JPH01204019A - Optical modulator - Google Patents
Optical modulatorInfo
- Publication number
- JPH01204019A JPH01204019A JP2746288A JP2746288A JPH01204019A JP H01204019 A JPH01204019 A JP H01204019A JP 2746288 A JP2746288 A JP 2746288A JP 2746288 A JP2746288 A JP 2746288A JP H01204019 A JPH01204019 A JP H01204019A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- layer
- barrier layer
- optical modulator
- well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 25
- 239000004065 semiconductor Substances 0.000 claims abstract description 29
- 230000004888 barrier function Effects 0.000 claims abstract description 23
- 238000010521 absorption reaction Methods 0.000 abstract description 10
- 230000005684 electric field Effects 0.000 abstract description 8
- 230000007423 decrease Effects 0.000 abstract description 5
- 238000010030 laminating Methods 0.000 abstract 1
- 230000005428 wave function Effects 0.000 description 5
- 238000005253 cladding Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 3
- 230000010365 information processing Effects 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光情報処理等に用いる光論理素子、特に光変調
器に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical logic element used for optical information processing and the like, and in particular to an optical modulator.
近年、光の持つ高速性を利用したデジタル情報処理が注
目を集めている。このためには光を制御する論理素子の
開発が必要である。そのうちの一つとして光信号を電気
的にオン・オフする光変調器がある。In recent years, digital information processing that takes advantage of the high speed of light has attracted attention. This requires the development of logic elements that control light. One of them is an optical modulator that electrically turns on and off optical signals.
従来、光変調器として第3図に示す構造がエレクトロニ
クス・レターズ(Electronics Lette
rs)21巻、693頁、 (1985)においてウッ
ド(Wood T、H,)等によって報告されている。Conventionally, the structure shown in FIG. 3 as an optical modulator is called Electronics Letters.
rs) Vol. 21, p. 693, (1985) by Wood (T. H.) et al.
この光変調器は、GaAsとGaAlAsの薄膜を交互
に積層した量子井戸層31を導電型がそれぞれp型とn
型のGaAlAsからなるクラッド層32.33ではさ
んだpin構造である。なお図中、11はn型InP基
板、17はn側電極、18はp側電極である。このよう
な構造の光変調器において、一方の端面から入射した光
は量子井戸層31を通って他方の端面から出射する。電
界の印加によって、実効的なバンドギャップが減少する
ため、量子井戸の励起子の低エネルギー側の光に対する
吸収係数が大きくなることを利用してスイッチングを行
っている。This optical modulator has quantum well layers 31 that are made of thin films of GaAs and GaAlAs that are alternately laminated with conductivity types of p-type and n-type, respectively.
It has a pin structure sandwiched between cladding layers 32 and 33 made of GaAlAs. In the figure, 11 is an n-type InP substrate, 17 is an n-side electrode, and 18 is a p-side electrode. In the optical modulator having such a structure, light incident from one end face passes through the quantum well layer 31 and exits from the other end face. Application of an electric field reduces the effective bandgap, so switching is performed by taking advantage of the fact that the absorption coefficient of excitons in the quantum well for light on the low energy side increases.
以上に述べた従来の光変調器では量子井戸の光に対する
吸収係数の変化を利用しているが、電界が印加されてい
ない状態でも低エネルギー側の吸収係数が比較的大きい
ため、オフ状態の出力を小さくするために導波路の長さ
を大きくすると、オン状態での損失が大きくなってしま
うという欠点をもつ。The conventional optical modulators described above utilize changes in the absorption coefficient of quantum wells for light, but the absorption coefficient on the low energy side is relatively large even when no electric field is applied, so the output in the off state is If the length of the waveguide is increased in order to reduce
本発明の目的は、オン状態での損失が小さ(、オン・オ
フ比を大きくできる光変調器を提供することにある。An object of the present invention is to provide an optical modulator with low loss in the on state (and a high on/off ratio).
本発明における光変調器は、第1の半導体からなる第1
の障壁層、前記第1の半導体よりも禁制帯幅の小さな第
2の半導体からなる第1の井戸層、前記第2の半導体よ
りも禁制帯幅の大きな第3の半導体からなる第2の障壁
層、前記第2の半導体よりも禁制帯幅の小さな第4の半
導体からなる第2の井戸層、前記第3の半導体からなる
第3の障壁層、前記第2の半導体からなる第3の井戸層
、前記第1の半導体からなる第4の障壁層を順次積層し
た多重量子井戸構造を光制御層として有することを特徴
とする。The optical modulator in the present invention includes a first optical modulator made of a first semiconductor.
a first well layer made of a second semiconductor having a smaller bandgap than the first semiconductor; a second barrier made of a third semiconductor having a larger bandgap than the second semiconductor. a second well layer made of a fourth semiconductor having a smaller band gap than the second semiconductor, a third barrier layer made of the third semiconductor, and a third well made of the second semiconductor. The optical control layer is characterized by having a multi-quantum well structure in which a fourth barrier layer made of the first semiconductor is sequentially laminated as a light control layer.
本発明における能動層となる多重量子井戸構造のエネル
ギーバンドダイアダラムは第2図のようになる。第2図
(a)は電界が印加されていない場合、第2図(b)は
電界が印加されている場合を示しており、図中、21は
電子に対するポテンシャル、22は正孔に対するポテン
シャル、23は電子の波動関数の包絡線、24は正孔の
波動関数の包絡線である。また、141は第1の障壁層
、142は第1の井戸層、143は第2の障壁層、14
4は第2の井戸層、145は第3の障壁層、146は第
3の井戸層、147は第4の障壁層を示している。The energy band diagram of the multi-quantum well structure serving as the active layer in the present invention is shown in FIG. FIG. 2(a) shows the case when no electric field is applied, and FIG. 2(b) shows the case when the electric field is applied. In the figure, 21 is the potential for electrons, 22 is the potential for holes, 23 is the envelope of the electron wave function, and 24 is the envelope of the hole wave function. Further, 141 is a first barrier layer, 142 is a first well layer, 143 is a second barrier layer, 14
4 is a second well layer, 145 is a third barrier layer, 146 is a third well layer, and 147 is a fourth barrier layer.
能動層において、電子と正孔は第2の井戸層144に閉
じ込められる。電界が印加されないとき、電子と正孔の
波動関数の重なりが大きく、励起子の振動子強度も大き
い。この状態での透過率は能動層による吸収が大きいた
めオフ状態となる。In the active layer, electrons and holes are confined in the second well layer 144. When no electric field is applied, the wave functions of electrons and holes overlap greatly, and the oscillator strength of excitons is also large. In this state, the transmittance is in an off state due to large absorption by the active layer.
電界が印加されると第2図(b)のように電子の波動関
数は第3の井戸層146にしみ出すが、正孔の波動関数
は第2の井戸層144にとどまるため、お互いの重なり
が小さくなる。このため、励起子の振動子強度が小さく
なって、吸収係数が減少する。能動層による吸収の減少
により光の透過率は急激に増大し、オン状態となる。When an electric field is applied, the wave function of electrons seeps into the third well layer 146 as shown in FIG. 2(b), but the wave function of holes remains in the second well layer 144, so they overlap each other. becomes smaller. Therefore, the oscillator strength of the exciton decreases, and the absorption coefficient decreases. Due to the decrease in absorption by the active layer, the light transmittance increases rapidly, resulting in an on state.
本発明は、電界が印加されている時の吸収が小さな多重
量子井戸構造を能動層に用いているため、導波路の長さ
を大きくしてもオン状態での損失が小さくオン・オフ比
の大きな光変調器が実現できる。The present invention uses a multi-quantum well structure in the active layer that has low absorption when an electric field is applied, so even if the length of the waveguide is increased, the loss in the on state is small and the on-off ratio is low. A large optical modulator can be realized.
第1図は本発明の一実施例を示す構成図である。 FIG. 1 is a block diagram showing an embodiment of the present invention.
この光変調器は、次のようにして製造される。すなわち
、n型InPの基板11の上にSiをドープした厚さ0
.5μmのInPによるコンタクト層12.3iをドー
プした厚さ1μmのInPによるn −クラッド層13
、厚さ20nmのノンドープInPからなる第1の障壁
層141.厚さ10nmのノンドープI n(1,1s
Gao、5sASo、tqPo、g+からなる第1の井
戸F)1142 、厚さ3imのノンドープInPから
なる第2の障壁層143.厚さ5imのノンドープI
n 00S3G a o、 4?A Sからなる第2の
井戸層144、厚さ3imのノンドープInPの第3の
障壁層145.厚さ10nmのノンドープIn0.6S
G a 6,15A s O,?9pH,!Iからなる
第3の井戸層146、厚さ20nmのノンドープInP
からなる第4の障壁層147を順次101iずつ積層し
た多重量子井戸構造からなる光制御層14、Mgをドー
プした厚さ1μmのInPによるp−クラッド層15、
更に、Znをドープした厚さ0.1μmのp−1nGa
AsPのコンタクト層16を順次積層し、n側電極17
とp側電極18とをそれぞれ形成する。InGaAs
Pはバンドギャップ0.95eVの組成である。This optical modulator is manufactured as follows. That is, a substrate 11 of n-type InP is doped with Si and has a thickness of 0.
.. n-cladding layer 13 of 1 μm thick InP doped with a contact layer 12.3i of 5 μm InP;
, a first barrier layer 141 . made of non-doped InP with a thickness of 20 nm. Non-doped I n (1,1s
A first well F) 1142 made of Gao, 5sASo, tqPo, g+, and a second barrier layer 143 made of non-doped InP with a thickness of 3 mm. 5mm thick non-doped I
n 00S3G ao, 4? A second well layer 144 made of AS, and a third barrier layer 145 made of non-doped InP with a thickness of 3 mm. 10nm thick non-doped In0.6S
G a 6,15 A s O,? 9pH,! Third well layer 146 made of I, non-doped InP with a thickness of 20 nm
a light control layer 14 having a multi-quantum well structure in which a fourth barrier layer 147 is sequentially stacked 101i each; a p-cladding layer 15 made of Mg-doped InP with a thickness of 1 μm;
Furthermore, p-1nGa with a thickness of 0.1 μm doped with Zn
AsP contact layers 16 are sequentially laminated to form an n-side electrode 17.
and p-side electrode 18 are formed, respectively. InGaAs
P has a composition with a band gap of 0.95 eV.
幅10μmの導波路部分100と100μmφの電極パ
ッド110を残して、その他の部分を基板11までエツ
チングして除去する。導波路の長さは200μmである
。Leaving the waveguide portion 100 with a width of 10 μm and the electrode pad 110 with a diameter of 100 μm, the other portions are etched and removed up to the substrate 11. The length of the waveguide is 200 μm.
n側電極17とp側電極18の間の電圧が一2vの時、
電子と正孔の空間的な重なりは小さく、光制御層14の
多重量子井戸構造における励起子の振動子強度も小さく
なっている。例えば、0.954 e Vの光に対する
吸収係数の大きさは12cm−Iである。When the voltage between the n-side electrode 17 and the p-side electrode 18 is 12V,
The spatial overlap between electrons and holes is small, and the oscillator strength of excitons in the multiple quantum well structure of the light control layer 14 is also small. For example, the magnitude of the absorption coefficient for light of 0.954 eV is 12 cm-I.
このときの挿入損失は1dBである。電圧を小さくする
と電子の正孔の空間的な重なりが大きくなるため、光制
御7114の多重量子井戸構造の吸収係数が増加するた
め透過率が減少する。The insertion loss at this time is 1 dB. When the voltage is reduced, the spatial overlap of electrons and holes increases, so the absorption coefficient of the multi-quantum well structure of the light control 7114 increases and the transmittance decreases.
以上、詳述したように本発明によれば、オン状態での損
失が小さく、オン・オフ比の大きな光変調器が得られる
。As described in detail above, according to the present invention, an optical modulator with low loss in the on state and a large on/off ratio can be obtained.
第1図は本発明の一実施例を示す構成図、第2図は本発
明における光制御層の多重量子井戸構造のエネルギーバ
ンドを表す模式図、第3図は従来の光変調器の一例を示
す構成図である。
11・・・・基板
12・・・・コンタクト層
13・・・・クラッド層
14・・・・光制御層
141 ・・・第1の障壁層
142 ・・・第1の井戸層
143 ・・・第2の障壁層
144 ・・・第2の井戸層
145 ・・・第3の障壁層
146 ・・・第3の井戸層
147 ・・・第4の障壁層
15・・・・クラッド層
16・・・・コンタクト層
17・・・・n側電極
18・・・・p側電極
代理人 弁理士 岩 佐 義 幸FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a schematic diagram showing the energy band of the multiple quantum well structure of the light control layer in the present invention, and FIG. 3 is an example of a conventional optical modulator. FIG. 11...Substrate 12...Contact layer 13...Clad layer 14...Light control layer 141...First barrier layer 142...First well layer 143... Second barrier layer 144... Second well layer 145... Third barrier layer 146... Third well layer 147... Fourth barrier layer 15... Cladding layer 16... ... Contact layer 17 ... N-side electrode 18 ... P-side electrode agent Patent attorney Yoshiyuki Iwasa
Claims (1)
半導体よりも禁制帯幅の小さな第2の半導体からなる第
1の井戸層、前記第2の半導体よりも禁制帯幅の大きな
第3の半導体からなる第2の障壁層、前記第2の半導体
よりも禁制帯幅の小さな第4の半導体からなる第2の井
戸層、前記第3の半導体からなる第3の障壁層、前記第
2の半導体からなる第3の井戸層、前記第1の半導体か
らなる第4の障壁層を順次積層した多重量子井戸構造を
光制御層として有することを特徴とする光変調器。(1) A first barrier layer made of a first semiconductor, a first well layer made of a second semiconductor with a smaller forbidden band width than the first semiconductor, and a first well layer made of a second semiconductor with a smaller forbidden band width than the second semiconductor. a second barrier layer made of a large third semiconductor; a second well layer made of a fourth semiconductor with a smaller forbidden band width than the second semiconductor; a third barrier layer made of the third semiconductor; An optical modulator having, as an optical control layer, a multi-quantum well structure in which a third well layer made of the second semiconductor and a fourth barrier layer made of the first semiconductor are sequentially laminated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2746288A JPH01204019A (en) | 1988-02-10 | 1988-02-10 | Optical modulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2746288A JPH01204019A (en) | 1988-02-10 | 1988-02-10 | Optical modulator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01204019A true JPH01204019A (en) | 1989-08-16 |
Family
ID=12221781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2746288A Pending JPH01204019A (en) | 1988-02-10 | 1988-02-10 | Optical modulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01204019A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0483687A2 (en) * | 1990-10-27 | 1992-05-06 | Canon Kabushiki Kaisha | Optical device with an asymmetric dual quantum well structure |
KR100500097B1 (en) * | 2002-03-01 | 2005-07-11 | 미쓰비시덴키 가부시키가이샤 | Optical modulator |
-
1988
- 1988-02-10 JP JP2746288A patent/JPH01204019A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0483687A2 (en) * | 1990-10-27 | 1992-05-06 | Canon Kabushiki Kaisha | Optical device with an asymmetric dual quantum well structure |
US5569934A (en) * | 1990-10-27 | 1996-10-29 | Canon Kabushiki Kaisha | Optical device with an asymmetric dual quantum well structure |
EP0483687B1 (en) * | 1990-10-27 | 1997-07-23 | Canon Kabushiki Kaisha | Optical device with an asymmetric dual quantum well structure |
KR100500097B1 (en) * | 2002-03-01 | 2005-07-11 | 미쓰비시덴키 가부시키가이샤 | Optical modulator |
US6978055B2 (en) | 2002-03-01 | 2005-12-20 | Mitsubishi Denki Kabushiki Kaisha | Optical modulator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3227661B2 (en) | Strained quantum well structure element and optical device having the same | |
JPH0373154B2 (en) | ||
JPH05283791A (en) | Surface emission type semiconductor laser | |
JPH01257386A (en) | Optical amplifier | |
JP3145718B2 (en) | Semiconductor laser | |
JPH01204019A (en) | Optical modulator | |
JP2513265B2 (en) | Light modulator | |
JPH08274295A (en) | Manufacture of optical semiconductor device | |
JPS60145687A (en) | Semiconductor laser | |
JPH08288586A (en) | 2mum band semiconductor laser | |
JPH07183614A (en) | Distorted multiple quantum well optical device | |
JPH0823136A (en) | Multiple quantum well semiconductor laser | |
JPH08242039A (en) | Semiconductor quantum well structure | |
JPH08248363A (en) | Waveguide type multiple quantum well optical control element | |
JP2748838B2 (en) | Quantum well semiconductor laser device | |
JPH04241487A (en) | Semiconductor laser | |
JPH03290614A (en) | Optical modulator | |
JPH08316583A (en) | Semiconductor optical element | |
JPH0216525A (en) | Optical modulator | |
JPH0992925A (en) | Strain multiple quantum well semiconductor laser and its manufacture | |
JPH0831656B2 (en) | Optical amplifier | |
JP2000305055A (en) | Electric field absorption optical modulator | |
JP4103490B2 (en) | Light modulator | |
JP2636754B2 (en) | Semiconductor laser optical amplifier | |
JPH0682852A (en) | Semiconductor device |