JP2002305354A - Surface emission-type semiconductor laser element - Google Patents

Surface emission-type semiconductor laser element

Info

Publication number
JP2002305354A
JP2002305354A JP2001106884A JP2001106884A JP2002305354A JP 2002305354 A JP2002305354 A JP 2002305354A JP 2001106884 A JP2001106884 A JP 2001106884A JP 2001106884 A JP2001106884 A JP 2001106884A JP 2002305354 A JP2002305354 A JP 2002305354A
Authority
JP
Japan
Prior art keywords
semiconductor laser
type semiconductor
emitting
emitting type
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001106884A
Other languages
Japanese (ja)
Inventor
Norihiro Iwai
則広 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2001106884A priority Critical patent/JP2002305354A/en
Priority to US10/012,254 priority patent/US20020146053A1/en
Priority to DE10214568A priority patent/DE10214568A1/en
Publication of JP2002305354A publication Critical patent/JP2002305354A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • H01S5/426Vertically stacked cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • H01S5/0021Degradation or life time measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers

Abstract

PROBLEM TO BE SOLVED: To provide a surface emission-type semiconductor laser element which is superior in light emission efficiency, has good temperature characteristic, has long life and emits the laser beam of a high wavelength area. SOLUTION: The surface emission-type semiconductor laser element 59 has an Al(Ga)As system first surface emission-type semiconductor laser structure part 52 which is formed on an n-GaAs substrate 51 and has 850 nm of oscillation wavelength, and a second surface emission-type semiconductor laser structure part 53 which is monolithically integrated on the first surface emission-type semiconductor laser structure part 52 and has an absorption area constituted of a GaInNAs material which is excited by the laser beam radiated from the first surface emission-type semiconductor laser structure part and has 1300 nm of oscillation wavelength. The second surface emission-type semiconductor laser structure part has a GaInNAs system quantum well active layer 70 and nondope DBR mirrors 66 and 74.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、長波長帯面発光型
半導体レーザ素子に関し、更に詳細には、発光効率が高
く、温度特性が良好で、しかも寿命の長い長波長帯面発
光型半導体レーザ素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a long-wavelength surface emitting semiconductor laser device, and more particularly, to a long-wavelength surface emitting semiconductor laser having high luminous efficiency, good temperature characteristics and long life. It relates to an element.

【0002】[0002]

【従来の技術】面発光型半導体レーザ素子は、基板に対
して直交方向に光を出射させる半導体レーザ素子であっ
て、従来のファブリペロー共振器型半導体レーザ素子と
は異なり、同じ基板上に2次元的アレイ状に多数の面発
光型半導体レーザ素子を配列することが可能なこともあ
って、近年、データ通信分野で注目されている半導体レ
ーザ素子である。面発光型半導体レーザ素子は、GaA
sやInPといった半導体基板上にAlGaAs/Ga
As等を用いた1対の半導体多層膜反射鏡を形成し、そ
の対の反射鏡の間に発光領域となる活性層を有する。そ
して、電流閉じ込め効果に優れた、Al酸化層による電
流狭窄構造を構成した、低しきい値、高効率で動作する
酸化狭窄型の面発光型半導体レーザ素子が提案されてい
る。
2. Description of the Related Art A surface-emitting type semiconductor laser device emits light in a direction orthogonal to a substrate. Unlike a conventional Fabry-Perot cavity type semiconductor laser device, a surface emitting type semiconductor laser device has two light emitting devices on the same substrate. Since a large number of surface emitting semiconductor laser elements can be arranged in a dimensional array, the semiconductor laser element has recently attracted attention in the field of data communication. The surface-emitting type semiconductor laser device is GaAs.
AlGaAs / Ga on semiconductor substrates such as s and InP
A pair of semiconductor multilayer film reflecting mirrors using As or the like is formed, and an active layer serving as a light emitting region is provided between the pair of reflecting mirrors. In addition, there has been proposed an oxide confined surface emitting semiconductor laser device having a current confinement structure formed of an Al oxide layer, which is excellent in current confinement effect and operates at a low threshold value and with high efficiency.

【0003】長波長帯の面発光型半導体レーザ素子とし
て、GaInNAs系材料を活性層に用いた面発光型半
導体レーザ素子が注目されている。GaInNAs系面
発光型半導体レーザ素子は、GaAs基板上に形成でき
るため、熱伝導率が良好で、反射率の高いAl(Ga)
As系DBRミラーを用いることができるので、1.2
μm〜1.6μmの長波長域の光を発光できるレーザ素
子として有望視されている。
As a long-wavelength surface-emitting semiconductor laser device, a surface-emitting semiconductor laser device using a GaInNAs-based material for an active layer has attracted attention. Since a GaInNAs surface emitting semiconductor laser device can be formed on a GaAs substrate, Al (Ga) having good thermal conductivity and high reflectivity is used.
Since an As-based DBR mirror can be used, 1.2
Promising as a laser device capable of emitting light in a long wavelength range of μm to 1.6 μm.

【0004】図6を参照して、従来のGaInNAs系
長波長帯面発光型半導体レーザ素子の構成を説明する。
図6は従来のGaInNAs系長波長帯面発光型半導体
レーザ素子の構成を示す断面模式図である。まず、従来
のGaInNAs系面発光型半導体レーザ素子10は、
n−GaAs基板12上に、それぞれの層の厚さがλ/
4n(λは発振波長、nは屈折率)のn−Al0.9Ga
As/n−GaAsの35ペアからなる下部DBRミラ
ー14、下部クラッド層16、量子井戸活性層18、上
部クラッド層20、及び、それぞれの層の厚さがλ/4
n(λは発振波長、nは屈折率)のp−Al0.9GaA
s/p−GaAsの25ペアからなる上部DBRミラー
22の積層構造を備えている。
Referring to FIG. 6, the configuration of a conventional GaInNAs-based long wavelength band surface emitting semiconductor laser device will be described.
FIG. 6 is a schematic sectional view showing the configuration of a conventional GaInNAs-based long wavelength band surface emitting semiconductor laser device. First, a conventional GaInNAs-based surface emitting semiconductor laser device 10 is:
On the n-GaAs substrate 12, the thickness of each layer is λ /
4n (λ is oscillation wavelength, n is refractive index) n-Al 0.9 Ga
The lower DBR mirror 14, the lower cladding layer 16, the quantum well active layer 18, the upper cladding layer 20, and the respective layers having a thickness of λ / 4 composed of 35 pairs of As / n-GaAs.
n (λ is oscillation wavelength, n is refractive index) p-Al 0.9 GaAs
It has a stacked structure of an upper DBR mirror 22 composed of 25 pairs of s / p-GaAs.

【0005】上部DBRミラー22では、活性層18に
近い側の一層が、p−Al0.9GaAs層に代えて、p
−AlAs層24で形成され、かつ電流注入領域以外の
領域のAlAs層24のAlが選択的に酸化され、Al
酸化層25からなる電流狭窄層を構成している。また、
量子井戸活性層18は、GaInNAs/GaAsから
なり、井戸層は、井戸膜厚が8nmの圧縮歪2.5%の
Ga0.63In0.370.01As0.99で形成され、障壁層は
膜厚10nmのGaAs層で形成されている。
[0005] In the upper DBR mirror 22, one layer closer to the active layer 18 is made of p-Al 0.9 GaAs instead of p-Al 0.9 GaAs.
-Al of the AlAs layer 24 formed of the AlAs layer 24 and in a region other than the current injection region is selectively oxidized,
A current confinement layer composed of the oxide layer 25 is formed. Also,
The quantum well active layer 18 is made of GaInNAs / GaAs. The well layer is formed of Ga 0.63 In 0.37 N 0.01 As 0.99 having a well thickness of 8 nm and a compressive strain of 2.5%, and the barrier layer is formed of GaAs having a thickness of 10 nm. It is formed of layers.

【0006】積層構造のうち、上部DBRミラー22
は、フォトリソグラフィー処理及びエッチング加工によ
り、AlAs層24よりも下方まで、例えば直径30μ
mの円形のメサポストに加工されている。メサポストに
加工した積層構造を水蒸気雰囲気中にて、約400℃の
温度で酸化処理を行い、メサポストの外側からAlAs
層24のAlを選択的に酸化させることにより、Al酸
化層25からなる電流狭窄層が形成されている。例えば
Al酸化層25の幅が10μmの帯状のリングとした場
合、中央のAlAs層24の面積、即ち電流注入される
面積(アパーチャ)は、約80μm2(直径10μm)
の円形になる。
In the laminated structure, the upper DBR mirror 22
Is formed below the AlAs layer 24 by photolithography and etching, for example, with a diameter of 30 μm.
It is processed into a circular mesa post of m. The laminated structure processed into the mesa post is oxidized at a temperature of about 400 ° C. in a steam atmosphere, and AlAs is applied from outside the mesa post.
By selectively oxidizing Al in the layer 24, a current confinement layer including the Al oxide layer 25 is formed. For example, if the width of the Al oxide layer 25 is a belt-like ring having a width of 10 μm, the area of the central AlAs layer 24, that is, the area (aperture) where current is injected, is about 80 μm 2 (diameter 10 μm).
Becomes a circle.

【0007】メサポストは、周囲が例えばポリイミド2
6により埋め込まれている。そして、メサポスト上部に
外周5μm〜10μm程度の幅で接触するリング状電極
がp側電極28として設けられている。また、基板裏面
を適宜研磨して基板厚さを例えば200μm厚に調整し
た後、n−GaAs基板12の裏面にn側電極30が形
成されている。また、ポリイミド26上には、外部端子
とワイヤーでボンディングするための電極パッド32
が、リング電極28と接触するようにリング状に形成さ
れている。
The periphery of the mesa post is, for example, polyimide 2
6 embedded. A ring-shaped electrode is provided as a p-side electrode 28 in contact with the upper portion of the mesa post at a width of about 5 μm to 10 μm in outer circumference. The n-side electrode 30 is formed on the back surface of the n-GaAs substrate 12 after the back surface of the substrate is appropriately polished to adjust the substrate thickness to, for example, 200 μm. An electrode pad 32 for bonding to an external terminal with a wire is provided on the polyimide 26.
Are formed in a ring shape so as to be in contact with the ring electrode 28.

【0008】上述のように、GaInNAs系材料は、
GaAs基板上に形成可能なため、既存の850nm帯
面発光型半導体レーザ素子の作製技術を用いて、長波長
帯の面発光型半導体レーザ素子を実現することができる
重宝な材料である。
As described above, GaInNAs-based materials are:
Since it can be formed on a GaAs substrate, it is a useful material that can realize a long-wavelength surface-emitting semiconductor laser device using existing 850-nm band surface-emitting semiconductor laser device manufacturing technology.

【0009】[0009]

【発明が解決しようとする課題】ところで、GaInN
As系材料は、GaInNAs中のIn組成(In含有
量)を増やすことによって長波長化することができるも
のの、In組成を増やすと、GaAs基板に対して歪量
が大きくなるために、In組成は30〜40%程度が限
界であって、その際の発振波長は1.1〜1.25μm
位である。一方、GaInNAs中のN組成を増やすこ
とによっても、長波長化が可能である。すなわち、波長
を上述の1.2μmよりも長くするには、N組成を調整
して、波長を制御する必要がある。通常、Nの組成が
0.5%〜1%の範囲で、発光波長1.3μmの面発光
型半導体レーザ素子を実現させることができる。
By the way, GaInN
The As-based material can have a longer wavelength by increasing the In composition (In content) in GaInNAs. However, increasing the In composition increases the amount of strain with respect to the GaAs substrate. The limit is about 30 to 40%, and the oscillation wavelength at that time is 1.1 to 1.25 μm
Rank. On the other hand, it is possible to increase the wavelength by increasing the N composition in GaInNAs. That is, in order to make the wavelength longer than 1.2 μm, it is necessary to control the wavelength by adjusting the N composition. Usually, when the composition of N is in the range of 0.5% to 1%, a surface-emitting type semiconductor laser device having an emission wavelength of 1.3 μm can be realized.

【0010】しかし、N組成を増大すると、フォトルミ
ネッセンス(PL)のピーク強度が低下する。例えばN
組成0.5%の場合でも、Nを含まない場合に比べて、
PL強度が1/100程度に劣化する。これはNを導入
することにより、結晶性が劣化するためであると考えら
れる。1.55μmの発光波長の面発光型半導体レーザ
素子を実現するためには、Nの組成を5%程度まで増や
すことが必要であるものの、この場合には、更に結晶性
の劣化が顕著となり、PLピーク強度が低下する。つま
り、GaInNAs系材料は、GaAs基板上に長波長
帯面発光型半導体レーザ素子を実現できる優れた材料で
あるものの、1.3μm以上の長波長域の面発光型半導
体レーザ素子を実現するには、0.5%以上にN組成を
大きくする必要がある。しかし、これでは、結晶性が劣
化して、PLピーク強度が低下し、素子の信頼性に影響
を与える。1.55μm程度まで発光波長を長くした場
合には、N組成を5%程度に増やすことが必要であるこ
とから、特に、影響が大きい。
However, when the N composition is increased, the peak intensity of photoluminescence (PL) decreases. For example, N
Even in the case of the composition of 0.5%, compared with the case not containing N,
The PL intensity is reduced to about 1/100. This is considered to be because the crystallinity is deteriorated by introducing N. In order to realize a surface emitting semiconductor laser device having an emission wavelength of 1.55 μm, it is necessary to increase the composition of N to about 5%, but in this case, the crystallinity is further deteriorated, and The PL peak intensity decreases. In other words, although the GaInNAs-based material is an excellent material capable of realizing a long-wavelength band surface emitting semiconductor laser device on a GaAs substrate, it is necessary to realize a long-wavelength surface emitting semiconductor laser device of 1.3 μm or more. , 0.5% or more. However, in this case, the crystallinity is deteriorated, the PL peak intensity is reduced, and the reliability of the device is affected. When the emission wavelength is increased to about 1.55 μm, the N composition needs to be increased to about 5%, so that the influence is particularly large.

【0011】また、Nの導入による結晶性の劣化に起因
して、量子効率の低下が生じるという問題もある。例え
ば、Al0.9GaAs/GaAsDBRミラーを用いて
いる面発光型半導体レーザ素子では、Al0.9GaAs
層とGaAs層の界面にヘテロスパイクが存在するた
め、それによる動作電圧の上昇を防ぐために、ある程度
の量の不純物、例えば1〜5×1018cm-3程度の不純
物をドーピングしている。この不純物によるフリーキャ
リア吸収が発生するために、量子効率の低下を招き、光
出力が大きく低下する。
There is also a problem that the quantum efficiency is reduced due to the deterioration of crystallinity due to the introduction of N. For example, in a surface emitting semiconductor laser device using an Al 0.9 GaAs / GaAs DBR mirror, an Al 0.9 GaAs
Since a heterospike exists at the interface between the layer and the GaAs layer, a certain amount of impurities, for example, about 1 to 5 × 10 18 cm −3 , is doped in order to prevent an increase in operating voltage due to the heterospike. Since the free carriers are absorbed by the impurities, the quantum efficiency is reduced, and the light output is greatly reduced.

【0012】以上のように、GaInNAs系面発光型
半導体レーザ素子は、GaAs基板上に形成できるた
め、熱伝導性が良好で、反射率の高い、Al(Ga)A
s系DBRミラーを用いることができるので、1.2μ
m〜1.6μmの長波長域の光を発光できる面発光型半
導体レーザ素子として注目されているものの、従来の構
成では、高効率で、温度特性の良好な、かつ信頼性の高
い、長波長帯面発光型半導体レーザ素子を実現すること
が難しかった。そのために、従来のGaInNAs系面
発光型半導体レーザ素子より、高効率で、しかも温度特
性が良く、長寿命の面発光型半導体レーザ素子が要望さ
れている。
As described above, since a GaInNAs surface emitting semiconductor laser device can be formed on a GaAs substrate, Al (Ga) A having good thermal conductivity and high reflectivity can be obtained.
Since an s-system DBR mirror can be used, 1.2 μm
Although attention has been paid to a surface-emitting type semiconductor laser device capable of emitting light in a long wavelength range of m to 1.6 μm, the conventional configuration has high efficiency, good temperature characteristics, and high reliability. It has been difficult to realize a band-emission semiconductor laser device. Therefore, there is a demand for a surface-emitting semiconductor laser device having higher efficiency, better temperature characteristics, and a longer life than conventional GaInNAs-based surface-emitting semiconductor laser devices.

【0013】ところで、長波長帯の面発光型半導体レー
ザ素子を実現する方法として、別の方法も提案されてい
る。例えば、特表平10−501927号公報は、短波
長VCSEL(Vertical Cavity Surface-Emitting Sem
iconductor Laser)と短波長VCSELにより光ポンピ
ングされる長波長VCSELとを有する長波長帯光学デ
バイスを開示している。図7を参照して、開示された長
波長帯光学デバイスの構成を説明する。光学デバイス4
0は、図7に示すように、電気エネルギーでポンピング
される980nmの短波長VCSEL41と、短波長V
CSEL41で発振された光でポンピングされる、98
0nmより長波長の長波長VCSEL42とを備えてい
る。長波長VCSEL42は、GaAs基板43上に、
ドーピングされていない下部GaAs/AlAsミラー
44、発光構造45、及び上部の誘電体ミラー46を有
し、長波長VCSEL42のGaAs基板43が光学接
着剤47や金属結合によって、または、ウエハ接着技術
によって短波長VCSEL41のGaAs基板48に接
合されている。短波長VCSEL41も長波長VCSE
L42と同じ構造を備えている。
By the way, another method has been proposed as a method for realizing a surface emitting semiconductor laser device in a long wavelength band. For example, Japanese Patent Publication No. Hei 10-501927 discloses a short wavelength VCSEL (Vertical Cavity Surface-Emitting Sem).
discloses a long wavelength optical device having a long wavelength VCSEL optically pumped by a short wavelength VCSEL. The configuration of the disclosed long wavelength band optical device will be described with reference to FIG. Optical device 4
0 is a short-wavelength VCSEL 41 of 980 nm pumped by electric energy, as shown in FIG.
98 pumped by the light oscillated by the CSEL 41
A long wavelength VCSEL 42 having a wavelength longer than 0 nm. The long wavelength VCSEL 42 is provided on a GaAs substrate 43,
It has an undoped lower GaAs / AlAs mirror 44, a light emitting structure 45, and an upper dielectric mirror 46, and the GaAs substrate 43 of the long wavelength VCSEL 42 is shorted by an optical adhesive 47 or a metal bond or by a wafer bonding technique. The wavelength VCSEL 41 is bonded to the GaAs substrate 48. Short wavelength VCSEL 41 is also long wavelength VCSE
It has the same structure as L42.

【0014】しかし、上述した光学デバイス40は、長
波長VCSEL42と短波長VCSEL41とを光学的
に一体化するために、ウエハ接着技術等を必要としてい
るので、生産性が極めて低いという問題を有し、前述の
課題を解決する長波長帯面発光型半導体レーザ素子の量
産化に適していない。
However, the above-described optical device 40 requires a wafer bonding technique or the like to optically integrate the long-wavelength VCSEL 42 and the short-wavelength VCSEL 41, and thus has a problem of extremely low productivity. However, it is not suitable for mass production of a long wavelength surface emitting semiconductor laser device that solves the above-mentioned problems.

【0015】そこで、本発明の目的は、発光効率が高
く、温度特性が良好で、しかも長寿命な、GaInNA
s系面発光型半導体レーザ素子を提供することにある。
It is an object of the present invention to provide a GaInNA having high luminous efficiency, good temperature characteristics, and a long life.
An object of the present invention is to provide an s-based surface emitting semiconductor laser device.

【0016】[0016]

【課題を解決するための手段】本発明者は、高効率で、
温度特性の良好な、かつ長寿命な長波長帯面発光型半導
体レーザ素子を実現するためには、前述した種々の問題
から、GaInNAs系材料を吸収領域に用い、ウエハ
接着技術を必要としないモノリシックに集積された2段
VCSELからなる光学デバイスを着想し、実験の末
に、本発明を発明するに到った。つまり、それは、Ga
As基板上に形成され、Al(Ga)As系ミラーとG
aAs/AlGaAs量子井戸活性層とを有し、電気エ
ネルギーでポンピングされ、発振波長850nmの光を
発光する第1の面発光型半導体レーザ構造と、GaIn
NAs量子井戸活性層とアンドープAl(Ga)As系
ミラーとを有し、第1の面発光型半導体レーザ構造と光
結合し、1300nmの発振波長で発振する第2の面発
光型半導体レーザ素子とをモノリシックに集積させた光
学デバイスである。
SUMMARY OF THE INVENTION The present inventor has proposed a high-efficiency,
In order to realize a long-wavelength surface-emitting type semiconductor laser device with good temperature characteristics and long life, it is necessary to use a GaInNAs-based material for the absorption region and eliminate the need for a wafer bonding technology because of the various problems described above. With the idea of an optical device consisting of a two-stage VCSEL integrated in the above, the present invention was invented after experiments. That is, it is Ga
An Al (Ga) As-based mirror formed on an As substrate and
a first surface emitting semiconductor laser structure having an aAs / AlGaAs quantum well active layer, pumped by electric energy, and emitting light having an oscillation wavelength of 850 nm;
A second surface emitting semiconductor laser device having an NAs quantum well active layer and an undoped Al (Ga) As-based mirror, optically coupled to the first surface emitting semiconductor laser structure, and oscillating at an oscillation wavelength of 1300 nm; Is a monolithically integrated optical device.

【0017】上記目的を達成するために、本発明に係る
面発光型半導体レーザ素子は、GaAs基板上に形成さ
れた第1の面発光型半導体レーザ構造部と、第1の面発
光型半導体レーザ構造部上にモノリシックに集積され、
第1の面発光型半導体レーザ構造部の発振波長よりもバ
ンドギャップ波長が長いGaInNAs系材料からなる
吸収領域を有するGaInNAs系第2の面発光型半導
体レーザ構造部とを備え、第1の面発光型半導体レーザ
構造部から出射されたレーザ光により第2の面発光型半
導体レーザ構造部を光励起し、第2の面発光型半導体レ
ーザのレーザ光を出力することを特徴としている。
In order to achieve the above object, a surface-emitting type semiconductor laser device according to the present invention comprises a first surface-emitting type semiconductor laser structure formed on a GaAs substrate and a first surface-emitting type semiconductor laser. Monolithically integrated on the structure,
A first surface-emitting type semiconductor laser structure having a GaInNAs-based second surface-emitting type semiconductor laser structure having an absorption region made of a GaInNAs-based material having a bandgap wavelength longer than the oscillation wavelength of the first surface-emitting type semiconductor laser; The second surface-emitting type semiconductor laser structure is optically excited by the laser light emitted from the semiconductor laser structure, and the laser light of the second surface-emitting type semiconductor laser is output.

【0018】本発明で吸収領域とは、第1の面発光型半
導体レーザ構造部で発振されたレーザ光を吸収する化合
物半導体層である。活性層は、バルクでも、単一量子井
戸構造でも、多重量子井戸構造でも良い。また、量子井
戸構造の場合、その両側に光閉じ込め層を設けても良
い。また、第2の面発光型半導体レーザ構造部の活性層
はGaInNAs系活性層で形成されているものの、G
aInNAs活性層に直接電流を流さないので、DBR
ミラー等で発生する内部発熱が抑制される。よって、活
性層の温度上昇を小さく抑えることができる。すなわ
ち、前記電流と熱の存在を無くすことにより転位等の結
晶欠陥の発生、増殖が抑制され、結果として寿命が長く
なる。また、第2の面発光型半導体レーザ構造部の量子
井戸活性層がGaInNAs系で形成されているので、
温度特性が良好である。更には、第2の面発光型半導体
レーザ構造部がGaInNAs系であるから、第1の面
発光型半導体レーザ構造に続いてGaAs基板上に連続
的にエピタキシャル成長させることができる。つまり、
第2の面発光型半導体レーザ構造部は第1の面発光型半
導体レーザ構造部上にモノリシックに集積されているの
で、従来の接着法等を用いた場合に比べて、生産性が著
しく高い。
In the present invention, the absorption region is a compound semiconductor layer that absorbs laser light oscillated by the first surface emitting semiconductor laser structure. The active layer may have a bulk, a single quantum well structure, or a multiple quantum well structure. In the case of a quantum well structure, light confinement layers may be provided on both sides thereof. The active layer of the second surface emitting semiconductor laser structure is formed of a GaInNAs-based active layer.
Since no current is directly passed through the aInNAs active layer, the DBR
Internal heat generated by a mirror or the like is suppressed. Therefore, the temperature rise of the active layer can be suppressed small. That is, by eliminating the presence of the current and heat, generation and growth of crystal defects such as dislocations are suppressed, and as a result, the life is prolonged. Also, since the quantum well active layer of the second surface emitting semiconductor laser structure is formed of GaInNAs,
Good temperature characteristics. Further, since the second surface-emitting type semiconductor laser structure is made of GaInNAs, the epitaxial growth can be continuously performed on the GaAs substrate following the first surface-emitting type semiconductor laser structure. That is,
Since the second surface-emitting type semiconductor laser structure is monolithically integrated on the first surface-emitting type semiconductor laser structure, the productivity is remarkably higher than when a conventional bonding method or the like is used.

【0019】本発明の好適な実施態様では、第2の面発
光型半導体レーザ構造部の吸収領域が、Ga1-XInX
yAs1-y(0≦X≦0.45、0≦y≦0.1)からな
るか、又はGa1-XInXySbzAs1-y-z(0≦X≦
0.45、0≦y≦0.1、0≦z≦0.05)からな
る。Xが0.45を超えると、歪量が増加し、良好な結
晶の形成が困難になり、yが0.1を超えると、結晶欠
陥の増大により、PL発光強度が著しく低下する。ま
た、zが0.05を超えると、サーファクタントとして
の効果がなくなる。吸収領域がSbを含むことにより、
結晶成長時に、Sbがサーファクタントとして働くた
め、三次元成長が抑制され、良好な結晶が得られるとい
う効果がある。
In a preferred embodiment of the present invention, the absorption area of the second surface-emitting type semiconductor laser structure is Ga 1-x In x N
y As 1-y (0 ≦ X ≦ 0.45, 0 ≦ y ≦ 0.1) or Ga 1-x In x N y Sb z As 1-yz (0 ≦ X ≦
0.45, 0 ≦ y ≦ 0.1, 0 ≦ z ≦ 0.05). When X exceeds 0.45, the amount of strain increases, and it becomes difficult to form a good crystal. When y exceeds 0.1, PL emission intensity remarkably decreases due to an increase in crystal defects. When z exceeds 0.05, the effect as a surfactant is lost. When the absorption region contains Sb,
Since Sb acts as a surfactant during crystal growth, there is an effect that three-dimensional growth is suppressed and a good crystal is obtained.

【0020】本発明の更に好適な実施態様では、第2の
面発光型半導体レーザ構造部の吸収領域の少なくとも片
方の側のDBRミラーが、アンドープ半導体多層膜から
なるDBRミラーである。第2の面発光型半導体レーザ
構造部に、直接、電流を流さないので、DBRミラーは
抵抗を下げる必要はなく、アンドープとすることができ
る。これにより、DBRミラー内で不純物によるフリー
キャリア吸収を抑制できるので、結果的に発光効率は向
上する。
In a further preferred embodiment of the present invention, the DBR mirror on at least one side of the absorption region of the second surface-emitting type semiconductor laser structure is a DBR mirror made of an undoped semiconductor multilayer film. Since no current flows directly through the second surface-emitting type semiconductor laser structure, the DBR mirror does not need to have a reduced resistance and can be undoped. Thereby, free carrier absorption by impurities in the DBR mirror can be suppressed, and as a result, luminous efficiency is improved.

【0021】[0021]

【発明の実施の形態】以下に、添付図面を参照し、実施
形態例を挙げて本発明の実施の形態を具体的かつ詳細に
説明する。尚、以下の実施形態例で示した膜種、膜厚、
成膜方法、その他寸法等は、本発明の理解を容易にする
ための例示であって、本発明はこれら例示に限定される
ものではない。実施形態例 本実施形態例は、本発明に係る面発光型半導体レーザ素
子の実施形態の1例であって、図1は本実施形態例の面
発光型半導体レーザ素子の構成を示す模式的断面図であ
る。本実施形態例の面発光型半導体レーザ素子50は、
n−GaAs基板51上に形成された発振波長850n
mのGaAs/AlGaAs系第1の面発光型半導体レ
ーザ構造部52と、第1の面発光型半導体レーザ構造部
52上にモノリシックに集積され、第1の面発光型半導
体レーザ構造部から出射されるレーザ光で光励起される
発振波長1300nmのGaInNAs系第2の面発光
型半導体レーザ構造部53とを備えている。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, the film type, film thickness,
The film forming method, other dimensions, and the like are examples for facilitating the understanding of the present invention, and the present invention is not limited to these examples. Embodiment Example This embodiment is an example of an embodiment of a surface-emitting type semiconductor laser device according to the present invention, and FIG. 1 is a schematic cross-section showing a configuration of the surface-emitting type semiconductor laser device of this embodiment. FIG. The surface-emitting type semiconductor laser device 50 of this embodiment is
Oscillation wavelength 850n formed on n-GaAs substrate 51
m GaAs / AlGaAs-based first surface-emitting type semiconductor laser structure 52 and monolithically integrated on the first surface-emitting type semiconductor laser structure 52 and emitted from the first surface-emitting type semiconductor laser structure. And a GaInNAs-based second surface-emitting type semiconductor laser structure 53 having an oscillation wavelength of 1300 nm which is optically excited by a laser beam.

【0022】第1の面発光型半導体レーザ構造部52
は、n−GaAs基板51上に、それぞれの層の厚さが
λ/4n(λは発振波長、nは構成層の屈折率、以下同
じ)のn−Al0.9GaAs/n−Al0.2 GaAsの
35ペアからなる下部DBRミラー54、下部クラッド
層56、量子井戸活性層58、上部クラッド層60、及
び、それぞれの層の厚さがλ/4n(λは発振波長、n
は屈折率)のp−Al0. 9GaAs/p−Al0.2 Ga
Asの25ペアからなる上部DBRミラー62の積層構
造を備えている。
First surface-emitting type semiconductor laser structure 52
Means that the thickness of each layer on the n-GaAs substrate 51 is
λ / 4n (λ is the oscillation wavelength, n is the refractive index of the constituent layer,
E) n-Al0.9GaAs / n-Al0.TwoGaAs
Lower DBR mirror 54 composed of 35 pairs, lower clad
Layer 56, quantum well active layer 58, upper cladding layer 60,
And the thickness of each layer is λ / 4n (λ is the oscillation wavelength, n
Is the refractive index) p-Al0. 9GaAs / p-Al0.TwoGa
Stack structure of upper DBR mirror 62 composed of 25 pairs of As
It has a structure.

【0023】下部DBRミラー54及び上部DBRミラ
ー62は、波長850nm帯の光の反射鏡として機能す
る厚さを有し、また、活性層58は、発振波長850n
mのGaAs/Al0.2GaAs量子井戸として形成さ
れている。更に、上部DBRミラー62では、活性層5
8に近い側の一層が、n−Al0. 9GaAs層に代え
て、AlAs層64で形成され、かつ電流注入領域以外
の領域のAlAs層64のAlが選択的に酸化され、A
l酸化層65からなる電流狭窄層を構成している。ま
た、積層構造のうち、上部DBRミラー62は、Al酸
化層65より下方の一部下部層を残して、例えば直径4
0μmの円形のエアポスト状の第1メサポストにエッチ
ング加工されている。尚、電流注入領域は、例えばAl
酸化層65の幅が15μmの帯状のリングとした場合、
中央のAlAs層64の面積、即ち電流注入される面積
(アパーチャ)は、約80μm2(直径10μm)の円
形になる。
Lower DBR mirror 54 and upper DBR mirror
-62 functions as a reflector for light in the 850 nm wavelength band.
The active layer 58 has an oscillation wavelength of 850 nm.
m GaAs / Al0.2Formed as GaAs quantum well
Have been. Further, in the upper DBR mirror 62, the active layer 5
8 is n-Al0. 9Instead of GaAs layer
Formed by the AlAs layer 64 and other than the current injection region
Is selectively oxidized in the AlAs layer 64 in the region of
A current confinement layer composed of the l-oxide layer 65 is formed. Ma
The upper DBR mirror 62 of the stacked structure
Leaving a part of the lower layer below the activation layer 65, for example,
Etch the first mesa post in the form of a 0 μm circular air post
Has been processed. The current injection region is, for example, Al
When the width of the oxide layer 65 is a belt-like ring having a width of 15 μm,
The area of the central AlAs layer 64, that is, the area into which current is injected.
(Aperture) is about 80 μmTwo(Diameter of 10μm)
It takes shape.

【0024】第2の面発光型半導体レーザ構造部53
は、第1の面発光型半導体レーザ構造部52の上部DB
Rミラー62上に、それぞれの層の厚さがλ/4nのノ
ンドープのAl0.9GaAs/Al0.2GaAsの30ペ
アからなる第2下部DBRミラー66、下部クラッド層
68、GaInNAs系量子井戸活性層70、上部クラ
ッド層72、及び、それぞれの層の厚さがλ/4nのノ
ンドープのAl0.9GaAs/Al0.2GaAsの25ペ
アからなる第2上部DBRミラー74からなる積層構造
を備えている。GaInNAs系量子井戸活性層70
は、GaInNAs/GaAsからなり、井戸層は、井
戸数が2で膜厚が8nmの圧縮歪2.5%のGa0.63
0.37 0.01As0.99で形成され、GaAs障壁層は膜
厚が10nmのGaAs層で形成されていて、1.3μ
mの発振波長で発振する。また、第2下部及び上部DB
Rミラー66、74は、波長1300nm帯の光の反射
鏡として機能する厚さを有する。
Second surface-emitting type semiconductor laser structure 53
Is the upper DB of the first surface-emitting type semiconductor laser structure 52
On the R mirror 62, the thickness of each layer is λ / 4n.
Doped Al0.9GaAs / Al0.230 pairs of GaAs
Second lower DBR mirror 66 composed of a
68, a GaInNAs-based quantum well active layer 70,
Head layer 72 and a node having a thickness of λ / 4n
Doped Al0.9GaAs / Al0.225 pairs of GaAs
Laminated structure composed of a second upper DBR mirror 74 composed of
It has. GaInNAs-based quantum well active layer 70
Is composed of GaInNAs / GaAs, and the well layer is
Ga with 2 units and a compressive strain of 2.5% with a thickness of 8 nm0.63I
n0.37N 0.01As0.99And the GaAs barrier layer is a film
It is formed of a GaAs layer having a thickness of 10 nm and has a thickness of 1.3 μm.
It oscillates at an oscillation wavelength of m. Also, the second lower and upper DB
The R mirrors 66 and 74 reflect light in the 1300 nm wavelength band.
It has a thickness that functions as a mirror.

【0025】第2下部DBRミラー66、下部クラッド
層68、GaInNAs系量子井戸活性層70、上部ク
ラッド層72、及び第2上部DBRミラー74からなる
積層構造は、第1メサポストより直径の小さい、例えば
直径30μmの円形のエアポスト状の第2メサポストに
エッチング加工されている。第1メサポストの上面の外
周には、5μm〜10μm程度の幅のリング状金属膜か
らなるp側電極76が設けられている。また、積層構造
の外側にはp側電極76を除きSiNX 保護膜78が形
成されている。また、n−GaAs基板51は、例えば
200μm厚に研磨され、基板裏面には、n側電極80
が形成されている。
The laminated structure including the second lower DBR mirror 66, the lower cladding layer 68, the GaInNAs-based quantum well active layer 70, the upper cladding layer 72, and the second upper DBR mirror 74 has a smaller diameter than the first mesa post, for example. The second mesa post in the form of a circular air post having a diameter of 30 μm is etched. On the outer periphery of the upper surface of the first mesa post, a p-side electrode 76 made of a ring-shaped metal film having a width of about 5 μm to 10 μm is provided. An SiN x protective film 78 is formed outside the laminated structure except for the p-side electrode 76. The n-GaAs substrate 51 is polished to a thickness of, for example, 200 μm, and an n-side electrode 80
Are formed.

【0026】本実施形態例の面発光型半導体レーザ素子
50は、第1の面発光型半導体レーザ構造部52から出
射される波長850nmのレーザ光によって、GaIn
NAs量子井戸からなる波長1.3μm帯活性層70を
有する第2の面発光型半導体レーザ構造部53を光励起
して、波長1.3μmのレーザ光を発光することができ
る。面発光型半導体レーザ素子50では、GaInNA
s量子井戸活性層70に直接電流を注入しないので、素
子寿命は第1の面発光型半導体レーザ構造部52によっ
て決まる。よって、従来のGaInNAs系面発光型半
導体レーザ素子より素子の寿命が長くなる。また、Ga
InNAs量子井戸活性層に直接電流を注入しないの
で、GaInNAs量子井戸活性層70の両側に形成し
た波長1.3μm用のDBRミラー66、74をノンド
ープとすることができる。よって、不純物によるフリー
キャリア吸収を低減できるので、光出力(効率)の改善
が期待できる。
The surface-emitting type semiconductor laser device 50 of this embodiment uses GaIn laser light emitted from the first surface-emitting type semiconductor laser structure 52 at a wavelength of 850 nm.
The second surface-emitting type semiconductor laser structure 53 having the 1.3 μm wavelength active layer 70 made of a NAs quantum well can be optically excited to emit 1.3 μm wavelength laser light. In the surface-emitting type semiconductor laser device 50, GaInNA
Since no current is directly injected into the s quantum well active layer 70, the device life is determined by the first surface emitting semiconductor laser structure 52. Therefore, the life of the device is longer than that of the conventional GaInNAs surface emitting semiconductor laser device. Also, Ga
Since current is not directly injected into the InNAs quantum well active layer, the 1.3 μm wavelength DBR mirrors 66 and 74 formed on both sides of the GaInNAs quantum well active layer 70 can be non-doped. Therefore, since the free carrier absorption due to the impurities can be reduced, an improvement in the optical output (efficiency) can be expected.

【0027】以下に、図2及び図3を参照して、本実施
形態例の面発光型半導体レーザ素子の作製方法を説明す
る。図2(a)及び(b)と図3(c)及び(d)は、
それぞれ、本実施形態例の面発光型半導体レーザ素子を
作製する際の工程毎の断面図である。まず、図2(a)
に示すように、n−GaAs基板51上に、例えばMO
CVD法によって、順次、n−Al0.9GaAs/n−
Al0.2GaAsの35ペアからなる下部DBRミラー
54、下部クラッド層56、量子井戸活性層58、上部
クラッド層60、p−Al0.9GaAs/p−Al0.2
aAsの25ペアからなる上部DBRミラー62を形成
して、第1の積層構造を作製する。ここで、上部DBR
ミラー62の形成に際しては、後の工程で電流狭窄層と
なるAl酸化層を形成するために、活性層に近い側の層
をAlGaAs層に代えて、AlAs層64を成膜す
る。
Hereinafter, a method for fabricating the surface emitting semiconductor laser device of this embodiment will be described with reference to FIGS. FIGS. 2 (a) and (b) and FIGS. 3 (c) and (d)
FIGS. 4A to 4C are cross-sectional views for respective steps in manufacturing the surface-emitting type semiconductor laser device of the embodiment. First, FIG.
As shown in FIG.
N-Al 0.9 GaAs / n-
Al 0.2 lower DBR mirror 54 of GaAs of 35 pairs, the lower cladding layer 56, a quantum well active layer 58, upper cladding layer 60, p-Al 0.9 GaAs / p-Al 0.2 G
An upper DBR mirror 62 composed of 25 pairs of aAs is formed to form a first stacked structure. Where the upper DBR
When the mirror 62 is formed, an AlAs layer 64 is formed instead of the AlGaAs layer on the side closer to the active layer in order to form an Al oxide layer which will be a current confinement layer in a later step.

【0028】更に、図2(b)に示すように、MOCV
D法により、上部DBRミラー62上に連続して、順
次、ノンドープのAl0.9GaAs/Al0.2GaAsの
30ペアからなる第2下部DBRミラー66、下部クラ
ッド層68、GaInNAs系量子井戸活性層70、上
部クラッド層72、及び、ノンドープのAl0.9GaA
s/Al0.2GaAsの25ペアからなる第2上部DB
Rミラー74を形成して、第2の積層構造を作製する。
Further, as shown in FIG.
According to the D method, a second lower DBR mirror 66 composed of 30 pairs of non-doped Al 0.9 GaAs / Al 0.2 GaAs, a lower cladding layer 68, a GaInNAs-based quantum well active layer 70 are successively formed on the upper DBR mirror 62 in succession. Upper cladding layer 72 and undoped Al 0.9 GaAs
Second upper DB consisting of 25 pairs of s / Al 0.2 GaAs
An R mirror 74 is formed to produce a second laminated structure.

【0029】次に、図3(c)に示すように、通常のフ
ォトリソグラフィー処理、次いでドライエッチング技術
又はケミカルエッチング技術により、第1上部DBRミ
ラーの下層部を残した第1の積層構造の第1上部DBR
ミラー62、及び第2の積層構造をエッチングして、例
えば直径40μmの円形の第1メサポストを形成する。
次いで、図3(d)に示すように、再度、通常のフォト
リソグラフィー処理、次いでドライエッチング技術又は
ケミカルエッチング技術により、第2の積層構造をエッ
チングして、例えば直径30μmの円形の第2メサポス
トを形成する。
Next, as shown in FIG. 3 (c), the first layered structure of the first stacked structure leaving the lower layer portion of the first upper DBR mirror is removed by a normal photolithography process, followed by a dry etching technique or a chemical etching technique. 1 upper DBR
The mirror 62 and the second stacked structure are etched to form, for example, a circular first mesa post having a diameter of 40 μm.
Next, as shown in FIG. 3D, the second laminated structure is etched again by a normal photolithography process and then by a dry etching technique or a chemical etching technique to form a circular second mesa post having a diameter of, for example, 30 μm. Form.

【0030】次に、水蒸気雰囲気中にて、約400℃の
温度で酸化処理を行い、AlAs層64をメサポストの
外側から選択的に酸化させ、Al酸化層65に転化す
る。Al酸化に際しては、例えばAl酸化層の幅が15
μmの帯状のリング形状とした場合、中心のAlAs層
64の面積、即ち電流注入される面積(アパーチャ)は
約80μm2(直径10μm)の円形になるように、酸
化時間を制御する。
Next, an oxidation treatment is performed in a steam atmosphere at a temperature of about 400 ° C. to selectively oxidize the AlAs layer 64 from outside the mesa post, thereby converting the AlAs layer 64 to an Al oxide layer 65. At the time of Al oxidation, for example, when the width of the Al oxide layer is 15
In the case of a belt-like ring shape of μm, the oxidation time is controlled so that the area of the center AlAs layer 64, that is, the area (aperture) where current is injected is a circle of about 80 μm 2 (diameter of 10 μm).

【0031】次に、リング状のp側電極76の部分を除
き積層構造の面全体にSiNX 保護膜78を成膜し、続
いて第1メサポスト上部に外周5μm程度の幅で接触す
るリング状のp側電極76を形成する。また、n−Ga
As基板51の裏面を研磨して基板厚さを例えば200
μm厚に調整した後、裏面にn側電極80を形成する。
Next, a SiN x protective film 78 is formed on the entire surface of the laminated structure except for the ring-shaped p-side electrode 76, and then a ring-shaped contact is formed on the upper part of the first mesa post with a width of about 5 μm in outer circumference. Is formed. Also, n-Ga
The back surface of the As substrate 51 is polished to reduce the substrate thickness to, for example, 200
After adjusting to a thickness of μm, an n-side electrode 80 is formed on the back surface.

【0032】以上の工程を経て、発振波長850nmの
第1の面発光型半導体レーザ構造52と、第1の面発光
型半導体レーザ構造52上にモノリシックに集積され、
第1の面発光型半導体レーザ構造から出射されるレーザ
光で光励起される発振波長130nmの第2の面発光型
半導体レーザ構造53とを備え、1300nmのレーザ
光を発光する面発光型半導体レーザ素子50を作製する
ことができる。
Through the above steps, a first surface-emitting type semiconductor laser structure 52 having an oscillation wavelength of 850 nm and a monolithic integration on the first surface-emitting type semiconductor laser structure 52,
A surface-emitting type semiconductor laser device having a second surface-emitting type semiconductor laser structure 53 having an oscillation wavelength of 130 nm, which is optically excited by laser light emitted from the first surface-emitting type semiconductor laser structure, and emitting 1300 nm laser light. 50 can be produced.

【0033】実験例1 本実施形態例の面発光型半導体レーザ素子50と同じ構
成の試料を上述の方法に従って作製し、温度85℃、注
入電流10mAの条件で、ACC(Auto Current Contr
ol)駆を行い、図4に示す結果を得た。図4は動作時
間の経過に対応する面発光型半導体レーザ素子の光出力
の変化率を示すグラフであって、グラフ(1)は本実施
形態例の面発光型半導体レーザ素子50の試料の結果で
あり、グラフ(2)は前述した従来のGaInNAs系
面発光型半導体レーザ素子10の結果を示している。図
4から判る通り、従来の面発光型半導体レーザ素子10
の光出力が動作時間の経過につれて急激に低下するのに
対して、面発光型半導体レーザ素子50の試料は、1
0,000時間以上の動作時間が経過しても、光出力の
変化が殆どなく、信頼性が著しく向上している。
EXPERIMENTAL EXAMPLE 1 A sample having the same structure as the surface emitting semiconductor laser device 50 of this embodiment was prepared according to the above-described method, and was subjected to an ACC (Auto Current Control) at a temperature of 85 ° C. and an injection current of 10 mA.
ol) performs drive motion to obtain the results shown in FIG. FIG. 4 is a graph showing the change rate of the optical output of the surface-emitting type semiconductor laser device corresponding to the elapse of the operation time. Graph (1) shows the result of the sample of the surface-emitting type semiconductor laser device 50 of the present embodiment. The graph (2) shows the result of the conventional GaInNAs-based surface emitting semiconductor laser device 10 described above. As can be seen from FIG. 4, the conventional surface-emitting type semiconductor laser device 10
While the light output of the surface emitting semiconductor laser device 50 sharply decreases with the elapse of the operation time,
Even after an operation time of 0000 hours or more, there is almost no change in the light output, and the reliability is remarkably improved.

【0034】実験例2 また、面発光型半導体レーザ素子50の試料及び従来の
面発光型半導体レーザ素子10の注入電流対光出力特性
を図5に示す。測定は、25℃連続(CW)動作にて行
った。図中、グラフ(1)は本実施形態例の面発光型半
導体レーザ素子50試料の結果であり、グラフ(2)は
前述した従来の面発光型半導体レーザ素子10の結果を
示している。図5から判る通り、面発光型半導体レーザ
素子50の試料の光出力が、従来の面発光型半導体レー
ザ素子10に比べて著しく高く、発光効率が大幅に改善
している。
Experimental Example 2 FIG. 5 shows the injection current versus light output characteristics of the sample of the surface emitting semiconductor laser device 50 and the conventional surface emitting semiconductor laser device 10. The measurement was performed by a continuous (CW) operation at 25 ° C. In the figure, a graph (1) shows the result of 50 samples of the surface-emitting type semiconductor laser device of the present embodiment, and a graph (2) shows the result of the above-mentioned conventional surface-emitting type semiconductor laser device 10. As can be seen from FIG. 5, the light output of the sample of the surface-emitting type semiconductor laser device 50 is significantly higher than that of the conventional surface-emitting type semiconductor laser device 10, and the luminous efficiency is greatly improved.

【0035】また、注入電流対光主力特性の温度特性を
測定した結果、温度20℃のときの光出力と温度85℃
のときの光出力を比較すると、従来の面発光型半導体レ
ーザ素子10の光出力が1/10程度に減少するのに対
して、面発光型半導体レーザ素子50の試料の光出力の
低下は、2/3程度と著しく小さかった。実験例1、2
の結果から、本実施形態例の面発光型半導体レーザ素子
50は、信頼性が向上し、発光効率が高く、また温度特
性が良好である。
Further, as a result of measuring the temperature characteristics of the injection current versus the optical main characteristic, the light output at a temperature of 20 ° C. and the temperature of 85 ° C.
Comparing the optical outputs at the time of the above, while the optical output of the conventional surface-emitting type semiconductor laser device 10 is reduced to about 1/10, the decrease of the optical output of the sample of the surface-emitting type semiconductor laser device 50 is as follows. It was remarkably small, about 2/3. Experimental examples 1 and 2
According to the results, the surface-emitting type semiconductor laser device 50 of the present embodiment has improved reliability, high luminous efficiency, and good temperature characteristics.

【0036】本実施形態例では、第2の面発光型半導体
レーザ構造53の活性層70は、Ga0.63In0.37
0.01As0.99/GaAs量子井戸構造として構成されて
いるが、これに代えて、Ga1-XInXySbzAs
1-y-z(0≦X≦0.45、0≦y≦0.1、0≦z≦
0.05)/GaAs量子井戸構造、例えばGa0.63
0. 370.01Sb0.016 As0.974 /GaAs量子井戸
構造として構成することもできる。これにより、井戸層
の品質向上の効果がある。また、バリア層の材料は、G
aAsに限る必要はない。
In this embodiment, the second surface-emitting type semiconductor
The active layer 70 of the laser structure 53 is made of Ga0.63In0.37N
0.01As0.99/ GaAs quantum well structure
But instead of Ga1-XInXNySbzAs
1-yz(0 ≦ X ≦ 0.45, 0 ≦ y ≦ 0.1, 0 ≦ z ≦
0.05) / GaAs quantum well structure, for example, Ga0.63I
n0. 37N0.01Sb0.016As0.974/ GaAs quantum well
It can also be configured as a structure. Thereby, the well layer
It has the effect of improving the quality. The material of the barrier layer is G
It is not necessary to limit to aAs.

【0037】また、本実施形態例では、励起光源用の第
1の面発光型半導体レーザ構造として、850nm帯の
面発光型半導体レーザ構造を使用した例を挙げている
が、850nm帯に限らず、GaAs基板上に形成可能
で、バンドギャップ波長が励起される側のレーザ構造の
バンドギャップ波長よりも短いものであれば良く、例え
ば、励起される側のレーザ構造のバンドギャップ波長が
1.2μm〜1.65μmの場合、励起光源のバンドギ
ャップ波長は、0.6μm〜1.25μmの範囲で選択
できる。
In this embodiment, an example in which a surface-emitting semiconductor laser structure in the 850 nm band is used as the first surface-emitting semiconductor laser structure for the excitation light source, but the present invention is not limited to the 850 nm band. And the band gap wavelength of the laser structure on the side where the band gap wavelength is excited is shorter than the band gap wavelength of the laser structure on the side where the excitation is performed. For example, the band gap wavelength of the laser structure on the side where the excitation is performed is 1.2 μm. In the case of の 1.65 μm, the band gap wavelength of the excitation light source can be selected in the range of 0.6 μm to 1.25 μm.

【0038】[0038]

【発明の効果】本発明によれば、GaAs基板上に形成
された第1のレーザ構造部と、第1のレーザ構造部上に
モノリシックに集積され、第1のレーザ構造部の発振波
長よりもバンドギャップ波長が長いGaInNAs系材
料からなる吸収領域を有する第2のレーザ構造部とで面
発光型半導体レーザ素子を構成し、第1のレーザ構造部
から出射されたレーザ光により第2のレーザ構造部を光
励起することにより、安定した温度特性を示し、高い発
光効率で長波長域のレーザ光を発光する、長寿命の面発
光型半導体レーザ素子を実現している。
According to the present invention, the first laser structure formed on the GaAs substrate and the monolithically integrated laser structure on the first laser structure are arranged so that the oscillation wavelength of the first laser structure is higher than that of the first laser structure. A surface-emitting type semiconductor laser device is constituted by a second laser structure having an absorption region made of a GaInNAs-based material having a long band gap wavelength, and a second laser structure is formed by laser light emitted from the first laser structure. A long-life surface-emitting type semiconductor laser device that exhibits stable temperature characteristics by emitting light from a portion and emits laser light in a long wavelength range with high luminous efficiency is realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例の面発光型半導体レーザ素子の構成
を示す模式的断面図である。
FIG. 1 is a schematic cross-sectional view illustrating a configuration of a surface emitting semiconductor laser device according to an embodiment.

【図2】図2(a)及び(b)は、それぞれ、実施形態
例の面発光型半導体レーザ素子を作製する際の工程毎の
断面図である。
FIGS. 2A and 2B are cross-sectional views for respective steps when fabricating the surface-emitting type semiconductor laser device of the embodiment.

【図3】図3(c)及び(d)は、それぞれ、図2
(b)に続いて、実施形態例の面発光型半導体レーザ素
子を作製する際の工程毎の断面図である。
FIGS. 3 (c) and (d) are FIGS.
FIG. 5B is a cross-sectional view illustrating a step of manufacturing the surface-emitting type semiconductor laser device according to the embodiment, following FIG.

【図4】動作時間の経過に対応する面発光型半導体レー
ザ素子の光出力の変化率を示すグラフである。
FIG. 4 is a graph showing a change rate of an optical output of a surface-emitting type semiconductor laser device corresponding to an elapse of an operation time.

【図5】注入電流と光出力との関係を示すグラフであ
る。
FIG. 5 is a graph showing a relationship between an injection current and a light output.

【図6】従来の長波長帯GaInNAs系面発光型半導
体レーザ素子の構成を示す断面模式図である。
FIG. 6 is a schematic cross-sectional view showing a configuration of a conventional long wavelength band GaInNAs-based surface emitting semiconductor laser device.

【図7】光学デバイスの構成を示す断面図である。FIG. 7 is a cross-sectional view illustrating a configuration of an optical device.

【符号の説明】[Explanation of symbols]

10 従来のGaInNAs系面発光型半導体レーザ素
子 12 n−GaAs基板 14 n−Al0.9GaAs/n−GaAsの35ペア
からなる下部DBRミラー 16 下部クラッド層 18 量子井戸活性層 20 上部クラッド層 22 p−Al0.9GaAs/p−GaAsの25ペア
からなる上部DBRミラー 24 AlAs層 25 Al酸化層 26 ポリイミド 28 p側電極 30 n側電極 32 電極パッド 40 光学デバイス 41 短波長VCSEL 42 長波長VCSEL 43 GaAs基板 44 下部GaAs/AlAsミラー 45 発光構造 46 上部の誘電体ミラー 47 光学接着剤 48 GaAs基板 50 実施形態例の面発光型半導体レーザ素子 51 n−GaAs基板 52 発振波長850nmの第1の面発光型半導体レー
ザ構造部 53 発振波長1300nmの第2の面発光型半導体レ
ーザ構造部 54 n−Al0.9GaAs/n−Al0.2 GaAsの
35ペアからなる下部DBRミラー 56 下部クラッド層 58 量子井戸活性層 60 上部クラッド層 62 p−Al0.9GaAs/p−Al0.2 GaAsの
25ペアからなる上部DBRミラー 64 AlAs層 65 Al酸化層 66 ノンドープAl0.9GaAs/Al0.2GaAsの
30ペアからなる第2下部DBRミラー 68 下部クラッド層 70 GaInNAs系量子井戸活性層 72 上部クラッド層 74 ノンドープAl0.9GaAs/Al0.2GaAsの
25ペアからなる第2上部DBRミラー 76 p側電極 78 SiNx保護膜 80 n側電極
REFERENCE SIGNS LIST 10 Conventional GaInNAs-based surface emitting semiconductor laser device 12 n-GaAs substrate 14 lower DBR mirror composed of 35 pairs of n-Al 0.9 GaAs / n-GaAs 16 lower cladding layer 18 quantum well active layer 20 upper cladding layer 22 p− Al 0.9 GaAs / made of p-GaAs of 25 pairs the upper DBR mirror 24 AlAs layer 25 Al oxide layer 26 of polyimide 28 p-side electrode 30 n-side electrode 32 electrode pad 40 optical device 41 a short wavelength VCSEL 42 long wavelength VCSEL 43 GaAs substrate 44 Lower GaAs / AlAs mirror 45 Light emitting structure 46 Upper dielectric mirror 47 Optical adhesive 48 GaAs substrate 50 Surface emitting semiconductor laser device 51 of the embodiment 51 n-GaAs substrate 52 First surface emitting semiconductor laser with oscillation wavelength of 850 nm Structure 5 Second surface emitting semiconductor laser structure portion 54 n-Al 0.9 GaAs / n -Al 0 the oscillation wavelength 1300 nm. 2 lower formed of GaAs of 35 pairs DBR mirror 56 lower cladding layer 58 quantum well active layer 60 upper cladding layer 62 p-Al 0.9 GaAs / p- Al 0. 2 GaAs of the second lower DBR mirror 68 lower cladding consisting of an upper DBR mirror 64 AlAs layer 65 Al oxide layer 66 non-doped Al 0.9 GaAs / Al 0.2 GaAs of 30 pairs consisting of 25 pairs Layer 70 GaInNAs-based quantum well active layer 72 Upper cladding layer 74 Second upper DBR mirror consisting of 25 pairs of non-doped Al 0.9 GaAs / Al 0.2 GaAs 76 P-side electrode 78 SiNx protective film 80 N-side electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 GaAs基板上に形成された第1の面発
光型半導体レーザ構造部と、 第1の面発光型半導体レーザ構造部上にモノリシックに
集積され、第1の面発光型半導体レーザ構造部の発振波
長よりもバンドギャップ波長が長いGaInNAs系材
料からなる吸収領域を有するGaInNAs系第2の面
発光型半導体レーザ構造部とを備え、 第1の面発光型半導体レーザ構造部から出射されたレー
ザ光により第2の面発光型半導体レーザ構造部を光励起
し、第2の面発光型半導体レーザのレーザ光を出力する
ことを特徴とする面発光型半導体レーザ素子。
1. A first surface-emitting type semiconductor laser structure formed on a GaAs substrate, and a first surface-emitting type semiconductor laser structure monolithically integrated on the first surface-emitting type semiconductor laser structure. A second surface-emitting type semiconductor laser structure having a GaInNAs-based material having an absorption region having a band gap wavelength longer than the oscillation wavelength of the portion, and emitting light from the first surface-emitting type semiconductor laser structure. A surface-emitting type semiconductor laser device characterized in that a second surface-emitting type semiconductor laser structure is optically excited by a laser beam to output laser light of the second surface-emitting type semiconductor laser.
【請求項2】 第2の面発光型半導体レーザ構造部の吸
収領域が、少なくともGa1-XInXyAs1-y(0≦X
≦0.45、0≦y≦0.1)からなる量子井戸または
バルクであることを特徴とする請求項1に記載の面発光
型半導体レーザ素子。
2. The absorption region of the second surface-emitting type semiconductor laser structure portion has at least Ga 1 -x In x N y As 1 -y (0 ≦ X
2. The surface emitting semiconductor laser device according to claim 1, wherein the surface emitting semiconductor laser device is a quantum well or a bulk composed of (≦ 0.45, 0 ≦ y ≦ 0.1).
【請求項3】 第2の面発光型半導体レーザ構造部の吸
収領域が、少なくとGa1-XInXySbzAs
1-y-z(0≦X≦0.45、0≦y≦0.1、0≦z≦
0.05)からなる量子井戸層またはバルク層であるこ
とを特徴とする請求項1に記載の面発光型半導体レーザ
素子。
3. The absorption area of the second surface-emitting type semiconductor laser structure part is at least Ga 1 -x In x N y Sb z As.
1-yz (0 ≦ X ≦ 0.45, 0 ≦ y ≦ 0.1, 0 ≦ z ≦
2. The surface emitting semiconductor laser device according to claim 1, wherein the surface emitting semiconductor laser device is a quantum well layer or a bulk layer made of 0.05).
【請求項4】 第2の面発光型半導体レーザ構造部の吸
収領域の少なくとも片方の側のDBRミラーが、アンド
ープ半導体多層膜からなるDBRミラーであることを特
徴とする請求項1から3のいずれか1項に記載の面発光
型半導体レーザ素子。
4. The DBR mirror according to claim 1, wherein the DBR mirror on at least one side of the absorption region of the second surface-emitting type semiconductor laser structure is a DBR mirror made of an undoped semiconductor multilayer film. 2. The surface emitting semiconductor laser device according to claim 1.
【請求項5】 第1の面発光型半導体レーザ構造部の発
振波長が0.6μm以上1.25μm以下の範囲にあ
り、第2の面発光型半導体レーザ構造部の発振波長が
1.2μm以上1.65μm以下の範囲にあることを特
徴とする請求項1から4のいずれか1項に記載の面発光
型半導体レーザ素子。
5. The oscillation wavelength of the first surface-emitting type semiconductor laser structure is in the range of 0.6 μm to 1.25 μm, and the oscillation wavelength of the second surface-emitting type semiconductor laser structure is 1.2 μm or more. 5. The surface-emitting type semiconductor laser device according to claim 1, wherein the surface-emitting type semiconductor laser device is in a range of 1.65 [mu] m or less.
JP2001106884A 2001-04-05 2001-04-05 Surface emission-type semiconductor laser element Pending JP2002305354A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001106884A JP2002305354A (en) 2001-04-05 2001-04-05 Surface emission-type semiconductor laser element
US10/012,254 US20020146053A1 (en) 2001-04-05 2001-11-08 Surface emitting semiconductor laser device
DE10214568A DE10214568A1 (en) 2001-04-05 2002-04-02 Superficially radiating semiconductor laser component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001106884A JP2002305354A (en) 2001-04-05 2001-04-05 Surface emission-type semiconductor laser element

Publications (1)

Publication Number Publication Date
JP2002305354A true JP2002305354A (en) 2002-10-18

Family

ID=18959315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001106884A Pending JP2002305354A (en) 2001-04-05 2001-04-05 Surface emission-type semiconductor laser element

Country Status (3)

Country Link
US (1) US20020146053A1 (en)
JP (1) JP2002305354A (en)
DE (1) DE10214568A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10207045A1 (en) * 2002-02-20 2003-08-28 Bosch Gmbh Robert Fuel injection device for a combustion engine, has a high pressure pump with two pistons one of which can assume a passive position
JP4157736B2 (en) * 2002-08-09 2008-10-01 株式会社日立製作所 Optical transmitter
DE10243545B4 (en) * 2002-09-19 2008-05-21 Osram Opto Semiconductors Gmbh Optically pumped semiconductor laser device
EP1683245B1 (en) * 2003-11-13 2011-06-15 OSRAM Opto Semiconductors GmbH Vcsel pumped in a monolithically optical manner and comprising a laterally applied edge emitter
DE102004004781A1 (en) * 2004-01-30 2005-08-18 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component has first active zone for generating coherent radiation of first wavelength and second active zone for generating incoherent radiation of second wavelength
CN101432936B (en) * 2004-10-01 2011-02-02 菲尼萨公司 Vertical cavity surface emitting laser having multiple top-side contacts
US7248609B2 (en) * 2004-10-27 2007-07-24 Agilent Technologies, Inc. Amplified beam source
DE102006010727B4 (en) * 2005-12-05 2019-10-24 Osram Opto Semiconductors Gmbh Surface emitting semiconductor device with a tunnel junction
DE102006024220A1 (en) * 2006-04-13 2007-10-18 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component
JP2009010175A (en) * 2007-06-28 2009-01-15 Sumitomo Electric Ind Ltd Light-receiving element and manufacturing method therefor
US8031754B2 (en) * 2008-04-24 2011-10-04 The Furukawa Electric Co., Ltd. Surface emitting laser element, surface emitting laser element array, method of fabricating a surface emitting laser element
JP4656183B2 (en) * 2008-05-14 2011-03-23 ソニー株式会社 Semiconductor light emitting device
US8946052B2 (en) * 2012-09-26 2015-02-03 Sandia Corporation Processes for multi-layer devices utilizing layer transfer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722312A (en) * 1993-06-22 1995-01-24 Nec Corp Method for manufacturing strain semiconductor film
JPH07170027A (en) * 1993-08-20 1995-07-04 Asea Brown Boveri Ab Integrated light emitting device and method thereof
JPH11195833A (en) * 1997-12-27 1999-07-21 Canon Inc Light emitting device and method for using it
JP2000232250A (en) * 1999-02-10 2000-08-22 Furukawa Electric Co Ltd:The Long wavelength region surface emission laser device and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722312A (en) * 1993-06-22 1995-01-24 Nec Corp Method for manufacturing strain semiconductor film
JPH07170027A (en) * 1993-08-20 1995-07-04 Asea Brown Boveri Ab Integrated light emitting device and method thereof
JPH11195833A (en) * 1997-12-27 1999-07-21 Canon Inc Light emitting device and method for using it
JP2000232250A (en) * 1999-02-10 2000-08-22 Furukawa Electric Co Ltd:The Long wavelength region surface emission laser device and manufacture thereof

Also Published As

Publication number Publication date
US20020146053A1 (en) 2002-10-10
DE10214568A1 (en) 2002-10-10

Similar Documents

Publication Publication Date Title
US8401049B2 (en) Surface-emission laser diode and fabrication process thereof
JP5027010B2 (en) Surface emitting laser element
JP4265875B2 (en) Manufacturing method of surface emitting semiconductor laser
US20050220160A1 (en) Vertical cavity surface emitting semiconductor laser device
JP4728656B2 (en) Surface emitting laser element
JP2002305354A (en) Surface emission-type semiconductor laser element
JP4497859B2 (en) Surface emitting semiconductor laser device, optical transmission module, and optical transmission system
US7907653B2 (en) Vertical cavity surface emitting laser device and vertical cavity surface emitting laser array
JP4087152B2 (en) Surface emitting semiconductor laser device and laser array
US7286584B2 (en) Carrier bonded 1550 nm VCSEL with InP substrate removal
JP5005937B2 (en) Surface emitting laser element
JP4115125B2 (en) Surface emitting semiconductor laser device
KR100404043B1 (en) Vertically integrated high-power surface-emitting laser diode and method of manufacturing the same
JPH05152674A (en) Surface light emitting semiconductor laser with outer modulator
JP2003008142A (en) Surface light emitting semiconductor laser device
JP2003037335A (en) Surface emission semiconductor laser element
WO2022097513A1 (en) Vertical resonator type surface-emitting laser element and method for manufacturing vertical resonator type surface-emitting laser element
JP2003158340A (en) Face emission semiconductor laser device
JP2007227861A (en) Semiconductor light-emitting device
JP2009238832A (en) Method of manufacturing surface-emitting semiconductor laser
JPH04316387A (en) Surface light emitting laser
JP2000232250A (en) Long wavelength region surface emission laser device and manufacture thereof
JP2003273461A (en) Surface emitting semiconductor laser and laser optical transmission module using the same
JPH0964455A (en) Long-wavelength band surface emitting laser
JP2003037336A (en) Surface emission semiconductor laser element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100409

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110725