JPH03290614A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPH03290614A
JPH03290614A JP9340390A JP9340390A JPH03290614A JP H03290614 A JPH03290614 A JP H03290614A JP 9340390 A JP9340390 A JP 9340390A JP 9340390 A JP9340390 A JP 9340390A JP H03290614 A JPH03290614 A JP H03290614A
Authority
JP
Japan
Prior art keywords
layer
lattice
excitons
optical modulator
inas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9340390A
Other languages
Japanese (ja)
Inventor
Akihisa Tomita
章久 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9340390A priority Critical patent/JPH03290614A/en
Publication of JPH03290614A publication Critical patent/JPH03290614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an optical modulator which has a high extinction ratio and a small insertion loss by constituting a waveguide layer as a well layer where InAs and GaAs are laminated as one atom as the unit and a barrier layer of InA As or InP. CONSTITUTION:A waveguide layer 14 has a multiple quantum well structure which has a super-lattice, where InAs and GaAs are alternately laminated with one atomic layer one by one is used as a well layer 141 and has InAlAs or InP as a barrier layer 142, and an electric field is applied to this waveguide layer 14 by a p-side electrode 18 and an n-side electrode 19. Since the well layer 141 has the super-lattice where InAs and AlAs are alternately laminated with one atomic layer as the unit, local fluctuation of the composition does not occur, and the spectrum width of excitons is narrowed. Since the lattice oscillation in the lamination direction is suppressed in the super-lattice where the period is about one atomic layer, the coupling constant between excitons and the lattice oscillations is reduced to narrow the spectrum width of excitons. Therefore, a high extinction ratio and a small insertion loss are obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光情報処理等に用いる光変調器に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an optical modulator used for optical information processing and the like.

〔従来の技術〕[Conventional technology]

近年、光の持つ高速性を利用したデジタル情報処理が注
目を集めている。このなめには光を制御する論理素子の
開発が必要である。そのうちの一つとして光信号を電気
的にオンオフする光変調器かある。従来、光変調器とし
て第4図に示す構造かエレクトロニクスレターズ(El
ectronicsLetlers) 21巻、693
頁、1985)においてウッド(Wood、T、H,)
等によって報告されている。この光変調器はGaAsと
GaAlAsの薄膜を交互に積層した量子井戸層21を
導電型がそれぞれp型とn型のGaAlAsからなるク
ラッド層22.23ではさんだpin構造である。−方
の端面から入射した光は、量子井戸層21を通って他方
の端面から出射する。電界の印加によって、実効的なバ
ンドギャップが減少するため、量子井戸の励起子の低エ
ネルギー側の光に対するによる吸収係数か大きくなるこ
とを利用してスイッチングを行っている。
In recent years, digital information processing that takes advantage of the high speed of light has attracted attention. This requires the development of logic elements that control light. One of these is an optical modulator that turns optical signals on and off electrically. Conventionally, as an optical modulator, the structure shown in Figure 4 or Electronics Letters (El
electronicsLetlers) Volume 21, 693
Wood, T. H., p., 1985).
It has been reported by et al. This optical modulator has a pin structure in which a quantum well layer 21 in which thin films of GaAs and GaAlAs are alternately laminated is sandwiched between cladding layers 22 and 23 made of GaAlAs of p-type and n-type conductivity, respectively. Light incident from the - side end face passes through the quantum well layer 21 and exits from the other end face. Application of an electric field reduces the effective bandgap, so switching is performed by utilizing the fact that the absorption coefficient of excitons in the quantum well for light on the low energy side increases.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

光通信に用いる波長1.55μm帯の光に対してはIn
GaAs/InP、または、I nGaA s / I
 n A ] A sの多重量子井戸構造が用いられる
が、これらは井戸層に工nGaAsという混晶を用いて
いるために二元結晶であるGaAsを井戸層に用いた時
よりも励起子のスペクトル幅が広く、電界を印加しない
時においても吸収損失が大きい。このため、光変調器の
消光比が小さく、また挿入損失も大きくなっている0本
発明の目的は、励起子のスペクトル幅を狭めて消光比の
高く挿入損失の小さな光変調器を提供することにある。
For light in the 1.55 μm wavelength band used for optical communication, In
GaAs/InP or InGaAs/I
n A ] A s multi-quantum well structure is used, but since these use a mixed crystal called GaAs in the well layer, the exciton spectrum is lower than when binary crystal GaAs is used in the well layer. The width is wide, and absorption loss is large even when no electric field is applied. Therefore, the extinction ratio of the optical modulator is small and the insertion loss is also large.An object of the present invention is to provide an optical modulator with a high extinction ratio and a small insertion loss by narrowing the spectral width of excitons. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

本発明における光変調器は、InAsとGaAsを1原
子層づつ交互に積層した超格子を井戸層とし、InAl
AsまたはInPを障壁層とする多重量子井戸構造を導
波層として持ち、多重量子井戸構造に電界を印加して透
過特性を#御することを特徴とする。
In the optical modulator of the present invention, a superlattice in which InAs and GaAs are alternately laminated one atomic layer each is used as a well layer, and InAl
It is characterized by having a multiple quantum well structure as a waveguide layer with As or InP as a barrier layer, and controlling transmission characteristics by applying an electric field to the multiple quantum well structure.

〔作用〕[Effect]

導波層となる多重量子井戸構造に電圧を印加すると、多
重量子井戸構造の励起子のエネルギーが低エネルギー側
にシフトする。このため、励起子よりもわずかにエネル
ギーの低い光に対する吸収品数711)増大して光変調
器の透過率が小さくなって、光変調器かオン状態からオ
フ状態になる。それに件って屈折率か変化する。電圧が
掛かっていない時、光のエネルギーがファブリ・ペロ共
振器に弁明シてオン状態となるようにすると、電圧を加
えた時屈折率変化のため共鳴からずれて透過率が減少し
てオフ状態となる。このときの消光比は、 0N exp  (△αd〉  opp と書ける。ここで、△αは導波層の吸収係数の変化であ
る。導波層である多重量子井戸構造の吸収は、電圧が掛
かっていないとき0であり、電圧がかかると急激に大き
くなることが望ましい。このことは多重量子井戸構造の
励起子吸収スペクトルの幅か狭く、電圧がかかっていな
い時用いる波長の光に対する吸収が、無視できればよい
。励起子吸収スペクトルの幅が広い場合でも、用いる光
の波長が励起子の吸収スペクトルピークから離れていれ
ば、電圧がかかっていない時の吸収は無視できるか、そ
の場合には、電圧をかけても吸収係数の増加が小さく消
光比が小さくなるか、あるいは、十分な消光比を得るた
めの動作電圧が高くなってしまう。また、吸収があると
挿入損失も増大してしまう。
When a voltage is applied to the multiple quantum well structure serving as the waveguide layer, the energy of excitons in the multiple quantum well structure shifts to the lower energy side. For this reason, the number of absorption components 711) for light having slightly lower energy than the excitons increases, the transmittance of the optical modulator decreases, and the optical modulator changes from an on state to an off state. Regarding that, the refractive index changes. When no voltage is applied, the energy of the light is applied to the Fabry-Perot resonator, causing it to turn on. When voltage is applied, the refractive index changes, causing the resonance to shift and the transmittance to decrease, resulting in the off-state. becomes. The extinction ratio at this time can be written as 0N exp (△αd〉 opp. Here, △α is the change in the absorption coefficient of the waveguide layer. The absorption of the multi-quantum well structure, which is the waveguide layer, is It is desirable that the width of the exciton absorption spectrum of the multi-quantum well structure is narrow, and that the absorption of light at the wavelength used when no voltage is applied is 0. Even if the exciton absorption spectrum is wide, if the wavelength of the light used is far from the exciton absorption spectrum peak, the absorption when no voltage is applied can be ignored, or in that case, Even if a voltage is applied, the increase in the absorption coefficient is small and the extinction ratio becomes small, or the operating voltage required to obtain a sufficient extinction ratio becomes high.Furthermore, if there is absorption, the insertion loss also increases.

光通信に用いる波長1,55μm帯の光には適合した量
子井戸構造としてInGaAs/InP、または、I 
nGaAs/I nA I Asが知られているが、こ
れらは井戸層にI nGaAsという混晶を用いている
ために、組成の局所的な揺らぎに起因する励起子エネル
ギーの揺らぎにより、二元結晶であるGaAsを井戸層
に用いた時よりも励起子のスペクトル幅が広くなる。本
発明で用いる量子井戸構造では、井戸層をInAsとA
lAsを1原子層づつ交互に積層した超格子としている
ため、このような組成の局所的な揺らぎは生じず、励起
子のスペクトル幅も狭い。さらに、周期が1原子層程度
の超格子では、積層方向の格子振動が抑制されるため、
励起子と格子振動の結合定数か減少j、励起子スペクト
ルの幅を狭くする、以上の効県により、電圧が掛がって
いないときの龜重量子井戸構造の吸収か小さくなり、消
光比、挿入損失か改善される。
InGaAs/InP or I
nGaAs/I nA I As are known, but since these use a mixed crystal called InGaAs in the well layer, they are binary crystals due to fluctuations in exciton energy caused by local fluctuations in the composition. The spectral width of excitons becomes wider than when GaAs is used for the well layer. In the quantum well structure used in the present invention, the well layer is made of InAs and A
Since lAs is formed into a superlattice in which one atomic layer is alternately stacked, such local fluctuations in composition do not occur, and the spectral width of excitons is narrow. Furthermore, in a superlattice with a period of about one atomic layer, lattice vibration in the stacking direction is suppressed, so
The coupling constant between excitons and lattice vibrations decreases, the width of the exciton spectrum narrows, and due to the above effects, the absorption of the quantum well structure when no voltage is applied decreases, and the extinction ratio, Insertion loss is improved.

実施例〕 第1図は本発明の一実施例を示す構成図である。Snド
ープInPの基板11の上に厚さ1゜Onmの5 X 
1017cra〜3SiをドープしたInPのバッファ
層12、厚さ21層mと5 X 1017cm −’S
iをドープしたInPのクラッド層13をハイドライド
VPE法により順次積層する。次に、第2図のように、
ALE法によりIn、As。
Embodiment] FIG. 1 is a configuration diagram showing an embodiment of the present invention. A 5X film with a thickness of 1°Onm is placed on the Sn-doped InP substrate 11.
Buffer layer 12 of InP doped with 1017cra ~ 3Si, thickness 21 layers m and 5 X 1017 cm -'S
A cladding layer 13 of InP doped with i is sequentially laminated by the hydride VPE method. Next, as shown in Figure 2,
In, As by ALE method.

Ga、Asを交互に1原子づつ14周期堆積した超格子
の井戸層141と、InとPを交互に1原子づつ20周
期堆積した障壁層142とを交互に40層ずつ積層して
多重量子井戸構造からなる導波層14とする。このとき
の導波層14のエネルギバンド構造は第3図の様になる
。井戸層141の厚さは7nm、障壁層142の厚さは
10層mである。能動層14にはドーピングを行なゎな
い。さらに厚さ50nmのノンドープでバンドギャップ
波長1.3μmのInGaAsPからなる拡散防止層1
5、Znを5 X 1017cm−3ドープした厚さ1
μmのInPによりクラッド層16、Znを5 X 1
018arm−3ドープした厚さO,1μmのp−In
GaAsPのコンタクト層17を順次積層し、T i 
/ A uのp側電極18を形成する。幅5μmのスト
ライプ状の導波路部分と100μmφの電極パッドを残
して、その他の部分を基板11までエツチングして除去
する。導波路の長さは200μmである。基板11を厚
さ100μmに鏡面研磨した後、n側電極19を形成す
る。
A multi-quantum well is formed by laminating 40 layers of a superlattice well layer 141 in which Ga and As are alternately deposited for 14 cycles, and a barrier layer 142 in which In and P are alternately deposited in 1 atom for 20 cycles. The waveguide layer 14 consists of a structure. The energy band structure of the waveguide layer 14 at this time is as shown in FIG. The well layer 141 has a thickness of 7 nm, and the barrier layer 142 has a thickness of 10 m. The active layer 14 is not doped. Furthermore, a diffusion prevention layer 1 made of non-doped InGaAsP with a thickness of 50 nm and a bandgap wavelength of 1.3 μm.
5. Thickness 1 doped with Zn 5 x 1017 cm-3
Cladding layer 16 with μm InP, Zn 5×1
018arm-3 doped p-In with thickness O, 1 μm
Contact layers 17 of GaAsP are sequentially stacked, and Ti
/A p-side electrode 18 is formed. Leaving a striped waveguide portion with a width of 5 μm and an electrode pad with a diameter of 100 μm, the other portions are etched and removed up to the substrate 11. The length of the waveguide is 200 μm. After mirror polishing the substrate 11 to a thickness of 100 μm, the n-side electrode 19 is formed.

本実施例では励起子吸収の幅が小さくなり、励起子吸収
ピークから15 m e V離れた光に対する吸収係数
が従来600aa−1程度であったものが100cm−
’となった。このため105V/cmの電界を印加した
時の消光比は6dBから20dBに、挿入損失は10d
Bから3dBとなり従来より大きく改善された。
In this example, the width of exciton absorption is reduced, and the absorption coefficient for light 15 m e V away from the exciton absorption peak is reduced from about 600 aa-1 to 100 cm-1.
' became. Therefore, when an electric field of 105 V/cm is applied, the extinction ratio goes from 6 dB to 20 dB, and the insertion loss is 10 dB.
B to 3 dB, which is a significant improvement over the conventional method.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したように本発明の効果を要約するト励起子
のスペクトル幅を狭めて消光比の高く挿入損失の小さな
光変調器が得られることである。
As described above in detail, the effects of the present invention can be summarized in that an optical modulator with a high extinction ratio and a small insertion loss can be obtained by narrowing the spectral width of excitons.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図は第1図の
導波層部分の拡大図、第3図は本発明の能動層となる多
重量子井戸構造のエネルギバンド構造図、第4図は従来
の技術の一例を示す構成図である。 図中、11は基板、12はバッファ層、13はクラッド
層、14は導波層、15は拡散防止層、16はクラッド
層、17はコンタクト層、18はp側電極、19はn側
電極である。また、141は井戸層、142は障壁層で
ある。
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is an enlarged view of the waveguide layer portion of Fig. 1, and Fig. 3 is an energy band structure diagram of a multiple quantum well structure that is the active layer of the present invention. , FIG. 4 is a block diagram showing an example of a conventional technique. In the figure, 11 is a substrate, 12 is a buffer layer, 13 is a cladding layer, 14 is a waveguide layer, 15 is a diffusion prevention layer, 16 is a cladding layer, 17 is a contact layer, 18 is a p-side electrode, 19 is an n-side electrode It is. Further, 141 is a well layer, and 142 is a barrier layer.

Claims (1)

【特許請求の範囲】[Claims] InAsとGaAsを1原子層づつ交互に積層した超格
子を井戸層とし、InAlAsまたはInPを障壁層と
する多重量子井戸構造を導波層として持ち、多重量子井
戸構造に電界を印加する手段を備えたことを特徴とする
光変調器。
It has a multi-quantum well structure in which a superlattice in which one atomic layer of InAs and GaAs is alternately stacked as a well layer and InAlAs or InP as a barrier layer is used as a waveguide layer, and is provided with means for applying an electric field to the multi-quantum well structure. An optical modulator characterized by:
JP9340390A 1990-04-09 1990-04-09 Optical modulator Pending JPH03290614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9340390A JPH03290614A (en) 1990-04-09 1990-04-09 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9340390A JPH03290614A (en) 1990-04-09 1990-04-09 Optical modulator

Publications (1)

Publication Number Publication Date
JPH03290614A true JPH03290614A (en) 1991-12-20

Family

ID=14081336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9340390A Pending JPH03290614A (en) 1990-04-09 1990-04-09 Optical modulator

Country Status (1)

Country Link
JP (1) JPH03290614A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0618651A2 (en) * 1993-03-31 1994-10-05 Fujitsu Limited Surface emitting laser provided with light modulator
DE4422220A1 (en) * 1993-06-25 1995-01-26 Mitsubishi Electric Corp Optical semiconductor modulator
US6531414B1 (en) * 1999-05-05 2003-03-11 The United States Of America As Represented By The National Security Agency Method of oxidizing strain-compensated superlattice of group III-V semiconductor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0618651A2 (en) * 1993-03-31 1994-10-05 Fujitsu Limited Surface emitting laser provided with light modulator
EP0618651A3 (en) * 1993-03-31 1994-12-21 Fujitsu Ltd Surface emitting laser provided with light modulator.
US5408486A (en) * 1993-03-31 1995-04-18 Fujitsu Limited Surface emitting laser provided with light modulator
DE4422220A1 (en) * 1993-06-25 1995-01-26 Mitsubishi Electric Corp Optical semiconductor modulator
US5521742A (en) * 1993-06-25 1996-05-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor optical modulator
US6531414B1 (en) * 1999-05-05 2003-03-11 The United States Of America As Represented By The National Security Agency Method of oxidizing strain-compensated superlattice of group III-V semiconductor

Similar Documents

Publication Publication Date Title
JP3467153B2 (en) Semiconductor element
JPH05145178A (en) Strained quantum well semiconductor laser element
US5315430A (en) Strained layer Fabry-Perot device
US5042049A (en) Semiconductor optical device
JPH09318918A (en) Semiconductor optical modulator
JP2536714B2 (en) Optical modulator integrated multiple quantum well semiconductor laser device
JP2019009196A (en) Semiconductor laser
JPH02103021A (en) Quantum well optical device
JP2900824B2 (en) Method for manufacturing optical semiconductor device
JPH03290614A (en) Optical modulator
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
JPH0951142A (en) Semiconductor light emitting element
JP2513265B2 (en) Light modulator
JPH08248363A (en) Waveguide type multiple quantum well optical control element
JPH098405A (en) Semiconductor mixed crystal
JPS63150982A (en) Semiconductor light emitting device
JPH06334256A (en) Formation of semiconductor light reflective layer
JPH0697598A (en) Semiconductor light-emitting device
JPS6297386A (en) Distributed feedback type bistable semiconductor laser
JPH04372188A (en) Semiconductor laser element
JP3204969B2 (en) Semiconductor laser and optical communication system
JPS61220389A (en) Integrated type semiconductor laser
JPH01204019A (en) Optical modulator
JP3139774B2 (en) Semiconductor laser device
JPH04212938A (en) Wavelength converting element