JPH01204019A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPH01204019A
JPH01204019A JP2746288A JP2746288A JPH01204019A JP H01204019 A JPH01204019 A JP H01204019A JP 2746288 A JP2746288 A JP 2746288A JP 2746288 A JP2746288 A JP 2746288A JP H01204019 A JPH01204019 A JP H01204019A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
barrier layer
optical modulator
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2746288A
Other languages
Japanese (ja)
Inventor
Akihisa Tomita
章久 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2746288A priority Critical patent/JPH01204019A/en
Publication of JPH01204019A publication Critical patent/JPH01204019A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the optical modulator which can be increased in on-off ratio while the loss in its on state is small by using an optical control layer which has specific multiple quantum well structure. CONSTITUTION:The optical modulator is provided with the optical control layer 14 of multiple quantum well structure formed by laminating a 1st barrier layer 141 consisting of a 1st semiconductor, a 1st well layer 142 consisting of a 2nd semiconductor layer which has larger forbidden band width than the 1st semiconductor layer, a 2nd barrier layer 143 consisting of a 3rd semiconductor which has a smaller forbidden band width than the 2nd semiconductor, a 3rd barrier layer 145 consisting of a 3rd semiconductor, a 3rd well layer 146 consisting of a 2nd semiconductor, and a 4th barrier layer 147 consisting of the 1st semiconductor in order. Consequently, an active layer which decreases in the absorption when an electric field is applied is used, so the optical modulator which is increased in waveguide length, small in on-state loss, and large in the on-off ratio is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光情報処理等に用いる光論理素子、特に光変調
器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical logic element used for optical information processing and the like, and in particular to an optical modulator.

〔従来の技術〕[Conventional technology]

近年、光の持つ高速性を利用したデジタル情報処理が注
目を集めている。このためには光を制御する論理素子の
開発が必要である。そのうちの一つとして光信号を電気
的にオン・オフする光変調器がある。
In recent years, digital information processing that takes advantage of the high speed of light has attracted attention. This requires the development of logic elements that control light. One of them is an optical modulator that electrically turns on and off optical signals.

従来、光変調器として第3図に示す構造がエレクトロニ
クス・レターズ(Electronics Lette
rs)21巻、693頁、 (1985)においてウッ
ド(Wood T、H,)等によって報告されている。
Conventionally, the structure shown in FIG. 3 as an optical modulator is called Electronics Letters.
rs) Vol. 21, p. 693, (1985) by Wood (T. H.) et al.

この光変調器は、GaAsとGaAlAsの薄膜を交互
に積層した量子井戸層31を導電型がそれぞれp型とn
型のGaAlAsからなるクラッド層32.33ではさ
んだpin構造である。なお図中、11はn型InP基
板、17はn側電極、18はp側電極である。このよう
な構造の光変調器において、一方の端面から入射した光
は量子井戸層31を通って他方の端面から出射する。電
界の印加によって、実効的なバンドギャップが減少する
ため、量子井戸の励起子の低エネルギー側の光に対する
吸収係数が大きくなることを利用してスイッチングを行
っている。
This optical modulator has quantum well layers 31 that are made of thin films of GaAs and GaAlAs that are alternately laminated with conductivity types of p-type and n-type, respectively.
It has a pin structure sandwiched between cladding layers 32 and 33 made of GaAlAs. In the figure, 11 is an n-type InP substrate, 17 is an n-side electrode, and 18 is a p-side electrode. In the optical modulator having such a structure, light incident from one end face passes through the quantum well layer 31 and exits from the other end face. Application of an electric field reduces the effective bandgap, so switching is performed by taking advantage of the fact that the absorption coefficient of excitons in the quantum well for light on the low energy side increases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上に述べた従来の光変調器では量子井戸の光に対する
吸収係数の変化を利用しているが、電界が印加されてい
ない状態でも低エネルギー側の吸収係数が比較的大きい
ため、オフ状態の出力を小さくするために導波路の長さ
を大きくすると、オン状態での損失が大きくなってしま
うという欠点をもつ。
The conventional optical modulators described above utilize changes in the absorption coefficient of quantum wells for light, but the absorption coefficient on the low energy side is relatively large even when no electric field is applied, so the output in the off state is If the length of the waveguide is increased in order to reduce

本発明の目的は、オン状態での損失が小さ(、オン・オ
フ比を大きくできる光変調器を提供することにある。
An object of the present invention is to provide an optical modulator with low loss in the on state (and a high on/off ratio).

〔課題を解決するための手段〕[Means to solve the problem]

本発明における光変調器は、第1の半導体からなる第1
の障壁層、前記第1の半導体よりも禁制帯幅の小さな第
2の半導体からなる第1の井戸層、前記第2の半導体よ
りも禁制帯幅の大きな第3の半導体からなる第2の障壁
層、前記第2の半導体よりも禁制帯幅の小さな第4の半
導体からなる第2の井戸層、前記第3の半導体からなる
第3の障壁層、前記第2の半導体からなる第3の井戸層
、前記第1の半導体からなる第4の障壁層を順次積層し
た多重量子井戸構造を光制御層として有することを特徴
とする。
The optical modulator in the present invention includes a first optical modulator made of a first semiconductor.
a first well layer made of a second semiconductor having a smaller bandgap than the first semiconductor; a second barrier made of a third semiconductor having a larger bandgap than the second semiconductor. a second well layer made of a fourth semiconductor having a smaller band gap than the second semiconductor, a third barrier layer made of the third semiconductor, and a third well made of the second semiconductor. The optical control layer is characterized by having a multi-quantum well structure in which a fourth barrier layer made of the first semiconductor is sequentially laminated as a light control layer.

〔作 用〕[For production]

本発明における能動層となる多重量子井戸構造のエネル
ギーバンドダイアダラムは第2図のようになる。第2図
(a)は電界が印加されていない場合、第2図(b)は
電界が印加されている場合を示しており、図中、21は
電子に対するポテンシャル、22は正孔に対するポテン
シャル、23は電子の波動関数の包絡線、24は正孔の
波動関数の包絡線である。また、141は第1の障壁層
、142は第1の井戸層、143は第2の障壁層、14
4は第2の井戸層、145は第3の障壁層、146は第
3の井戸層、147は第4の障壁層を示している。
The energy band diagram of the multi-quantum well structure serving as the active layer in the present invention is shown in FIG. FIG. 2(a) shows the case when no electric field is applied, and FIG. 2(b) shows the case when the electric field is applied. In the figure, 21 is the potential for electrons, 22 is the potential for holes, 23 is the envelope of the electron wave function, and 24 is the envelope of the hole wave function. Further, 141 is a first barrier layer, 142 is a first well layer, 143 is a second barrier layer, 14
4 is a second well layer, 145 is a third barrier layer, 146 is a third well layer, and 147 is a fourth barrier layer.

能動層において、電子と正孔は第2の井戸層144に閉
じ込められる。電界が印加されないとき、電子と正孔の
波動関数の重なりが大きく、励起子の振動子強度も大き
い。この状態での透過率は能動層による吸収が大きいた
めオフ状態となる。
In the active layer, electrons and holes are confined in the second well layer 144. When no electric field is applied, the wave functions of electrons and holes overlap greatly, and the oscillator strength of excitons is also large. In this state, the transmittance is in an off state due to large absorption by the active layer.

電界が印加されると第2図(b)のように電子の波動関
数は第3の井戸層146にしみ出すが、正孔の波動関数
は第2の井戸層144にとどまるため、お互いの重なり
が小さくなる。このため、励起子の振動子強度が小さく
なって、吸収係数が減少する。能動層による吸収の減少
により光の透過率は急激に増大し、オン状態となる。
When an electric field is applied, the wave function of electrons seeps into the third well layer 146 as shown in FIG. 2(b), but the wave function of holes remains in the second well layer 144, so they overlap each other. becomes smaller. Therefore, the oscillator strength of the exciton decreases, and the absorption coefficient decreases. Due to the decrease in absorption by the active layer, the light transmittance increases rapidly, resulting in an on state.

本発明は、電界が印加されている時の吸収が小さな多重
量子井戸構造を能動層に用いているため、導波路の長さ
を大きくしてもオン状態での損失が小さくオン・オフ比
の大きな光変調器が実現できる。
The present invention uses a multi-quantum well structure in the active layer that has low absorption when an electric field is applied, so even if the length of the waveguide is increased, the loss in the on state is small and the on-off ratio is low. A large optical modulator can be realized.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す構成図である。 FIG. 1 is a block diagram showing an embodiment of the present invention.

この光変調器は、次のようにして製造される。すなわち
、n型InPの基板11の上にSiをドープした厚さ0
.5μmのInPによるコンタクト層12.3iをドー
プした厚さ1μmのInPによるn −クラッド層13
、厚さ20nmのノンドープInPからなる第1の障壁
層141.厚さ10nmのノンドープI n(1,1s
Gao、5sASo、tqPo、g+からなる第1の井
戸F)1142 、厚さ3imのノンドープInPから
なる第2の障壁層143.厚さ5imのノンドープI 
n 00S3G a o、 4?A Sからなる第2の
井戸層144、厚さ3imのノンドープInPの第3の
障壁層145.厚さ10nmのノンドープIn0.6S
G a 6,15A s O,?9pH,!Iからなる
第3の井戸層146、厚さ20nmのノンドープInP
からなる第4の障壁層147を順次101iずつ積層し
た多重量子井戸構造からなる光制御層14、Mgをドー
プした厚さ1μmのInPによるp−クラッド層15、
更に、Znをドープした厚さ0.1μmのp−1nGa
AsPのコンタクト層16を順次積層し、n側電極17
とp側電極18とをそれぞれ形成する。InGaAs 
Pはバンドギャップ0.95eVの組成である。
This optical modulator is manufactured as follows. That is, a substrate 11 of n-type InP is doped with Si and has a thickness of 0.
.. n-cladding layer 13 of 1 μm thick InP doped with a contact layer 12.3i of 5 μm InP;
, a first barrier layer 141 . made of non-doped InP with a thickness of 20 nm. Non-doped I n (1,1s
A first well F) 1142 made of Gao, 5sASo, tqPo, g+, and a second barrier layer 143 made of non-doped InP with a thickness of 3 mm. 5mm thick non-doped I
n 00S3G ao, 4? A second well layer 144 made of AS, and a third barrier layer 145 made of non-doped InP with a thickness of 3 mm. 10nm thick non-doped In0.6S
G a 6,15 A s O,? 9pH,! Third well layer 146 made of I, non-doped InP with a thickness of 20 nm
a light control layer 14 having a multi-quantum well structure in which a fourth barrier layer 147 is sequentially stacked 101i each; a p-cladding layer 15 made of Mg-doped InP with a thickness of 1 μm;
Furthermore, p-1nGa with a thickness of 0.1 μm doped with Zn
AsP contact layers 16 are sequentially laminated to form an n-side electrode 17.
and p-side electrode 18 are formed, respectively. InGaAs
P has a composition with a band gap of 0.95 eV.

幅10μmの導波路部分100と100μmφの電極パ
ッド110を残して、その他の部分を基板11までエツ
チングして除去する。導波路の長さは200μmである
Leaving the waveguide portion 100 with a width of 10 μm and the electrode pad 110 with a diameter of 100 μm, the other portions are etched and removed up to the substrate 11. The length of the waveguide is 200 μm.

n側電極17とp側電極18の間の電圧が一2vの時、
電子と正孔の空間的な重なりは小さく、光制御層14の
多重量子井戸構造における励起子の振動子強度も小さく
なっている。例えば、0.954 e Vの光に対する
吸収係数の大きさは12cm−Iである。
When the voltage between the n-side electrode 17 and the p-side electrode 18 is 12V,
The spatial overlap between electrons and holes is small, and the oscillator strength of excitons in the multiple quantum well structure of the light control layer 14 is also small. For example, the magnitude of the absorption coefficient for light of 0.954 eV is 12 cm-I.

このときの挿入損失は1dBである。電圧を小さくする
と電子の正孔の空間的な重なりが大きくなるため、光制
御7114の多重量子井戸構造の吸収係数が増加するた
め透過率が減少する。
The insertion loss at this time is 1 dB. When the voltage is reduced, the spatial overlap of electrons and holes increases, so the absorption coefficient of the multi-quantum well structure of the light control 7114 increases and the transmittance decreases.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したように本発明によれば、オン状態での損
失が小さく、オン・オフ比の大きな光変調器が得られる
As described in detail above, according to the present invention, an optical modulator with low loss in the on state and a large on/off ratio can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は本発
明における光制御層の多重量子井戸構造のエネルギーバ
ンドを表す模式図、第3図は従来の光変調器の一例を示
す構成図である。 11・・・・基板 12・・・・コンタクト層 13・・・・クラッド層 14・・・・光制御層 141  ・・・第1の障壁層 142  ・・・第1の井戸層 143  ・・・第2の障壁層 144  ・・・第2の井戸層 145  ・・・第3の障壁層 146  ・・・第3の井戸層 147  ・・・第4の障壁層 15・・・・クラッド層 16・・・・コンタクト層 17・・・・n側電極 18・・・・p側電極 代理人 弁理士  岩 佐  義 幸
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a schematic diagram showing the energy band of the multiple quantum well structure of the light control layer in the present invention, and FIG. 3 is an example of a conventional optical modulator. FIG. 11...Substrate 12...Contact layer 13...Clad layer 14...Light control layer 141...First barrier layer 142...First well layer 143... Second barrier layer 144... Second well layer 145... Third barrier layer 146... Third well layer 147... Fourth barrier layer 15... Cladding layer 16... ... Contact layer 17 ... N-side electrode 18 ... P-side electrode agent Patent attorney Yoshiyuki Iwasa

Claims (1)

【特許請求の範囲】[Claims] (1)第1の半導体からなる第1の障壁層、前記第1の
半導体よりも禁制帯幅の小さな第2の半導体からなる第
1の井戸層、前記第2の半導体よりも禁制帯幅の大きな
第3の半導体からなる第2の障壁層、前記第2の半導体
よりも禁制帯幅の小さな第4の半導体からなる第2の井
戸層、前記第3の半導体からなる第3の障壁層、前記第
2の半導体からなる第3の井戸層、前記第1の半導体か
らなる第4の障壁層を順次積層した多重量子井戸構造を
光制御層として有することを特徴とする光変調器。
(1) A first barrier layer made of a first semiconductor, a first well layer made of a second semiconductor with a smaller forbidden band width than the first semiconductor, and a first well layer made of a second semiconductor with a smaller forbidden band width than the second semiconductor. a second barrier layer made of a large third semiconductor; a second well layer made of a fourth semiconductor with a smaller forbidden band width than the second semiconductor; a third barrier layer made of the third semiconductor; An optical modulator having, as an optical control layer, a multi-quantum well structure in which a third well layer made of the second semiconductor and a fourth barrier layer made of the first semiconductor are sequentially laminated.
JP2746288A 1988-02-10 1988-02-10 Optical modulator Pending JPH01204019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2746288A JPH01204019A (en) 1988-02-10 1988-02-10 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2746288A JPH01204019A (en) 1988-02-10 1988-02-10 Optical modulator

Publications (1)

Publication Number Publication Date
JPH01204019A true JPH01204019A (en) 1989-08-16

Family

ID=12221781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2746288A Pending JPH01204019A (en) 1988-02-10 1988-02-10 Optical modulator

Country Status (1)

Country Link
JP (1) JPH01204019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483687A2 (en) * 1990-10-27 1992-05-06 Canon Kabushiki Kaisha Optical device with an asymmetric dual quantum well structure
KR100500097B1 (en) * 2002-03-01 2005-07-11 미쓰비시덴키 가부시키가이샤 Optical modulator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483687A2 (en) * 1990-10-27 1992-05-06 Canon Kabushiki Kaisha Optical device with an asymmetric dual quantum well structure
US5569934A (en) * 1990-10-27 1996-10-29 Canon Kabushiki Kaisha Optical device with an asymmetric dual quantum well structure
EP0483687B1 (en) * 1990-10-27 1997-07-23 Canon Kabushiki Kaisha Optical device with an asymmetric dual quantum well structure
KR100500097B1 (en) * 2002-03-01 2005-07-11 미쓰비시덴키 가부시키가이샤 Optical modulator
US6978055B2 (en) 2002-03-01 2005-12-20 Mitsubishi Denki Kabushiki Kaisha Optical modulator

Similar Documents

Publication Publication Date Title
JP3227661B2 (en) Strained quantum well structure element and optical device having the same
JPH0373154B2 (en)
JPH05283791A (en) Surface emission type semiconductor laser
JPH01257386A (en) Optical amplifier
JP3145718B2 (en) Semiconductor laser
JPH01204019A (en) Optical modulator
JP2513265B2 (en) Light modulator
JPH08274295A (en) Manufacture of optical semiconductor device
JPS60145687A (en) Semiconductor laser
JPH08288586A (en) 2mum band semiconductor laser
JPH07183614A (en) Distorted multiple quantum well optical device
JPH0823136A (en) Multiple quantum well semiconductor laser
JPH08242039A (en) Semiconductor quantum well structure
JPH08248363A (en) Waveguide type multiple quantum well optical control element
JP2748838B2 (en) Quantum well semiconductor laser device
JPH04241487A (en) Semiconductor laser
JPH03290614A (en) Optical modulator
JPH08316583A (en) Semiconductor optical element
JPH0216525A (en) Optical modulator
JPH0992925A (en) Strain multiple quantum well semiconductor laser and its manufacture
JPH0831656B2 (en) Optical amplifier
JP2000305055A (en) Electric field absorption optical modulator
JP4103490B2 (en) Light modulator
JP2636754B2 (en) Semiconductor laser optical amplifier
JPH0682852A (en) Semiconductor device