JPH08340146A - Surface emitting type semiconductor laser - Google Patents

Surface emitting type semiconductor laser

Info

Publication number
JPH08340146A
JPH08340146A JP14585595A JP14585595A JPH08340146A JP H08340146 A JPH08340146 A JP H08340146A JP 14585595 A JP14585595 A JP 14585595A JP 14585595 A JP14585595 A JP 14585595A JP H08340146 A JPH08340146 A JP H08340146A
Authority
JP
Japan
Prior art keywords
semiconductor laser
type semiconductor
reflecting mirror
emitting type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14585595A
Other languages
Japanese (ja)
Inventor
Kazuhisa Uomi
和久 魚見
Kazunori Shinoda
和典 篠田
Yae Okuno
八重 奥野
Misuzu Sagawa
みすず 佐川
Kiyohisa Hiramoto
清久 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14585595A priority Critical patent/JPH08340146A/en
Publication of JPH08340146A publication Critical patent/JPH08340146A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3235Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
    • H01S5/32358Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers containing very small amounts, usually less than 1%, of an additional III or V compound to decrease the bandgap strongly in a non-linear way by the bowing effect

Abstract

PURPOSE: To provide a long-wavelength band surface emitting type semiconductor laser, which oscillates in a continuous operation in a low threshold current and has a high reliability, by a method wherein a semiconductor multilayer reflecting mirror, which is high in reflectivity and does not contain Al elements, is realized. CONSTITUTION: A long-wavelength band laminated structure, which consists of an InGaAsP layer and an InP layer and has an active layer 5 which transmits a laser beam of a wavelength in the range of a wavelength of 1.25 to 1.65μm, and a semiconductor multilayer reflecting mirror 2 consisting of a combination of an InGaP layer and a GaAs layer or a combination of an InGaAsP layer and a GaAs layer are integrally constituted by a direct bonding system. Accordingly, a surface emitting type semiconductor laser, which has the semiconductor multilayer reflecting mirror which is high in reflectivity and does not contain chemically very active Al elements, and generates a laser beam of a wavelength of 1.25 to 1.65μm can be provided. As a result, the realization of the mirror 2 has an effect to the the improvement of the reliability of the long-wavelength band surface emitting type semiconductor laser, which oscillates in a continuous operation a low threshold current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は面発光型半導体レーザに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting semiconductor laser.

【0002】[0002]

【従来の技術】従来の長波長帯面発光型半導体レーザに
ついては、アイ・イー・イー・イー、フォトニクス・テ
クノロジー・レター、6巻、3号(1994年)第31
7頁から第319頁 [IEEE Photonics Technology Lett
ers, vol. 6,No. 3 pp. 317-319 (1994)]のK.Uo
mi他の論文に、又直接接着により形成した長波長帯面
発光型半導体レーザは、アプライド・フィジクス・レタ
ー、64巻、12号(1994年)第1463頁から第
1465頁 [Applied Physics Letters, vol. 64,No.
12 pp. 1463-1465 (1994)]のJ.J.Dudley他
の論文に記載されている。
2. Description of the Related Art Regarding conventional long-wavelength surface emitting semiconductor lasers, IEE, Photonics Technology Letter, Vol. 6, No. 3, No. 31 (1994).
Pages 7 to 319 [IEEE Photonics Technology Lett
ers, vol. 6, No. 3 pp. 317-319 (1994)]. Uo
Mi et al., and a long-wavelength surface-emitting type semiconductor laser formed by direct bonding is described in Applied Physics Letters, vol. 64, No. 12 (1994), pages 1463 to 1465. . 64, No.
12 pp. 1463-1465 (1994)] J. J. Dudley et al.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術における
1.3μm帯、1.55μm帯の長波長帯面発光型半導
体レーザには、以下の如く問題点があった。これまで
に、長波長帯の面発光型半導体レーザの室温(25℃)
連続動作は得られておらず、この原因は主に共振器を形
成する多層膜反射鏡の反射率が低いことに起因してい
る。例えば、1.3μm帯において、半導体多層膜反射
鏡の候補は、これまではInPとInGaAsPの組合
せであり、反射鏡内の光吸収を低減するために組成波長
として1.15μmのInGaAsP四元層となる。し
かしこの際のInPとInGaAsPの屈折率はそれぞ
れ、3.21、3.33であり、その屈折率差は0.1
2と極めて小さく、反射率99%以上を得るためには約
80周期の半導体多層膜を形成する必要が有る。しか
し、半導体多層膜内の不純物導入に伴う内部光吸収、散
乱光損失による光吸収係数の増大により、反射率は99
%まで増大できない。
The 1.3 μm band and 1.55 μm band long-wavelength surface-emitting type semiconductor lasers of the prior art described above have the following problems. Up to now, room temperature (25 ° C) of long-wavelength surface emitting semiconductor lasers
No continuous operation has been obtained, and this is mainly due to the low reflectance of the multilayer-film reflective mirror forming the resonator. For example, in the 1.3 μm band, a candidate for a semiconductor multilayer film reflection mirror has been a combination of InP and InGaAsP so far, and an InGaAsP quaternary layer having a composition wavelength of 1.15 μm is used to reduce light absorption in the reflection mirror. Becomes However, the refractive indices of InP and InGaAsP at this time are 3.21 and 3.33, respectively, and the difference between the refractive indices is 0.1.
It is extremely small as 2, and it is necessary to form a semiconductor multilayer film of about 80 cycles in order to obtain a reflectance of 99% or more. However, the reflectance is 99 due to the increase of the optical absorption coefficient due to internal light absorption and scattered light loss due to the introduction of impurities into the semiconductor multilayer film.
You cannot increase to%.

【0004】一方、上記第1の文献に記述されているよ
うに、誘電体/Siの組合せの多層膜反射鏡を用いた場
合は、面発光型半導体レーザ部のInP基板を除去する
必要があり、作製プロセスの複雑さもさることながら、
2次元集積化に不適である。
On the other hand, as described in the above-mentioned first document, when the multilayer film reflecting mirror of the combination of dielectric / Si is used, it is necessary to remove the InP substrate of the surface emitting semiconductor laser section. , Not to mention the complexity of the manufacturing process,
Not suitable for two-dimensional integration.

【0005】これに対して、上記第2の文献に記述され
ているように、GaAs基板上に形成したGaAs/A
lAs(屈折率差:約0.45)の半導体多層膜反射鏡
を、直接接着方式により、長波長帯で発光する面発光型
活性層を有するInGaAsP/InP系積層構造と一
体化する長波長帯面発光型半導体レーザが報告されてい
る。しかし、AlAsは化学的に非常に活性であり、接
着自体への悪影響もさることながら、Al元素を含んで
いる為素子の信頼性が低下する問題があった。
On the other hand, as described in the above-mentioned second document, GaAs / A formed on a GaAs substrate.
A long wavelength band in which a semiconductor multilayer film reflecting mirror of 1As (refractive index difference: about 0.45) is integrated by a direct bonding method with an InGaAsP / InP laminated structure having a surface emitting active layer that emits light in a long wavelength band. Surface emitting semiconductor lasers have been reported. However, since AlAs is chemically very active and adversely affects the adhesion itself, there is a problem that the reliability of the element is lowered because it contains an Al element.

【0006】本発明の目的は、高い反射率でかつAl元
素を含んでいない半導体多層反射鏡を実現することによ
り、低しきい電流で連続動作発振し、かつ高い信頼性を
有する長波長帯の面発光型半導体レーザを提供すること
にある。
An object of the present invention is to realize a semiconductor multi-layer reflecting mirror having a high reflectivity and containing no Al element, so as to continuously oscillate at a low threshold current and to have a high reliability in a long wavelength band. An object is to provide a surface emitting semiconductor laser.

【0007】[0007]

【課題を解決するための手段】上記目的は、レーザ光の
波長が1.25〜1.65μmの範囲となる活性層を有
するInGaAsP/InP系の長波長帯の積層構造
と、InGaPとGaAsの組合せ、あるいはInGa
AsPとGaAsの組合せからなる半導体多層膜反射鏡
を直接接着方式により一体化することによって達成され
る。特に、活性層を少なく共一層の量子井戸構造で形成
すること、半導体多層膜反射鏡と活性層を挾んで対向す
る多層膜反射鏡が誘電体多層膜反射鏡にすること、及び
レーザ光を半導体基板側から出射させることによって達
成される。さらに本目的は、上述した手段に加え、活性
層に電流を注入するための少なくとも一対の電極を有
し、直接接着界面を電流が通らない構造によって達成さ
れる。
The above object is to provide a laminated structure of InGaAsP / InP long wavelength band having an active layer in which the wavelength of laser light is in the range of 1.25 to 1.65 μm, and InGaP and GaAs. Combination or InGa
This is achieved by integrating a semiconductor multi-layered film reflecting mirror made of a combination of AsP and GaAs by a direct bonding method. In particular, the active layer is formed in a quantum well structure with a small number of co-layers, the semiconductor multilayer film reflecting mirror and the multilayer film reflecting mirror sandwiching the active layer are opposed to each other as a dielectric multilayer film reflecting mirror, and laser light is applied to a semiconductor This is achieved by emitting light from the substrate side. Further, the present object is achieved by a structure having at least a pair of electrodes for injecting a current into the active layer, in addition to the above-mentioned means, and in which a current does not pass directly through the bonding interface.

【0008】[0008]

【作用】以下、本発明の作用について説明する。The function of the present invention will be described below.

【0009】InGaPとGaAsの屈折率は、長波長
帯において、それぞれ約3.1、3.4であり、その屈
折率差は0.3とGaAs/AlAs系に比べて若干小
さいが、周期数27、30、35において、半導体多層
膜反射率はそれぞれ99.0%、99.5%、99.7
%と高い反射率を得ることが出来るので、レーザ発振の
ための共振器として有効に働いた。さらに、化学的に非
常に活性なAl元素を含んでおらず、素子の信頼性を飛
躍的に向上できる。さらに、直接接着自体の強度の増大
を図れた。特に、量子井戸活性層構造とすること、もう
一方側の多層膜反射鏡を誘電体多層膜反射鏡にするこ
と、及びレーザ光を半導体基板側から出射させることに
より、より高信頼で、かつフリップチップボンディング
による二次元集積化の可能な面発光型半導体レーザを実
現できる。さらに、活性層に注入する電流が接着界面を
通らない構造にすることにより、接着界面での電圧降下
に伴う発熱の影響を低減できるので、尚一層の高信頼化
に対して効果がある。
The refractive indices of InGaP and GaAs are about 3.1 and 3.4, respectively, in the long wavelength band, and the difference in the refractive index between them is 0.3, which is slightly smaller than that of the GaAs / AlAs system, but the number of periods 27, 30, and 35, the semiconductor multilayer film reflectances are 99.0%, 99.5%, and 99.7, respectively.
%, It was possible to obtain a high reflectance, so it worked effectively as a resonator for laser oscillation. Further, since it does not contain a chemically active Al element, the reliability of the device can be dramatically improved. Furthermore, the strength of the direct bonding itself was increased. In particular, by using a quantum well active layer structure, by using a dielectric multilayer mirror as the multilayer mirror on the other side, and by emitting laser light from the semiconductor substrate side, more reliable and flip A surface-emitting type semiconductor laser capable of two-dimensional integration by chip bonding can be realized. Further, by making the structure such that the current injected into the active layer does not pass through the adhesive interface, it is possible to reduce the influence of heat generation due to the voltage drop at the adhesive interface, which is further effective for higher reliability.

【0010】[0010]

【実施例】以下、本発明の実施例を図1〜4を用いて説
明する。
EXAMPLES Examples of the present invention will be described below with reference to FIGS.

【0011】〔実施例1〕第1図は本発明を1.3μm
帯面発光型半導体レーザに適用したものである。n−G
aAs基板1上に、n−InGaPとn−GaAsをそ
れぞれの媒質内における発振波長の1/4倍の厚さを交
互に積層した周期構造(35周期)からなるn型の半導
体多層膜反射鏡2を有機金属気相成長法により形成す
る。次に、n−InP基板上にp−InGaAsPコン
タクト層3、p−InPクラッド層4、膜厚0.1μm
のInGaAsP活性層(組成波長1.3μm)5、n
−InPクラッド層6を順次有機金属気相成長法により
形成する。その後、半導体多層膜反射鏡2とn−InP
クラッド層6の表面を、向かい合わせて重ね、20g/
cm2程度の重しをのせて、熱アニール炉中に導入し
た。炉内では水素ガスを流しながら、600℃に昇温
し、30分放置して直接接着を行った。次にn−InP
基板を選択エッチングにより除去した。その後、エッチ
ングにより、半導体多層膜反射鏡2に達する凸状の発光
領域(直径10μm)を形成し、SiO2膜7、ポリイ
ミド膜8により平坦化した後、リング状のp側電極9、
TiO2膜とSiO2膜をそれぞれの媒質内における発
振波長の1/4倍の厚さを交互に積層した周期構造(6
周期)からなる誘電体膜多層膜反射鏡10を形成後、n
側電極11を形成した。
[Embodiment 1] FIG. 1 shows the present invention at 1.3 μm.
It is applied to a band-emission type semiconductor laser. n-G
An n-type semiconductor multilayer film reflection mirror having a periodic structure (35 periods) in which n-InGaP and n-GaAs are alternately laminated on an aAs substrate 1 at a thickness of 1/4 times the oscillation wavelength in each medium. 2 is formed by a metal organic chemical vapor deposition method. Next, on the n-InP substrate, the p-InGaAsP contact layer 3, the p-InP clad layer 4, and the film thickness of 0.1 μm.
InGaAsP active layer (composition wavelength: 1.3 μm) 5, n
The InP clad layer 6 is sequentially formed by the metal organic chemical vapor deposition method. After that, the semiconductor multilayer film reflecting mirror 2 and the n-InP
20 g /
A weight of about cm 2 was put on and introduced into a thermal annealing furnace. In the furnace, while flowing hydrogen gas, the temperature was raised to 600 ° C. and left for 30 minutes for direct bonding. Next, n-InP
The substrate was removed by selective etching. After that, a convex light emitting region (diameter 10 μm) reaching the semiconductor multilayer film reflecting mirror 2 is formed by etching, flattened by the SiO 2 film 7 and the polyimide film 8, and then the ring-shaped p-side electrode 9,
Periodic structure in which TiO 2 films and SiO 2 films are alternately laminated with a thickness of ¼ times the oscillation wavelength in each medium (6
After forming the dielectric film multilayer mirror 10 having
The side electrode 11 was formed.

【0012】試作した素子は、室温連続動作において、
しきい電流2mAで発振し、レーザ光12は誘電体膜多
層膜反射鏡10側から出射する。又、接着強度も十分で
あり、さらに、レーザ光が伝搬する領域にAl元素を含
まないので、素子の信頼性は極めて高く、85℃2mW
一定光出力寿命試験において、100000時間以上の
推定寿命を得た。
The prototype device is
The laser beam 12 oscillates with a threshold current of 2 mA and is emitted from the dielectric film multilayer film reflecting mirror 10 side. In addition, the adhesive strength is sufficient, and since the Al element is not included in the region where the laser light propagates, the reliability of the device is extremely high, and the temperature is 85 ° C. 2 mW.
In the constant light output life test, an estimated life of 100,000 hours or more was obtained.

【0013】〔実施例2〕第2図は本発明を量子井戸構
造の活性層を有する1.55μm帯面発光型半導体レー
ザに適用したものである。n−GaAs基板1上に、n
−InGaPとn−GaAsをそれぞれの媒質内におけ
る発振波長の約1/4倍の厚さを交互に積層した周期構
造(30周期)からなるn型の半導体多層膜反射鏡13
を有機金属気相成長法により形成する。この反射鏡にお
いては、n−InGaPとn−GaAsの間に膜厚10
nmのn−InGaAsPを挿入し、電気抵抗の低減化
を図った。従って、n−InGaP/n−InGaAs
P/n−GaAsの1周期で媒質内における発振波長の
1/2倍の厚さになっている。次に、p−InP基板上
にp−InGaAsPコンタクト層3、p−InPクラ
ッド層4、膜厚7nmのInGaAs量子井戸層と膜厚
10nmのInGaAsP障壁層の5〜20周期構造か
らなる発光波長1.55μm帯の多重量子井戸活性層1
4、n−InPクラッド層6を順次有機金属気相成長法
により形成する。その後、半導体多層膜反射鏡13とn
−InPクラッド層6の表面を、向かい合わせて重ね、
10g/cm2程度の重しをのせて、熱アニール炉中に
導入した。炉内では水素ガスを流しながら、620℃に
昇温し、20分放置して直接接着を行った。次にp−I
nP基板を選択エッチングにより除去した。その後、反
応性イオンエッチングにより、半導体多層膜反射鏡13
に達する凸状の発光領域(直径7μm)を形成し、ポリ
イミド膜8により平坦化した後、アモルファスSi膜と
SiO2膜をそれぞれの媒質内における発振波長の1/
4倍の厚さを交互に積層した周期構造(5周期)からな
る誘電体膜多層膜反射鏡15、p側電極9を形成後、窓
開き状のn側電極11を形成した。
[Embodiment 2] FIG. 2 is a view showing that the present invention is applied to a 1.55 μm surface-emitting type semiconductor laser having an active layer of a quantum well structure. n on the n-GaAs substrate 1
N-type semiconductor multilayer film reflecting mirror 13 having a periodic structure (30 periods) in which -InGaP and n-GaAs are alternately laminated with a thickness of about 1/4 times the oscillation wavelength in each medium.
Are formed by a metal organic chemical vapor deposition method. In this reflecting mirror, a film thickness of 10 is provided between n-InGaP and n-GaAs.
nm n-InGaAsP was inserted to reduce the electric resistance. Therefore, n-InGaP / n-InGaAs
The thickness is 1/2 times the oscillation wavelength in the medium in one period of P / n-GaAs. Next, an emission wavelength of 1 to 5 consisting of a p-InGaAsP contact layer 3, a p-InP cladding layer 4, an InGaAs quantum well layer with a thickness of 7 nm, and an InGaAsP barrier layer with a thickness of 10 nm is set on a p-InP substrate. Multiple quantum well active layer 1 of 0.55 μm band
4. The n-InP cladding layer 6 is sequentially formed by the metal organic chemical vapor deposition method. Then, the semiconductor multilayer film reflecting mirror 13 and n
-The surface of the InP clad layer 6 is face-to-face overlapped,
A weight of about 10 g / cm 2 was put on and introduced into the thermal annealing furnace. In the furnace, while flowing hydrogen gas, the temperature was raised to 620 ° C. and left for 20 minutes for direct bonding. Then p-I
The nP substrate was removed by selective etching. Then, the semiconductor multilayer film reflecting mirror 13 is formed by reactive ion etching.
After forming a convex light emitting region (diameter: 7 μm) reaching to, and flattening with the polyimide film 8, the amorphous Si film and the SiO 2 film are 1 / th of the oscillation wavelength in each medium.
After forming the dielectric film multilayer mirror 15 and the p-side electrode 9 having a periodic structure (5 periods) in which quadruple thicknesses are alternately laminated, the window-side n-side electrode 11 is formed.

【0014】試作した素子は、室温連続動作において、
量子井戸構造の導入により、しきい電流0.5mAで発
振し、レーザ光12はn−GaAs基板1側から出射す
る。さらに、レーザ光が伝搬する領域にAl元素を含ま
ないので、素子の信頼性は極めて高く、85℃4mW一
定光出力寿命試験において、100000時間以上の推
定寿命を得た。
The prototype device is
With the introduction of the quantum well structure, the laser beam 12 oscillates with a threshold current of 0.5 mA, and the laser beam 12 is emitted from the n-GaAs substrate 1 side. Furthermore, since the element in which the laser light propagates does not contain an Al element, the reliability of the device is extremely high, and an estimated life of 100,000 hours or more was obtained in a constant light output life test of 85 ° C. and 4 mW.

【0015】〔実施例3〕第3図は本発明を歪量子井戸
構造の活性層を有する1.55μm帯面発光型半導体レ
ーザに適用したものである。p−GaAs基板16上
に、p−InGaAsP(組成波長0.75μm)とp
−GaAsをそれぞれの媒質内における発振波長の1/
4倍の厚さを交互に積層した周期構造(35周期)から
なるp型の半導体多層膜反射鏡17を有機金属気相成長
法により形成する。次に、p−InP基板上にn−In
GaAsエッチストップ層、n−InPクラッド層6、
膜厚5nm、歪量Δa/aが+0.9%のInGaAs
P歪量子井戸層と膜厚10nmのInGaAsP障壁層
の5〜30周期構造からなる発光波長1.55μm帯の
歪超格子型活性層14、p−InPクラッド層4を順次
有機金属気相成長法により形成する。その後、半導体多
層膜反射鏡17とp−InPクラッド層4の表面を、向
かい合わせて重ね、10g/cm2程度の重しをのせ
て、熱アニール炉中に導入した。炉内では水素ガスを流
しながら、630℃に昇温し、40分放置して直接接着
を行った。次にp−InP基板、n−InGaAsエッ
チストップ層を選択エッチングにより除去した。さら
に、n−GaAs基板に、n−InGaPエッチストッ
プ層、n−GaAsコンタクト層18、n−InGaP
とn−GaAsをそれぞれの媒質内における発振波長の
1/4倍の厚さを交互に積層した周期構造(30周期)
からなるn型の半導体多層膜反射鏡13を有機金属気相
成長法により形成する。その後、半導体多層膜反射鏡1
3とn−InPクラッド層6の表面を、向かい合わせて
重ね、20g/cm2程度の重しをのせて、熱アニール
炉中に導入した。炉内では水素ガスを流しながら、63
0℃に昇温し、40分放置して直接接着を行った。次に
n−GaAs基板、n−InGaPエッチストップ層を
選択エッチングにより除去した。次に、反応性イオンビ
ームエッチングにより、p型の半導体多層膜反射鏡17
表面まで達するまでエッチングし、凸状の発光領域(5
μm×5μm)を形成した後、ポリイミド膜8により平
坦化し、n側電極11、窓開き状のp側電極9を形成し
た。
[Embodiment 3] FIG. 3 is a diagram in which the present invention is applied to a 1.55 μm band surface emitting semiconductor laser having an active layer of a strained quantum well structure. On the p-GaAs substrate 16, p-InGaAsP (composition wavelength 0.75 μm) and p
−GaAs is 1/1 of the oscillation wavelength in each medium
A p-type semiconductor multilayer film reflecting mirror 17 having a periodic structure (35 periods) in which quadruple thicknesses are alternately laminated is formed by a metal organic chemical vapor deposition method. Then, n-In is formed on the p-InP substrate.
GaAs etch stop layer, n-InP clad layer 6,
InGaAs with a film thickness of 5 nm and a strain amount Δa / a of + 0.9%
A strained superlattice active layer 14 having a light emission wavelength of 1.55 μm and a p-InP clad layer 4 having a 5 to 30 periodic structure of a P strained quantum well layer and an InGaAsP barrier layer having a thickness of 10 nm, and a p-InP clad layer 4 are sequentially grown by metal organic chemical vapor deposition. Formed by. Thereafter, the semiconductor multilayer film reflecting mirror 17 and the surface of the p-InP clad layer 4 were placed face to face with each other, and a weight of about 10 g / cm 2 was placed thereon, and they were introduced into the thermal annealing furnace. In the furnace, while flowing hydrogen gas, the temperature was raised to 630 ° C. and left for 40 minutes for direct bonding. Next, the p-InP substrate and the n-InGaAs etch stop layer were removed by selective etching. Further, on the n-GaAs substrate, the n-InGaP etch stop layer, the n-GaAs contact layer 18, and the n-InGaP are formed.
And n-GaAs with a thickness of 1/4 times the oscillation wavelength in each medium, stacked alternately (30 cycles)
The n-type semiconductor multilayer film reflecting mirror 13 made of is formed by a metal organic chemical vapor deposition method. After that, the semiconductor multilayer film reflecting mirror 1
The surface of 3 and the surface of the n-InP clad layer 6 were placed facing each other, and a weight of about 20 g / cm 2 was placed thereon, and the surface was introduced into a thermal annealing furnace. While flowing hydrogen gas in the furnace, 63
The temperature was raised to 0 ° C. and the mixture was left for 40 minutes for direct bonding. Next, the n-GaAs substrate and the n-InGaP etch stop layer were removed by selective etching. Next, a p-type semiconductor multilayer film reflecting mirror 17 is formed by reactive ion beam etching.
Etching until the surface is reached, the convex light emitting area (5
μm × 5 μm), and then planarized by the polyimide film 8 to form an n-side electrode 11 and a window-opening p-side electrode 9.

【0016】試作した素子は、室温連続動作において、
歪量子井戸構造の導入により、しきい電流0.08mA
で発振し、レーザ光12はp−GaAs基板16側から
出射する。さらに、レーザ光が伝搬する領域にAl元素
を含まないので、素子の信頼性は極めて高く、85℃1
mW一定光出力寿命試験において、300000時間以
上の推定寿命を得た。
The prototype device was tested at room temperature under continuous operation.
Threshold current of 0.08mA due to introduction of strained quantum well structure
The laser light 12 is emitted from the p-GaAs substrate 16 side. Furthermore, since the element in which laser light propagates does not contain Al element, the reliability of the device is extremely high, and
In the mW constant light output life test, an estimated life of 300,000 hours or more was obtained.

【0017】〔実施例4〕第4図は本発明をSi基板上
1.3μm帯面発光型半導体レーザに適用したものであ
る。p−GaAs基板上に、p−InGaAsP(組成
波長0.75μm)とp−GaAsをそれぞれの媒質内
における発振波長の1/4倍の厚さを交互に積層した周
期構造(35周期)からなるp型の半導体多層膜反射鏡
17を有機金属気相成長法により形成する。その後、半
導体多層膜反射鏡17とSi基板19表面を、向かい合
わせて重ね、50g/cm2程度の重しをのせて、熱ア
ニール炉中に導入した。炉内では水素ガスとホスフィン
ガスを流しながら、680℃に昇温し、40分放置して
直接接着を行った。次にp−GaAs基板を選択エッチ
ングにより除去した。その後、実施例3と同様の工程に
より、活性層5、n型の半導体多層膜反射鏡13を含む
多層構造を形成した後、反応性イオンビームエッチング
により、p型の半導体多層膜反射鏡17表面まで達する
までエッチングし、凸状の発光領域(5μm×8μm)
を形成した後、ポリイミド膜8により平坦化し、n側電
極11、p−GaAs層上にp側電極9を形成した。
[Embodiment 4] FIG. 4 shows the present invention applied to a 1.3 μm band surface emitting semiconductor laser on a Si substrate. It has a periodic structure (35 periods) in which p-InGaAsP (composition wavelength 0.75 μm) and p-GaAs are alternately laminated on the p-GaAs substrate with a thickness of ¼ times the oscillation wavelength in each medium. The p-type semiconductor multilayer film reflecting mirror 17 is formed by a metal organic chemical vapor deposition method. After that, the semiconductor multilayer film reflecting mirror 17 and the surface of the Si substrate 19 were face-to-face overlapped with each other, and a weight of about 50 g / cm 2 was placed thereon, and the resultant was introduced into the thermal annealing furnace. In the furnace, the temperature was raised to 680 ° C. while flowing hydrogen gas and phosphine gas, and left for 40 minutes for direct bonding. Next, the p-GaAs substrate was removed by selective etching. After that, a multilayer structure including the active layer 5 and the n-type semiconductor multilayer film reflecting mirror 13 is formed by the same steps as in Example 3, and then the surface of the p-type semiconductor multilayer film reflecting mirror 17 is formed by reactive ion beam etching. Etching until reaching, convex light emitting area (5μm × 8μm)
After the formation, a polyimide film 8 was used to flatten the film, and an n-side electrode 11 and a p-side electrode 9 were formed on the p-GaAs layer.

【0018】試作した素子は、室温連続動作において、
しきい電流0.15mAで発振し、レーザ光12はSi
基板19側から出射する。レーザ光が伝搬する領域にA
l元素を含まないので、素子の信頼性は極めて高く、8
5℃1mW一定光出力寿命試験において、200000
時間以上の推定寿命を得た。
The prototype device is
It oscillates with a threshold current of 0.15 mA, and the laser light 12 is Si.
The light is emitted from the substrate 19 side. A in the area where the laser light propagates
Since the element is not included, the reliability of the device is extremely high.
In a constant light output life test at 5 ° C and 1 mW, 200,000
Got an estimated lifetime of over an hour.

【0019】以上の実施例においては単体の素子のみに
ついて示したが、一次元アレイ、二次元アレイにおいて
も適用でき、均一な特性を持つアレイ素子が得られた。
Although only a single element is shown in the above embodiments, it can be applied to a one-dimensional array and a two-dimensional array, and an array element having uniform characteristics was obtained.

【0020】[0020]

【発明の効果】本発明では、InGaPとGaAsの組
合せ、あるいはInGaAsPとGaAsの組合せから
なる半導体多層膜反射鏡を直接接着方式により一体化す
ることにより、高い反射率で、かつ化学的に非常に活性
なAl元素を含んでいない半導体多層反射鏡を有するレ
ーザ光の波長が1.25〜1.65μmの面発光型半導
体レーザを提供できる。その結果、低しきい電流で連続
動作発振する長波長帯の面発光型半導体レーザの信頼性
の向上に対して効果がある。
According to the present invention, a semiconductor multi-layered film reflecting mirror made of a combination of InGaP and GaAs or a combination of InGaAsP and GaAs is integrated by a direct bonding method, so that a high reflectance and a very high chemical efficiency can be obtained. It is possible to provide a surface-emitting type semiconductor laser having a semiconductor multi-layer reflecting mirror that does not contain active Al element and the wavelength of laser light is 1.25 to 1.65 μm. As a result, it is effective for improving the reliability of the long-wavelength surface-emitting type semiconductor laser that continuously oscillates at a low threshold current.

【0021】[0021]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を表す構造図。FIG. 1 is a structural diagram showing an embodiment of the present invention.

【図2】本発明の実施例を表す構造図。FIG. 2 is a structural diagram showing an embodiment of the present invention.

【図3】本発明の実施例を表す構造図。FIG. 3 is a structural diagram showing an embodiment of the present invention.

【図4】本発明の実施例を表す構造図。FIG. 4 is a structural diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1……n−GaAs基板 2、13……n型の半導体多層膜反射鏡 4……p−InPクラッド層 5、14……活性層 6……n−InPクラッド層 8……ポリイミド膜 10、15……誘電体膜多層膜反射鏡 17……p型の半導体多層膜反射鏡 19……Si基板。 DESCRIPTION OF SYMBOLS 1 ... n-GaAs substrate 2,13 ... n-type semiconductor multilayer film reflecting mirror 4 ... p-InP clad layer 5,14 ... active layer 6 ... n-InP clad layer 8 ... polyimide film 10, 15 ... Dielectric film multilayer mirror 17 ... P-type semiconductor multilayer film mirror 19 ... Si substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐川 みすず 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 平本 清久 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Misuzu Sagawa 1-280 Higashi Koikeku, Kokubunji City, Tokyo Inside Hitachi Central Research Laboratory (72) Inventor Kiyohisa Hiramoto 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. Central Research Laboratory

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に、少なくとも光を発生する
活性層と、発生した光からレーザ光を得るための半導体
多層膜反射鏡を含んだ共振器構造を有し、レーザ光の波
長が1.25〜1.65μmの範囲である面発光型半導
体レーザにおいて、上記半導体多層膜反射鏡がInGa
PとGaAsの組合せ、あるいはInGaAsPとGa
Asの組合せで構成されていることを特徴とする面発光
型半導体レーザ。
1. A resonator structure having at least an active layer for generating light and a semiconductor multilayer film reflecting mirror for obtaining laser light from the generated light on a semiconductor substrate, wherein the wavelength of the laser light is 1. In the surface-emitting type semiconductor laser having a range of 0.25 to 1.65 μm, the semiconductor multilayer film reflecting mirror is made of InGa.
Combination of P and GaAs, or InGaAsP and Ga
A surface-emitting type semiconductor laser characterized by being composed of a combination of As.
【請求項2】半導体基板上に、少なくとも光を発生する
活性層と、光を閉じ込めるクラッド層と、発生した光か
らレーザ光を得るための半導体多層膜反射鏡を含んだ共
振器構造を有する面発光型半導体レーザにおいて、上記
活性層がInGaAsP系材料で構成され、上記クラッ
ド層がInPであり、上記半導体多層膜反射鏡がInG
aPとGaAsの組合せ、あるいはInGaAsPとG
aAsの組合せで構成されていることを特徴とする面発
光型半導体レーザ。
2. A surface having a resonator structure including, on a semiconductor substrate, at least an active layer for generating light, a clad layer for confining the light, and a semiconductor multilayer film reflecting mirror for obtaining laser light from the generated light. In the light emitting semiconductor laser, the active layer is made of an InGaAsP-based material, the cladding layer is InP, and the semiconductor multilayer film reflecting mirror is InG.
Combination of aP and GaAs, or InGaAsP and G
A surface-emitting type semiconductor laser comprising a combination of aAs.
【請求項3】請求項1又は2記載の面発光型半導体レー
ザにおいて、上記半導体多層膜反射鏡と上記活性層を含
む層の間に、直接接着界面を有することを特徴とする面
発光型半導体レーザ。
3. The surface emitting semiconductor laser according to claim 1, wherein the surface emitting semiconductor laser has a direct adhesive interface between the semiconductor multilayer film reflecting mirror and the layer including the active layer. laser.
【請求項4】請求項1ないし3のいずれかに記載の面発
光型半導体レーザにおいて、上記半導体基板がGaAs
であることを特徴とする面発光型半導体レーザ。
4. The surface emitting semiconductor laser according to claim 1, wherein the semiconductor substrate is GaAs.
A surface-emitting type semiconductor laser characterized by:
【請求項5】請求項1ないし3のいずれかに記載の面発
光型半導体レーザにおいて、上記半導体基板がSiであ
ることを特徴とする面発光型半導体レーザ。
5. A surface-emitting type semiconductor laser according to claim 1, wherein the semiconductor substrate is Si.
【請求項6】請求項1ないし5のいずれかに記載の面発
光型半導体レーザにおいて、上記活性層が少なく共一層
の量子井戸構造から形成されていることを特徴とする面
発光型半導体レーザ。
6. A surface-emitting type semiconductor laser according to claim 1, wherein the active layer is formed of a quantum well structure having a small number of co-layers.
【請求項7】請求項1ないし6のいずれかに記載の面発
光型半導体レーザにおいて、上記半導体多層膜反射鏡と
上記活性層を挾んで対向する多層膜反射鏡が誘電体多層
膜反射鏡であることを特徴とする面発光型半導体レー
ザ。
7. The surface-emitting type semiconductor laser according to claim 1, wherein the semiconductor multi-layered film reflecting mirror and the multi-layered film reflecting mirror facing the active layer are dielectric multi-layered film reflecting mirrors. A surface-emitting type semiconductor laser characterized by being present.
【請求項8】請求項1ないし7のいずれかに記載の面発
光型半導体レーザにおいて、レーザ光が半導体基板側か
ら出射することを特徴とする面発光型半導体レーザ。
8. A surface-emitting type semiconductor laser according to claim 1, wherein the laser light is emitted from the semiconductor substrate side.
【請求項9】請求項1ないし8のいずれかに記載の面発
光型半導体レーザにおいて、上記活性層に電流を注入す
るための少なくとも一対の電極を有し、上記直接接着界
面を電流が通らない構造になっていることを特徴とする
面発光型半導体レーザ。
9. The surface emitting semiconductor laser according to claim 1, further comprising at least a pair of electrodes for injecting a current into the active layer, wherein no current passes through the direct bonding interface. A surface-emitting type semiconductor laser having a structure.
JP14585595A 1995-06-13 1995-06-13 Surface emitting type semiconductor laser Pending JPH08340146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14585595A JPH08340146A (en) 1995-06-13 1995-06-13 Surface emitting type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14585595A JPH08340146A (en) 1995-06-13 1995-06-13 Surface emitting type semiconductor laser

Publications (1)

Publication Number Publication Date
JPH08340146A true JPH08340146A (en) 1996-12-24

Family

ID=15394650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14585595A Pending JPH08340146A (en) 1995-06-13 1995-06-13 Surface emitting type semiconductor laser

Country Status (1)

Country Link
JP (1) JPH08340146A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480516B1 (en) 1999-03-31 2002-11-12 Japan As Represented By Secretary Of Agency Of Industrial Science And Technology Surface semiconductor optical amplifier with transparent substrate
US6674785B2 (en) 2000-09-21 2004-01-06 Ricoh Company, Ltd. Vertical-cavity, surface-emission type laser diode and fabrication process thereof
JP2008085090A (en) * 2006-09-28 2008-04-10 Fujitsu Ltd Semiconductor laser device and its manufacturing method
WO2021125005A1 (en) * 2019-12-20 2021-06-24 ソニーセミコンダクタソリューションズ株式会社 Light-emitting device and method for manufacturing light-emitting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6480516B1 (en) 1999-03-31 2002-11-12 Japan As Represented By Secretary Of Agency Of Industrial Science And Technology Surface semiconductor optical amplifier with transparent substrate
US6674785B2 (en) 2000-09-21 2004-01-06 Ricoh Company, Ltd. Vertical-cavity, surface-emission type laser diode and fabrication process thereof
US7022539B2 (en) 2000-09-21 2006-04-04 Ricoh Company, Ltd. Vertical-cavity, surface-emission type laser diode and fabrication process thereof
US7260137B2 (en) 2000-09-21 2007-08-21 Ricoh Company, Ltd. Vertical-cavity surface-emission type laser diode and fabrication process thereof
US7519095B2 (en) 2000-09-21 2009-04-14 Ricoh Company, Ltd Vertical-cavity, surface-emission type laser diode and fabrication process thereof
US7940827B2 (en) 2000-09-21 2011-05-10 Ricoh Company, Ltd. Vertical-cavity, surface-emission type laser diode and fabrication process thereof
JP2008085090A (en) * 2006-09-28 2008-04-10 Fujitsu Ltd Semiconductor laser device and its manufacturing method
WO2021125005A1 (en) * 2019-12-20 2021-06-24 ソニーセミコンダクタソリューションズ株式会社 Light-emitting device and method for manufacturing light-emitting device

Similar Documents

Publication Publication Date Title
US7839913B2 (en) Surface emitting laser, surface emitting laser array, and image forming apparatus including surface emitting laser
US6277696B1 (en) Surface emitting laser using two wafer bonded mirrors
JPH10284806A (en) Vertical resonator laser having photonic band structure
JP2874442B2 (en) Surface input / output photoelectric fusion device
JPH06196681A (en) Light-receiving-and-emitting integrated element
JPH09107153A (en) Short-wave vcsel having active region with no aluminum
JP4497859B2 (en) Surface emitting semiconductor laser device, optical transmission module, and optical transmission system
JP2002064244A (en) Distributed feedback semiconductor laser device
US20090304036A1 (en) Vertical cavity surface emitting laser device and vertical cavity surface emitting laser array
JPH04144183A (en) Surface light emitting type semiconductor laser
JP2002305354A (en) Surface emission-type semiconductor laser element
JP2871288B2 (en) Surface type optical semiconductor device and method of manufacturing the same
JPH08340146A (en) Surface emitting type semiconductor laser
JP3566184B2 (en) Surface emitting laser
JPH05152674A (en) Surface light emitting semiconductor laser with outer modulator
JP2973460B2 (en) Semiconductor light emitting device
KR20080098574A (en) Long wavelength vertical cavity surface emitting laser device and method for fabricating the same
JP2007227861A (en) Semiconductor light-emitting device
JP2002252418A (en) Optical communications system
JP2546150B2 (en) Three-dimensional cavity surface emitting laser
JP3470282B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JPH07321406A (en) Semiconductor laser device
US20030197171A1 (en) Semiconductor light-emitting element
JP3132445B2 (en) Long wavelength band surface emitting semiconductor laser and method of manufacturing the same
JPS60145692A (en) Single axial mode semiconductor laser

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A02 Decision of refusal

Effective date: 20050726

Free format text: JAPANESE INTERMEDIATE CODE: A02