP-A-2-205345 (JP, A) JP-A-2-306665 (JP, A) , A) Hikaru 3-57945 (JP, U)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁板材が、平均層厚:0.2〜20μmの表面
酸化層を有する窒化アルミニウム系焼結板材の少なくと
も両面に平均層厚:0.01〜10μmの酸化けい素系被覆層
を形成したものからなり、 かつ、上記絶縁板材の一方面にはAlまたはAl合金からな
るヒートシンク板材が、また上記絶縁板材の他方面には
同じくAlまたはAl合金からなる回路形成用薄板材が、そ
れぞれAl−Si糸合金またはAl−Ge系合金からなるろう材
にて積層接合され、 さらに、上記回路形成用薄板材の表面の所定部分または
全面にCuまたはNiメッキ層を形成した構造を有すること
を特徴とする半導体装置用軽量基板。
1. An insulating plate comprising an aluminum nitride sintered plate having a surface oxide layer having an average layer thickness of 0.2 to 20 μm and a silicon oxide coating layer having an average layer thickness of 0.01 to 10 μm formed on at least both surfaces thereof. And a heat sink plate made of Al or an Al alloy on one surface of the insulating plate, and a circuit-forming thin plate made of the same Al or Al alloy on the other surface of the insulating plate. It is characterized by having a structure in which a Cu or Ni plating layer is formed on a predetermined portion or the entire surface of the circuit forming thin plate material by laminating and joining with a brazing material made of a thread alloy or an Al-Ge alloy. Lightweight substrate for semiconductor devices.
【請求項2】上記窒化アルミニウム系焼結板材が、 酸化イットリウムおよび酸化カルシウムのうちの1種ま
たは2種:0.1〜10重量%、 を含有し、残りが窒化アルミニウムと不可避不純物から
なる組成を有することを特徴とする上記特許請求の範囲
第(1)項記載の半導体装置用軽量基板。
2. The aluminum nitride-based sintered plate material contains one or more of yttrium oxide and calcium oxide: 0.1 to 10% by weight, and the remainder has a composition comprising aluminum nitride and unavoidable impurities. 3. The lightweight substrate for a semiconductor device according to claim 1, wherein said substrate is a lightweight substrate.
【請求項3】上記酸化けい素系被覆層が、 実質的に酸化けい素からなることを特徴とする上記特許
請求の範囲第(1)項または第(2)項記載の半導体装
置用軽量基板。
3. The light-weight substrate for a semiconductor device according to claim 1, wherein said silicon oxide-based coating layer is substantially made of silicon oxide. .
【請求項4】上記酸化けい素系被覆層が、 酸化ジルコニウム:1〜50重量%、 を含有し、残りが酸化けい素と不可避不純物からなる組
成を有することを特徴とする上記特許請求の範囲第
(1)項または第(2)項記載の半導体装置用軽量基
板。
4. The method according to claim 1, wherein the silicon oxide-based coating layer contains zirconium oxide: 1 to 50% by weight, and the balance has a composition comprising silicon oxide and unavoidable impurities. Item (1) or (2), the lightweight substrate for a semiconductor device.
【請求項5】上記酸化けい素系被膜層が、 酸化チタニウム:1〜50重量%、 を含有し、残りが酸化けい素と不可避不純物からなる組
成を有することを特徴とする上記特許請求の範囲第
(1)項または第(2)項記載の半導体装置用軽量基
板。
5. The silicon oxide-based coating layer according to claim 1, wherein said silicon oxide-based coating layer contains titanium oxide: 1 to 50% by weight, and the remainder has a composition comprising silicon oxide and unavoidable impurities. Item (1) or (2), the lightweight substrate for a semiconductor device.
JP1263710A 1989-10-09 1989-10-09 Lightweight substrates for semiconductor devices Expired - Fee Related JP2658435B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1263710A JP2658435B2 (en) 1989-10-09 1989-10-09 Lightweight substrates for semiconductor devices
DE69033718T DE69033718T2 (en) 1989-10-09 1990-10-08 Ceramic substrate used to make an electrical or electronic circuit
DE69034139T DE69034139T2 (en) 1989-10-09 1990-10-08 Ceramic substrate for the manufacture of electrical or electronic circuits
KR1019900015989A KR0173782B1 (en) 1989-10-09 1990-10-08 Ceramic substrate used for fabricating electric or electronic circuit
EP90119255A EP0422558B1 (en) 1989-10-09 1990-10-08 Ceramic substrate used for fabricating electric or electronic circuit
EP00104809A EP1020914B1 (en) 1989-10-09 1990-10-08 Ceramic substrate used for fabricating electric or electronic circuit
US07/594,596 US5130498A (en) 1989-10-09 1990-10-09 Ceramic substrate used for fabricating electric or electronic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1263710A JP2658435B2 (en) 1989-10-09 1989-10-09 Lightweight substrates for semiconductor devices

Publications (2)

Publication Number Publication Date
JPH03125463A JPH03125463A (en) 1991-05-28
JP2658435B2 true JP2658435B2 (en) 1997-09-30

Family

ID=17393245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1263710A Expired - Fee Related JP2658435B2 (en) 1989-10-09 1989-10-09 Lightweight substrates for semiconductor devices

Country Status (1)

Country Link
JP (1) JP2658435B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2918191B2 (en) 1994-04-11 1999-07-12 同和鉱業株式会社 Manufacturing method of metal-ceramic composite member
US5965193A (en) 1994-04-11 1999-10-12 Dowa Mining Co., Ltd. Process for preparing a ceramic electronic circuit board and process for preparing aluminum or aluminum alloy bonded ceramic material
JP3837688B2 (en) * 1999-02-04 2006-10-25 同和鉱業株式会社 Aluminum-aluminum nitride insulated circuit board
DK1056321T3 (en) * 1999-05-28 2008-03-03 Denki Kagaku Kogyo Kk Ceramic substrate circuit and its manufacturing process
EP1315205A4 (en) * 2000-08-09 2009-04-01 Mitsubishi Materials Corp Power module and power module with heat sink
JP4685245B2 (en) * 2001-01-09 2011-05-18 電気化学工業株式会社 Circuit board and manufacturing method thereof
JP4779178B2 (en) * 2001-03-01 2011-09-28 Dowaメタルテック株式会社 Insulating substrate for semiconductor mounting and power module
JP4942257B2 (en) * 2001-05-10 2012-05-30 電気化学工業株式会社 Heat sink and module structure using the same
ATE552717T1 (en) 2002-04-19 2012-04-15 Mitsubishi Materials Corp CIRCUIT BOARD, PROCESS FOR THEIR PRODUCTION AND POWER SUPPLY MODULE
WO2005070851A1 (en) * 2004-01-23 2005-08-04 Tokuyama Corporation Non oxide ceramic having oxide layer on the surface thereof, method for production thereof and use thereof
JP4998387B2 (en) * 2008-06-30 2012-08-15 三菱マテリアル株式会社 Power module substrate manufacturing method and power module substrate

Also Published As

Publication number Publication date
JPH03125463A (en) 1991-05-28

Similar Documents

Publication Publication Date Title
JP4649027B2 (en) Ceramic circuit board
EP1020914B1 (en) Ceramic substrate used for fabricating electric or electronic circuit
WO1996029736A1 (en) Silicon nitride circuit substrate
JP2658435B2 (en) Lightweight substrates for semiconductor devices
JP2571323B2 (en) Improvement of glass ceramics adhesion to copper
JP3408298B2 (en) High thermal conductive silicon nitride metallized substrate, method of manufacturing the same, and silicon nitride module
JP3495051B2 (en) Ceramic-metal joint
JPH0969672A (en) Silicon nitride circuit board
JP3450570B2 (en) High thermal conductive silicon nitride circuit board
JP2772273B2 (en) Silicon nitride circuit board
JPH0810202Y2 (en) Lightweight substrates for semiconductor devices
JP2689685B2 (en) Lightweight substrates for semiconductor devices
JPS61132580A (en) Metallization of nitride ceramic body
JPH0723964Y2 (en) Lightweight substrate for semiconductor device
JP2607700Y2 (en) Lightweight substrates for semiconductor devices
JP2705689B2 (en) Method of manufacturing lightweight substrate for semiconductor device
JP2729751B2 (en) Joining method of alumina ceramics and aluminum
JPH0624880A (en) Metal-ceramic material and production thereof
JP2563809B2 (en) Aluminum nitride substrate for semiconductors
JPH06329480A (en) Joined body of ceramics and metal and its production
JPH09172247A (en) Ceramic circuit board and manufacture thereof
JP3103208B2 (en) Solder preform substrate
JPH0964235A (en) Silicon nitride circuit board
JP2590558B2 (en) Substrate for semiconductor device with excellent heat dissipation
JPH01197378A (en) Method for joining ceramics and metal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees