JPH0358015A - Photosemiconductor device - Google Patents

Photosemiconductor device

Info

Publication number
JPH0358015A
JPH0358015A JP19496789A JP19496789A JPH0358015A JP H0358015 A JPH0358015 A JP H0358015A JP 19496789 A JP19496789 A JP 19496789A JP 19496789 A JP19496789 A JP 19496789A JP H0358015 A JPH0358015 A JP H0358015A
Authority
JP
Japan
Prior art keywords
layer
quantum well
multiple quantum
resonator
perot resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19496789A
Other languages
Japanese (ja)
Inventor
Akihisa Tomita
章久 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19496789A priority Critical patent/JPH0358015A/en
Publication of JPH0358015A publication Critical patent/JPH0358015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To reduce the loss of a Fabri-Perot resonator and to realize an optical gate with a high extinction rate by providing a multiple quantum well structure in the Fabri-Perot resonator, and applying a voltage thereto and controlling the passage or reflection characteristics of the resonator. CONSTITUTION:A buffer layer 12, an etching stop layer 13, and a clad layer 14 are formed on a substrate 11, an active layer 15 in multiple quantum structure is laminated by 40 laminating well layers 151 and 40 barrier layers 12 alternately, and then an insulating layer 16 is formed. Then electrodes 17 and 18 are formed and reflecting mirrors 19 and 20 are formed. Consequently, by reducing the absorption by free carriers, the loss in the Fabri-Perot resonator can be reduced. When an electric field of 120 KV/cm is applied to the multiple quantum well structure, a 20 extinction ratio is obtained for 0.72 mum thickness.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光情報処理等に用いる光変調素子に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an optical modulation element used for optical information processing and the like.

(従来の技術) 近年、光による超高速並列情報処理が注目を集めている
。このためには光を2次元的に制御するいわゆる面型変
調素子の開発が必要である。そのうちの一つとして光信
号を電気的にオンオフする光ゲートがある。従来、面型
の光ゲートとして第2図に示す構造がアブライドフィジ
ックスレターズ(Applied Physics L
etters)44巻、16頁、(1983)において
ウッドら(Wood, T. H. et al.)に
よって報告されている。この光ゲートはGaAsとGa
AIAsの薄膜を交互に積層した量子井戸層21を導電
型がそれぞれp型とn型のGaAIAsからなるクラッ
ド層22、23ではさんだpin構造である。表面から
.入射した光は量子井戸層51を通って基板の裏側から
出射する。電界の印加によって、実効的なバンドギャッ
プが減少するため、量子井戸の励起子の低エネルギー側
の光に対するによる吸収係数が大きくなることを利用し
てスイッチングを行っている。この構造では光が吸収さ
れる領域の長さが短いため、消光比が2:1程度と小さ
い。消光比をあげるなめにりーら(Lee, Y.H.
 et al.)がアブライドフィジックスレターズ(
Applied Physics Letters)5
3巻、1684頁、(1988)において、またシムズ
ら(Sines, R. J. et al)がアブラ
イドフィジックスレターズ(Applied Phys
ics Letters)53巻、637頁、(198
8)において、報告しているように第3図に示す反射鏡
19、20を設けてファブリ・ペロエタロン構造を形戒
することが検討され、それぞれ5:エないし8:1の消
光比を得ている。
(Prior Art) In recent years, ultrahigh-speed parallel information processing using light has been attracting attention. For this purpose, it is necessary to develop a so-called planar modulation element that controls light two-dimensionally. One of these is an optical gate that electrically turns on and off optical signals. Conventionally, the structure shown in Fig. 2 as a planar optical gate was developed by Applied Physics Letters.
44, p. 16, (1983) by Wood, T. H. et al. This optical gate consists of GaAs and Ga
It has a pin structure in which a quantum well layer 21 in which thin films of AIAs are alternately laminated is sandwiched between cladding layers 22 and 23 made of GaAIAs of p-type and n-type conductivity, respectively. From the surface. The incident light passes through the quantum well layer 51 and exits from the back side of the substrate. Application of an electric field reduces the effective band gap, so switching is performed by utilizing the fact that the absorption coefficient of excitons in the quantum well for light on the low energy side increases. In this structure, since the length of the region where light is absorbed is short, the extinction ratio is as small as about 2:1. Increasing the extinction ratio Namenirira (Lee, Y.H.
et al. ) is Abride Physics Letters (
Applied Physics Letters)5
3, p. 1684 (1988) and Sines, R. J. et al.
ics Letters) Volume 53, Page 637, (198
8), it was considered to form the Fabry-Perot etalon structure by providing reflectors 19 and 20 shown in Fig. 3, and it was possible to obtain an extinction ratio of 5:E to 8:1, respectively. There is.

(発明が解決しようとする課題) 以上に述べたようにファブ1ルベロエタロン構造を用い
ることによって面型光ゲートの消光比は改善されたがま
だこの程度では十分ではない。更に消光比を向上させる
にはファプリ・ベロ共振器内の損失を低減してエタロン
のQ値を上げる必要がある。
(Problems to be Solved by the Invention) As described above, the extinction ratio of the planar optical gate has been improved by using the Fab 1 Rubero etalon structure, but this level is still not sufficient. In order to further improve the extinction ratio, it is necessary to reduce the loss within the Fabry-Bello resonator and increase the Q value of the etalon.

本発明の目的はファブリ・ペロ共振器内の損失を低減し
消光比の高い面型光ゲートを提供することにある。
An object of the present invention is to provide a planar optical gate that reduces loss within a Fabry-Perot resonator and has a high extinction ratio.

(課題を解決するための手段) 本発明における光半導体装置は、2枚の平行な反射鏡か
らなるファブリ・ペロ共振器の内部に多重量子井戸構造
を能動層として持ち、多−重量子井戸構造に金属.絶縁
膜を通して電界を印加して前記ファブ1ルベロ共振器の
透過または反射特性を制御することを特徴とする。
(Means for Solving the Problems) The optical semiconductor device of the present invention has a multi-quantum well structure as an active layer inside a Fabry-Perot resonator consisting of two parallel reflecting mirrors, and has a multi-quantum well structure. metal. The present invention is characterized in that transmission or reflection characteristics of the Fab 1 Rubero resonator are controlled by applying an electric field through an insulating film.

(作用) ファブ1ルベロエタロン構造の面型光ゲートでは能動層
となる多重量子井戸構造に電圧を印加すると多重量子井
戸構造の励起子のエネルギーが低エネルギー側にシフト
する。このため励起子よりもわずかにエネルギーの低い
光に対する吸収係数が増大しそれに伴って屈折率が変化
する。電圧を加えていない時光のエネルギごがファブ1
ルペロ共振器に共鳴してオン状態となるようにすると,
電圧を加えた時屈折率変化のため共鳴からずれて透過率
が減少してオフ状態となる。このときの消光比はION IOFF と書ける。ここで、rは光がエタロンの一つの反射鏡か
らもう一つの反射鏡に到達した時の強度の比であり、共
振器無いの損失がないときr=tであり、損失が大きく
なるにつれrは小さくなる。上の式から吸収はRrの形
で実効的な反射率を減らすように働く。当然rは1に近
いほど良い。半導体を用いる光変調素子では能動層であ
る半導体層に電界を印加するためにp−n接合に逆バイ
アスをかけている。このため、p型半導体層およびn型
半導体層にはフリーキャリアが存在し、損失の原因とな
る。フリーキャリアによる吸収はキャリア密度をn=p
=IX10 cm  とし、nドープ層の厚さをdf1
=1.3¥lm, pドープ層の厚さをd,=1.5p
mとすると、rrc=0.94となる。フリーキャリア
吸収以外の損失も伴せるとrは0.9以下となり、消光
比が低下する。本発明では電界印加のためにMIS構造
を用いる。この構造ではフリーキャリアの存在する層が
p−n接合を用いた場合に比べて少ないため、フリーキ
ャリアによる吸収が小さい。このためファブリ・ペロ共
振器内の損失が低減でき消光比の高い面型光ゲートが実
現できる。
(Function) In a planar optical gate with a Fab 1 rubero etalon structure, when a voltage is applied to the multiple quantum well structure serving as the active layer, the energy of excitons in the multiple quantum well structure shifts to the lower energy side. Therefore, the absorption coefficient for light having slightly lower energy than the exciton increases, and the refractive index changes accordingly. When no voltage is applied, the energy of light is generated in Fab 1.
When it resonates with the Luperot resonator and turns on,
When a voltage is applied, the refractive index changes, which deviates from resonance and reduces transmittance, resulting in an off state. The extinction ratio at this time can be written as ION IOFF. Here, r is the ratio of the intensity when light reaches the other reflecting mirror of the etalon, and when there is no resonator or loss, r = t, and as the loss increases, r becomes smaller. From the above equation, absorption acts to reduce the effective reflectance in the form of Rr. Naturally, the closer r is to 1, the better. In an optical modulation element using a semiconductor, a reverse bias is applied to the pn junction in order to apply an electric field to the semiconductor layer, which is an active layer. Therefore, free carriers exist in the p-type semiconductor layer and the n-type semiconductor layer, causing loss. Absorption by free carriers reduces the carrier density to n=p
= IX10 cm, and the thickness of the n-doped layer is df1
=1.3\lm, thickness of p-doped layer is d, =1.5p
If m, then rrc=0.94. If losses other than free carrier absorption are included, r becomes 0.9 or less, and the extinction ratio decreases. In the present invention, a MIS structure is used for applying an electric field. In this structure, since the number of layers in which free carriers exist is smaller than that in the case where a pn junction is used, absorption by free carriers is small. Therefore, the loss inside the Fabry-Perot resonator can be reduced, and a planar optical gate with a high extinction ratio can be realized.

(実施例) 第1図は本発明の一実施例を示す構威図で・ある。(Example) FIG. 1 is a structural diagram showing an embodiment of the present invention.

SnドーブInPの基板11の上に厚さ!OOnmの5
 X 1017−3 cm  Siをドープした偶のバツファ層12、?X1
0 cm  Siをドープした厚さ0.5nmのn型の
InO.53GaO.47 Asからなるエッチストッ
プ層13、厚さ2pmの5X10 am  Siをドー
ブしたInPのクラッド層14、厚さ7nmのノンドー
プ”0.53Gao.4■Asのウェル層151, 厚
さ10nmのノンドーブInPのバリア層152を交互
に40層ずつ積層した多重量子井戸構造からなる能動層
15を順次積層し、さらにSiNを厚さ100nmに堆
積して絶縁膜16を形戒する。基板11を厚さ100p
mに鏡面研磨した後AuGeNi/AuNiからなる電
極17を、また表面にTi/Auの電極18をそれぞれ
形戒する。光が入射、出射する部分の電極17、基板1
1と電極18とをエッチングで除去し、SiO2、アモ
ルファスSiからなる誘電体多層膜の反射鏡19. 2
0を形戒する。反射鏡19、20の反射率は98%であ
る。
Thickness on the Sn-doped InP substrate 11! OOnm 5
X 1017-3 cm Si-doped even buffer layer 12, ? X1
0 cm Si-doped n-type InO. 53GaO. Etch stop layer 13 made of 47 As, 2 pm thick 5X10 am Si doped InP cladding layer 14, 7 nm thick non-doped 0.53 Gao.4 As well layer 151, 10 nm thick non-doped InP. An active layer 15 having a multi-quantum well structure in which 40 barrier layers 152 are alternately laminated is sequentially laminated, and SiN is further deposited to a thickness of 100 nm to form an insulating film 16.The substrate 11 is formed to a thickness of 100 nm.
After polishing to a mirror surface, an electrode 17 made of AuGeNi/AuNi and an electrode 18 made of Ti/Au are formed on the surface. Electrode 17 and substrate 1 where light enters and exits
1 and the electrode 18 are removed by etching, and a reflecting mirror 19. of a dielectric multilayer film made of SiO2 and amorphous Si is formed. 2
Precept 0. The reflectance of the reflecting mirrors 19 and 20 is 98%.

本実施例でのフリーキャリア吸収の影響は小さ< r=
o.9s程度となる。このため他の損失要因を考慮して
も全体のrは0.95程度である。本実施例の多重量子
井戸構造に120kV/cmの電界を印加した時に得ら
れる吸収係数の変化はΔα=5300cm  ,屈折率
の変化はΔn=−0.028程度であるから、多重量子
井戸構造の能動層の厚さが0.72pmの時、消光比2
0が得られる。フリーキャリア吸収があって、rが0.
9の時には消光比は8.6であるから2倍以上改善され
る。
In this example, the influence of free carrier absorption is small < r =
o. It will take about 9 seconds. Therefore, even if other loss factors are considered, the overall r is about 0.95. When an electric field of 120 kV/cm is applied to the multiple quantum well structure of this example, the change in absorption coefficient obtained is Δα = 5300 cm, and the change in refractive index is approximately Δn = -0.028. When the thickness of the active layer is 0.72 pm, the extinction ratio is 2.
0 is obtained. There is free carrier absorption, and r is 0.
When it is 9, the extinction ratio is 8.6, so it is improved by more than twice.

本実施例では絶縁膜16としてSiNを用いたがAIG
aAs等の膜を用いてもよい。製造工程としては能動層
15の積層までは同じで、その上に例えばAIGaAs
を厚さ100nm積層する。結晶戒長にMOVPE法を
用いることにより同一の戊長装置でLnP, InGa
As, AIGaAsを積層できる。この後の工程は前
記実施例と同じである。絶縁層としてAIGaAsを用
いることにより良好な界面を得ることができ、光変調に
必要な高い電界を安定に印加することができた。この例
ではr、消光比は前記実施例と同程度の値を得た。
In this embodiment, SiN was used as the insulating film 16, but AIG
A film such as aAs may also be used. The manufacturing process is the same up to the layering of the active layer 15, and on top of that, for example, AIGaAs is layered.
are laminated to a thickness of 100 nm. By using the MOVPE method for crystal lengthening, LnP and InGa can be produced using the same lengthening device.
As and AIGaAs can be stacked. The subsequent steps are the same as in the previous example. By using AIGaAs as the insulating layer, a good interface could be obtained, and a high electric field required for optical modulation could be stably applied. In this example, the values of r and extinction ratio were comparable to those of the previous example.

(発明の効果) 本発明によればファブリ・ペロ共振器内の損失を低減し
た消光比の高い面型光ゲートが得られる。
(Effects of the Invention) According to the present invention, a planar optical gate with reduced loss in a Fabry-Perot resonator and a high extinction ratio can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構戒である。図中、11は
基板、12はバッファ層、13はエッチストップ層、1
4はクラッド層、15は能動層、16は絶縁膜、17.
 18は電極、19. 20は反射鏡である。また、1
51はウェル層、152はバリア層152である。 第2図は従来の技術の一例を示す構戒図である。 図中、21は量子井戸層、22・23はクラッド層であ
る。 第3図は従来の技術の他の一例を示す構或図である。図
中31はn.クラッド層、32はp−クラツド層である
FIG. 1 is a schematic diagram of an embodiment of the present invention. In the figure, 11 is a substrate, 12 is a buffer layer, 13 is an etch stop layer, 1
4 is a cladding layer, 15 is an active layer, 16 is an insulating film, 17.
18 is an electrode; 19. 20 is a reflecting mirror. Also, 1
51 is a well layer, and 152 is a barrier layer 152. FIG. 2 is a composition diagram showing an example of a conventional technique. In the figure, 21 is a quantum well layer, and 22 and 23 are cladding layers. FIG. 3 is a diagram showing another example of the conventional technique. 31 in the figure is n. The cladding layer 32 is a p-cladding layer.

Claims (1)

【特許請求の範囲】[Claims] 2枚の反射鏡からなるファブリ・ペロ共振器の内部に、
多重量子井戸構造を能動層として持ち、多重量子井戸構
造上に絶縁膜を設けその上に電極を形成してこの電極に
電圧を印加してファブリ・ペロ共振器の透過または反射
特性を制御することを特徴とする光半導体装置。
Inside the Fabry-Perot resonator, which consists of two reflecting mirrors,
It has a multiple quantum well structure as an active layer, an insulating film is provided on the multiple quantum well structure, an electrode is formed on it, and a voltage is applied to this electrode to control the transmission or reflection characteristics of the Fabry-Perot resonator. An optical semiconductor device characterized by:
JP19496789A 1989-07-26 1989-07-26 Photosemiconductor device Pending JPH0358015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19496789A JPH0358015A (en) 1989-07-26 1989-07-26 Photosemiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19496789A JPH0358015A (en) 1989-07-26 1989-07-26 Photosemiconductor device

Publications (1)

Publication Number Publication Date
JPH0358015A true JPH0358015A (en) 1991-03-13

Family

ID=16333320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19496789A Pending JPH0358015A (en) 1989-07-26 1989-07-26 Photosemiconductor device

Country Status (1)

Country Link
JP (1) JPH0358015A (en)

Similar Documents

Publication Publication Date Title
US5345328A (en) Tandem resonator reflectance modulator
US5226053A (en) Light emitting diode
US4947223A (en) Semiconductor devices incorporating multilayer interference regions
JPH11307866A (en) Nitride compound semiconductor laser element
Gourley et al. Single crystal, epitaxial multilayers of AlAs, GaAs, and AlxGa1− xAs for use as optical interferometric elements
JPH08340141A (en) Mode-locked laser device
JP4874768B2 (en) Wavelength conversion element
US5027178A (en) Electrically tunable interference filters and methods for their use
KR20070020091A (en) Surface-emitting semiconductor laser component featuring emission in a vertical direction
JPH02103021A (en) Quantum well optical device
JP2902501B2 (en) Light modulation semiconductor device
JPH04250428A (en) Semiconductor optical function element
EP0309988A1 (en) Semiconductor device for control of light
JPH0358015A (en) Photosemiconductor device
JP2758472B2 (en) Light modulator
JPH1027943A (en) Normal radiation semiconductor laser, method of fabricating the same, and method of varying wavelength
JPS623221A (en) Optical modulator
JPH03188415A (en) Optical semiconductor device
JPH08340146A (en) Surface emitting type semiconductor laser
JPH0697598A (en) Semiconductor light-emitting device
JPH03290614A (en) Optical modulator
Lin et al. Normally‐on GaAs/AlAs multiple‐quantum‐well Fabry–Perot reflection modulators for large two‐dimensional arrays
JP3139774B2 (en) Semiconductor laser device
JP2542588B2 (en) Optical bistable element
JPH06334256A (en) Formation of semiconductor light reflective layer