JPH0356796A - Oil heating device - Google Patents

Oil heating device

Info

Publication number
JPH0356796A
JPH0356796A JP18986289A JP18986289A JPH0356796A JP H0356796 A JPH0356796 A JP H0356796A JP 18986289 A JP18986289 A JP 18986289A JP 18986289 A JP18986289 A JP 18986289A JP H0356796 A JPH0356796 A JP H0356796A
Authority
JP
Japan
Prior art keywords
oil
cooling water
steam
pipe
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18986289A
Other languages
Japanese (ja)
Other versions
JPH0769038B2 (en
Inventor
Yoshihiro Kizawa
木沢 良弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP18986289A priority Critical patent/JPH0769038B2/en
Publication of JPH0356796A publication Critical patent/JPH0356796A/en
Publication of JPH0769038B2 publication Critical patent/JPH0769038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To heat oil with good thermal efficiency and without causing any overheating by heating cooling water with steam supplied to the steam injector of a circulating pipe line, circulating the heated water through the circulating pipe line and heating low temperature oil running through an oil cooler. CONSTITUTION:A circulating pipe line 19 having a stop valve 20 and a steam injector 21 is provided between an inlet pipe 10a and an outlet pipe 10b for a heating media to an oil cooler 6. Furthermore, water while being circulated from the inlet pipe 10a to the circulating pipe line 19 via the heat exchange pipe 6a of the oil cooler 6, is heated with steam fed to the steam injector 21. the heated water is used to heat low temperature oil flowing through the oilcooler 6. According to the aforesaid construction, oil can be economically heated and oil deterioration can be prevented because the oil is not overheated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、軸受潤滑や機器操作用の油をその作用を円滑
にするために加温する油加温装置、特に火力,原子力発
電設備における油加温装Iに関する. (従来の技術〕 各種の機械設備では機器の回転や摺動部にはその作動を
円滑にするため、あるいは制御機器を作動するために油
が使用される.例えば火力.原子力発電プラントでは、
高温で高速回転するタービン車軸等の潤滑のために大量
の油が使用される.また同時にプラントの出力を負荷に
合わせて調整する制御機器やその指令に基づいてタービ
ンに流入する蒸気の量を加減する弁の操作等に圧油が使
用されている. このような油を使用するシステムとして第3図に示す系
統に横戒されたものが知られている.図において、油タ
ンク1内の油は油ボンブ2により圧力をもった油となっ
て油配管3を経て送り出される.この油の一部はそのま
ま制御機器4,弁操作器5等に使用され、また一部は油
冷却器6を経て所定の温度に冷却されて軸受7に供給さ
れる.軸受7ではタービン運転時軸受の摩fllil失
や高温のタービン車軸より伝播される熱により加温され
、温度が上昇して油タンク1へ戻る. 一方、冷却水は河川,海,冷却水タンク等の冷却水源8
より冷却水ボンブ9により送出され、油冷却器6内の伝
熱管6aに接続する冷却水配管10により各種被冷却器
11や油冷却器6に分配され、各冷却器で冷却作用をし
た後、排水路12へ排出される.なお冷却水配管10は
油冷却器用の入口弁17と出口弁18とを備えている.
油冷却器6ではこれを通流する油が輪受7で受けた熱を
冷却水と熱交換し油温を適正値に保っている. ところで油系統にて循環使用される油の温度はある適正
な範囲に維持される必要がある.すなわち、油温が高過
ぎる場合輪受7における冷却効果が減少すると共に、油
自体の劣化が早まり、早期に油を交換する必要が生ずる
.また、油温が低過ぎると、油の特性上、その粘度が著
しく増大し、流動性が悪くなるので、特にIllm機器
4や弁操作器5等では応答性が悪くなりI1能を満足し
なくなる.このため、通常、油タンク1内は55℃〜6
5℃程度に、また軸受7の人口では45℃〜50℃程度
になるように油冷却器6の冷却水量や油の循環量を調整
している. さて、通常運転中は上述の通りであるが、プラントが定
期点検等で長期停止した場合、油系統内の油は大気益と
同じまで温度が下がり、特に冬期や寒冷地ではO℃近く
まで油温か下がり、このままでは油の粘度が高くなり、
このため特に制御機器4や弁操作器5は十分な機能が発
揮できない.これを防止するため一般には第4図に示す
ように油タンク1にヒータを設置する場合が多い.ヒー
タはタンク内の油中に浸漬するもの (内部ヒータ13
)や、タンク外部から加温するもの (外部ヒータ14
)等が使用される.これらのヒータの加温源には一般に
電気や蒸気が使用され、これらのヒータによりプラント
起動に先だってタンク内浦温を30℃〜40℃程度まで
加温し、油系統機器が十分機能を発揮できる状態にして
いる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is an oil heating device that heats oil for bearing lubrication and equipment operation in order to smooth the operation thereof, particularly in thermal power and nuclear power generation equipment. Regarding oil heating device I. (Prior Art) Oil is used in various types of mechanical equipment to smooth the operation of rotating and sliding parts of equipment, or to operate control equipment.For example, oil is used in thermal power plants, nuclear power plants, etc.
Large amounts of oil are used to lubricate turbine axles that rotate at high temperatures and high speeds. At the same time, pressure oil is used for control equipment that adjusts the output of the plant according to the load, and for operating valves that adjust the amount of steam flowing into the turbine based on the commands of the control equipment. The system shown in Figure 3 is known as a system that uses such oil. In the figure, oil in an oil tank 1 is turned into oil under pressure by an oil bomb 2 and sent out through an oil pipe 3. A portion of this oil is used as it is for the control equipment 4, valve operating device 5, etc., and a portion is cooled to a predetermined temperature through an oil cooler 6 and supplied to the bearing 7. The bearing 7 is heated by wear and tear on the bearing during turbine operation and by heat propagated from the high temperature turbine axle, and the temperature rises and returns to the oil tank 1. On the other hand, cooling water comes from sources such as rivers, the sea, and cooling water tanks.
The coolant is sent out by a cooling water bomb 9, distributed to various cooled devices 11 and the oil cooler 6 by a cooling water pipe 10 connected to a heat transfer tube 6a in the oil cooler 6, and after performing a cooling action in each cooler, It is discharged to the drainage canal 12. The cooling water pipe 10 is equipped with an inlet valve 17 and an outlet valve 18 for an oil cooler.
In the oil cooler 6, the oil flowing through it exchanges the heat received by the ring bridge 7 with the cooling water to maintain the oil temperature at an appropriate value. By the way, the temperature of the oil that is circulated in the oil system must be maintained within a certain appropriate range. That is, if the oil temperature is too high, the cooling effect in the wheel bearing 7 will be reduced, and the oil itself will deteriorate more quickly, making it necessary to replace the oil sooner. Additionally, if the oil temperature is too low, due to the characteristics of the oil, its viscosity will increase significantly and its fluidity will deteriorate, resulting in poor response, especially in the Illm equipment 4, valve operator 5, etc., and the I1 performance will not be satisfied. .. For this reason, the temperature inside the oil tank 1 is usually between 55°C and 6°C.
The amount of cooling water in the oil cooler 6 and the amount of oil circulation are adjusted so that the temperature of the bearing 7 is around 5°C, or around 45°C to 50°C. Now, during normal operation, as mentioned above, if the plant is stopped for a long period of time for periodic inspections, the temperature of the oil in the oil system will drop to the same level as the atmospheric temperature, and especially in winter or in cold regions, the oil temperature will drop to near 0°C. As the temperature decreases, the viscosity of the oil increases,
For this reason, the control equipment 4 and the valve operating device 5 in particular cannot perform their full functions. To prevent this, a heater is generally installed in the oil tank 1 as shown in Figure 4. The heater is immersed in the oil in the tank (internal heater 13
), or one that heats the tank from outside (external heater 14
) etc. are used. Electricity or steam is generally used as the heating source for these heaters, and these heaters heat the tank interior to about 30°C to 40°C before starting the plant, so that the oil system equipment can fully function. I have to.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

プラント起動前の油タンク1内の油を加温する場合、内
部ヒータ13や外部ヒータ14による加熱は次のような
問題を有している. +11油を直接加熱するので、ヒータ近傍の油は局部加
熱されるおそれが大きく、このため油の劣化を早める. {2)内部ヒータ13の場合はヒータ表面に、外部ヒー
タ14の場合はタンク底内面に油の局部過熱による酸化
物が堆積し、ヒータの伝熱を妨げる.(3)油を直接遇
熱するため、操作上の不都合、例えば加温のし過ぎ、あ
るいは油面の低下による発熱体の露出等があった場合に
は最悪の場合油の引火による火災に至る心配があり、こ
のために各種の警報や安全装置が必要となり設備費が高
くなる. 上記の問題を解決するものとして油タンクの油をヒータ
により加熱する代わりに、冷却水を加温してこの加温さ
れた冷却水により油冷却器6を還流する油を昇温するこ
とが考えられ、この方法として第5図に示すように冷却
水配管IOの大口弁17と油冷却器6との間の入口管1
0aに蒸気吹込装置l5を設けることが考えられる.こ
の場合蒸気吹込装yl15に図示しない蒸気供給源から
蒸気配管16を経て蒸気を供給して冷却水を加温し、昇
温した冷却水を油冷却器6の伝熱管6aに通流すること
により油冷却器6の容器6b内を流れる油を加温する.
しかしながらこの方法では油冷却器出口温度を所定の温
度に昇温する場合、第6図の油冷却器における熱交換時
の温度線図に示すように熱的に極めて不経済になる.す
なわち油冷却器6に還流する油を加温する場合、入口温
度が5℃の冷却水を、蒸気吹込装置による蒸気供給によ
り50℃に昇温し、この昇温した冷却水を油冷却器にi
lI流することにより昇温した冷却水と油とを熱交換さ
せて油を加温し、入口温度35℃の油を出口温度4=5
℃の油に昇温する.この場合油にΔTl−5℃分のエネ
ルギーを与えるために冷却水にΔTt”40℃に相当す
る無駄なエネルギーを放水路12(第5図参照)に放出
するという問題がある. また、上記の問題を避けるためには、45℃の排水を排
水路へ捨てるのではなく、油冷却器6の人口へ還流して
やることができれば好都合であるが、それには新たなポ
ンプを必要とし、設備費が高くなるという問題がある.
また冷却水ポンブ9を使用した場合には各種被冷却器l
1へも温水が分配されることとなり極めて不都合である
. 本発明の目的は、油の加温時、油の劣化を防ぎ、低廉な
設備費で熱経済がよく、かつ安全にプラント起動前に油
系統の油温を所定の温度まで加温することのできる油加
温装直を提供することである.〔課題を解決するための
手段〕, 上記l[題を解決するために、本発明によれば容器内に
油流路と冷却水流路とを有し、前記油流路をi!流する
油と、前記容器に接続される入口弁を備えた入口管およ
び出口弁を備えた出口管から供給,排出されて前記冷却
水路を遣流する冷却水とが熱交換する油冷却器において
、前記油冷却器をバイパスして大口弁と出口弁のそれぞ
れと油冷却器との間の入口管と出口管に接続する還流管
路を設け、この還流管路に蒸気供給源からの蒸気を駆動
流体とし、冷却水を被駆動流体として冷却水を冷却水流
路に還流管路を経て循環させる蒸気インゼクタと弁とを
設けて油加温装置を構威するものとする. 〔作用〕 入口弁と出口弁のそれぞれと油冷却管との間の入口管と
出口管とに接続される還流管路と油冷却器の容器内の冷
却水流路とは入口管、出口管を介して冷却水の循環管路
を形威する.したがって還流管路に設けられた蒸気イン
ゼクタに蒸気供給源から蒸気を供給すれば、蒸気インゼ
クタのポンプ作用により冷却水は前記循環管路を循環し
て流れる.この際、循環する冷却水は蒸気インゼクタに
供給される蒸気により昇温されて冷却水塊路を流れる.
したがって油冷却器の油流路を流れる低温の油は昇温さ
れた冷却水と熱交換することにより加温される.なお、
蒸気の′iil1ilによる凝縮水は出口弁を微開して
循環管路外に流出させることができるので、循環管路に
は所定量の昇温された冷却水の循環が可能となる. 〔実施例〕 以下図面に基づいて本発明の実施例について説明する.
第1図は本発明の実施例による油加温装直の系統図であ
る.なお第1図および後述する第2図において第3図.
第5図と同一な部品には同じ符号を付し、その説明を省
略する.第1図において油冷却器6の伝熱管6aに連通
して油冷却器6に接続され、冷却水配管10の入口弁1
7と出口弁18のそれぞれと油冷却器6との間の入口管
10aと出口管tabとに接続して還流管路19が設け
られている.還流管路l9には図示しない蒸気供給源か
ら蒸気が蒸気管22を経て供給される蒸気インゼクタ2
1と止め弁20とが設けられている. z1 なお、第2図は第1図の蒸気シンゼクタ(ニ)と止め弁
20とを備えた還流管路19を備える油加温装直を配寛
した系統図である. つぎに上記の構威による油加温装置によりプラント起動
前の低温の油を加温する運転方法について説明する.油
系統内の油を加温する際には冷却水配管lOの入口弁1
7を全閉、出口弁18を微開にし、また還流管路l9の
止め弁20を全開にする.つぎに図示しない蒸気供給源
から蒸気を蒸気インゼクタ2lに供給すると、蒸気イン
ゼクタのポンプ作用により冷却水は還流管路19一入口
管10a一伝熱管6a→出口管10b→還流管路19の
順で循環するとともに冷却水は供給される蒸気により加
温されて昇温する. 一方、油系統の油は油ポンブ2を起動することにより油
冷却器6の容器6b内に流れ、伝熱管6aを流れる昇温
された冷却水(温水)と熱交換して加温され、油系統の
低温の油は昇温することができる. なお、蒸気インゼクタ2lに供給された蒸気は冷却水に
より凝縮されるが、この凝縮水量は微開にした山口弁1
8から放水路l2に排出される.このときの排水路へ排
出される温水は僅かであるため、損失となるエネルギー
は事実上無視できる.なお、冷却水側の温度が上がり過
ぎる場合には入口弁17を少し開いて冷たい冷却水を注
入することにより容易に温水の温度を調節できる.なお
、通常運転時には還流管路19の止め弁20を全閑にし
て冷却配管10に冷却水を通流させるので、冷却系統の
機能を妨げることはなく、また冷却水の流れを妨げるこ
ともない. 〔発明の効果〕 以上の説明から明らかなように、本発明によれば蒸気イ
ンゼクタと弁を備えた還流管路を設け、この還流管路と
油冷却器の冷却水流路とで循環管路を形威し、蒸気イン
ゼクタに供給される蒸気により冷却水を加温して温水に
しながらこの温水を循環管路に循環させ、油冷却器の油
波路を通流する低温の油を加温するようにしたことによ
り、熱経済がよく、また油を過熱することがないので、
油の劣化を起こさず、また、冷却水の温度の調節は極め
て容易であり、油を温水により加熱するので、火災等の
心配は全く無く、したがってその安全装置等の設備費が
節減できる. なお、本装置の使用はプラントの起動時の加温のみなら
ずプラントの新設時や改造時の油系統のフラッシング目
的での油の加温にも利用できるという効果もある
When heating the oil in the oil tank 1 before starting the plant, heating by the internal heater 13 or the external heater 14 has the following problems. +11 Since the oil is directly heated, there is a large risk that the oil near the heater will be locally heated, which will accelerate the deterioration of the oil. {2) Oxides due to local overheating of the oil accumulate on the heater surface in the case of the internal heater 13 and on the inner surface of the bottom of the tank in the case of the external heater 14, impeding heat transfer to the heater. (3) Since the oil is directly heated, if there is any operational inconvenience, such as overheating or exposure of the heating element due to a drop in the oil level, in the worst case, the oil may ignite and cause a fire. This is a cause for concern, and this requires various alarms and safety devices, which increases equipment costs. As a solution to the above problem, instead of heating the oil in the oil tank with a heater, it is possible to heat the cooling water and use the heated cooling water to raise the temperature of the oil flowing back through the oil cooler 6. In this method, as shown in FIG.
It is conceivable to install a steam blowing device l5 at 0a. In this case, by supplying steam from a steam supply source (not shown) to the steam blowing device yl 15 via the steam piping 16 to heat the cooling water, and passing the heated cooling water through the heat transfer tube 6a of the oil cooler 6. The oil flowing in the container 6b of the oil cooler 6 is heated.
However, this method becomes extremely uneconomical thermally when raising the oil cooler outlet temperature to a predetermined temperature, as shown in the temperature diagram during heat exchange in the oil cooler in Figure 6. In other words, when heating the oil flowing back into the oil cooler 6, cooling water whose inlet temperature is 5°C is heated to 50°C by steam supply from a steam blowing device, and this heated cooling water is sent to the oil cooler. i
The oil is heated by exchanging heat with the cooling water that has been heated by flowing lI, and the oil with an inlet temperature of 35°C is heated to an outlet temperature of 4=5.
Heat the oil to ℃. In this case, there is a problem in that in order to impart energy equivalent to ΔTl - 5°C to the oil, wasteful energy equivalent to ΔTt"40°C is released to the cooling water into the water discharge channel 12 (see Fig. 5). In order to avoid this problem, it would be convenient if the 45°C wastewater could be returned to the oil cooler 6 instead of being dumped into the drain, but this would require a new pump and the equipment cost would be high. There is a problem that.
In addition, when using the cooling water pump 9, various cooled equipment l
This is extremely inconvenient as hot water will also be distributed to 1. The purpose of the present invention is to prevent oil deterioration when heating oil, to achieve good thermal economy with low equipment costs, and to safely heat oil in an oil system to a predetermined temperature before starting a plant. The purpose is to provide a reheating system that can be used for heating oil. [Means for Solving the Problem] In order to solve the above problem, according to the present invention, an oil flow path and a cooling water flow path are provided in a container, and the oil flow path is connected to i! In an oil cooler in which heat is exchanged between flowing oil and cooling water supplied and discharged from an inlet pipe equipped with an inlet valve connected to the container and an outlet pipe equipped with an outlet valve and flowing through the cooling waterway. , a reflux line is provided which bypasses the oil cooler and connects to the inlet pipe and outlet pipe between each of the large mouth valve and the outlet valve and the oil cooler, and the reflux line is supplied with steam from a steam supply source. The oil heating device is constructed by providing a steam injector and a valve that circulate the cooling water into the cooling water flow path via the return pipe line with cooling water as the driving fluid and the driven fluid as the cooling water. [Function] The return pipe line connected to the inlet pipe and the outlet pipe between the inlet valve and the outlet valve and the oil cooling pipe, and the cooling water flow path in the container of the oil cooler, are connected to the inlet pipe and the outlet pipe. A cooling water circulation pipe is formed through the pipe. Therefore, if steam is supplied from a steam supply source to the steam injector provided in the reflux pipe, the cooling water will circulate and flow through the circulation pipe due to the pumping action of the steam injector. At this time, the circulating cooling water is heated by the steam supplied to the steam injector and flows through the cooling water mass path.
Therefore, the low temperature oil flowing through the oil flow path of the oil cooler is heated by exchanging heat with the heated cooling water. In addition,
Since the condensed water caused by the steam can flow out of the circulation pipe by slightly opening the outlet valve, it is possible to circulate a predetermined amount of heated cooling water in the circulation pipe. [Examples] Examples of the present invention will be described below based on the drawings.
Figure 1 is a system diagram of an oil heating system according to an embodiment of the present invention. In addition, in FIG. 1 and FIG. 2, which will be described later, FIG.
Parts that are the same as those in Fig. 5 are given the same reference numerals, and their explanations will be omitted. In FIG. 1, the inlet valve 1 of the cooling water pipe 10 is connected to the oil cooler 6 by communicating with the heat transfer tube 6a of the oil cooler 6.
A recirculation pipe 19 is provided connected to the inlet pipe 10a and the outlet pipe tab between the oil cooler 6 and the oil cooler 6 and the outlet valve 18, respectively. A steam injector 2 is supplied with steam from a steam supply source (not shown) through a steam pipe 22 to the reflux pipe l9.
1 and a stop valve 20 are provided. z1 In addition, FIG. 2 is a system diagram illustrating the arrangement of the oil heating system equipped with the reflux pipe 19 equipped with the steam synthesizer (d) and the stop valve 20 shown in FIG. 1. Next, we will explain the operation method for warming low-temperature oil before plant startup using the oil heating device with the above structure. When heating the oil in the oil system, use the inlet valve 1 of the cooling water pipe lO.
7 is fully closed, the outlet valve 18 is slightly opened, and the stop valve 20 of the reflux pipe 19 is fully opened. Next, when steam is supplied to the steam injector 2l from a steam supply source (not shown), the cooling water flows through the reflux pipe 19, the inlet pipe 10a, the heat transfer pipe 6a, the outlet pipe 10b, and the reflux pipe 19 in this order by the pumping action of the steam injector. As it circulates, the cooling water is heated by the supplied steam and its temperature rises. On the other hand, oil in the oil system flows into the container 6b of the oil cooler 6 by starting the oil pump 2, and is heated by exchanging heat with the heated cooling water (hot water) flowing through the heat transfer tube 6a. The cold oil in the system can be heated. Note that the steam supplied to the steam injector 2l is condensed by cooling water, but the amount of condensed water is reduced by the slightly opened Yamaguchi valve 1.
8 is discharged to the spillway l2. Since only a small amount of hot water is discharged into the drainage canal at this time, the energy loss can be virtually ignored. If the temperature on the cooling water side rises too much, the temperature of the hot water can be easily adjusted by slightly opening the inlet valve 17 and injecting cold cooling water. In addition, during normal operation, the stop valve 20 of the return pipe line 19 is completely idle and cooling water is allowed to flow through the cooling pipe 10, so that the function of the cooling system is not hindered, and the flow of the cooling water is not obstructed. .. [Effects of the Invention] As is clear from the above description, according to the present invention, a reflux line equipped with a steam injector and a valve is provided, and a circulation line is formed by this reflux line and the cooling water flow path of the oil cooler. The cooling water is heated by the steam supplied to the steam injector to make it hot water, and this warm water is circulated through the circulation pipe to warm the low-temperature oil flowing through the oil wave path of the oil cooler. This has good thermal economy and does not overheat the oil.
It does not cause oil deterioration, the temperature of the cooling water is extremely easy to adjust, and since the oil is heated with hot water, there is no risk of fire or the like, and the cost of equipment such as safety equipment can be reduced. Furthermore, the use of this device has the advantage that it can be used not only for heating the plant when it is started up, but also for heating oil for the purpose of flushing the oil system when constructing a new plant or remodeling the plant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による油加温装置の系統図、第
2図は第1図の油加温装置を備えた油系統と冷却水系統
を示す系統図、第3図は従来の油系統と冷却水系統を示
す系統図、第4図は第3図の油タンク内の油を加温する
手段を示す系統図、第5図は油系統と冷却水を加温する
蒸気吹込装置を備えた冷却水系統とを示す系統図、第6
図は第5図の冷却水系統を流れる温水と油系統を流れる
油との油冷却器における熱交換状態を示す温度線図であ
る. 6:油冷却器、6a:伝熱管、6b:容器、10a  
:入口管、tob :出口管、l7:入口弁、18:出
口弁、19:還流管路、20:止め弁、21:蒸気イン
ゼクタ.シーン 第1図 第2図 1z ,4一一コ 第3図 1z 第4図 −r 「   一一1 第5図 1z 第6図
Fig. 1 is a system diagram of an oil heating device according to an embodiment of the present invention, Fig. 2 is a system diagram showing an oil system and a cooling water system equipped with the oil heating device of Fig. 1, and Fig. 3 is a system diagram of a conventional oil heating device. Figure 4 is a system diagram showing the oil system and cooling water system. Figure 4 is a system diagram showing the means for heating the oil in the oil tank in Figure 3. Figure 5 is a steam blowing device that warms the oil system and cooling water. System diagram showing a cooling water system equipped with
The figure is a temperature diagram showing the state of heat exchange in the oil cooler between the hot water flowing through the cooling water system and the oil flowing through the oil system in Figure 5. 6: Oil cooler, 6a: Heat exchanger tube, 6b: Container, 10a
: inlet pipe, tob : outlet pipe, l7: inlet valve, 18: outlet valve, 19: reflux pipe, 20: stop valve, 21: steam injector. Scene Figure 1 Figure 2 1z , 411 Figure 3 1z Figure 4-r 111 Figure 5 1z Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1)容器内に油流路と冷却水流路とを有し、前記油流路
を通流する油と前記容器に接続される入口弁を備えた入
口管および出口弁を備えた出口管から供給、排出されて
前記冷却水路を通流する冷却水とが熱交換する油冷却器
において、この油冷却器をバイパスして入口弁と出口弁
のそれぞれと油冷却器との間の入口管と出口管とに接続
する還流管路を設け、この還流管路に蒸気供給源からの
蒸気を駆動流体とし、冷却水を被駆動流体として冷却水
を冷却水流路に還流管路を経て循環させる蒸気インゼク
タと弁とを設けたことを特徴とする油加温装置。
1) Having an oil flow path and a cooling water flow path in a container, and oil flowing through the oil flow path and supplied from an inlet pipe equipped with an inlet valve and an outlet pipe equipped with an outlet valve connected to the container. In an oil cooler in which the cooling water that is discharged and flows through the cooling water exchanges heat, the oil cooler is bypassed and an inlet pipe and an outlet are connected between the inlet valve and the outlet valve, respectively, and the oil cooler. A steam injector that is provided with a reflux pipe connected to the reflux pipe, uses steam from a steam supply source as a driving fluid in the reflux pipe, and circulates the cooling water into the cooling water flow path via the reflux pipe with cooling water as a driven fluid. An oil heating device characterized by comprising: and a valve.
JP18986289A 1989-07-21 1989-07-21 Oil heating device Expired - Lifetime JPH0769038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18986289A JPH0769038B2 (en) 1989-07-21 1989-07-21 Oil heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18986289A JPH0769038B2 (en) 1989-07-21 1989-07-21 Oil heating device

Publications (2)

Publication Number Publication Date
JPH0356796A true JPH0356796A (en) 1991-03-12
JPH0769038B2 JPH0769038B2 (en) 1995-07-26

Family

ID=16248426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18986289A Expired - Lifetime JPH0769038B2 (en) 1989-07-21 1989-07-21 Oil heating device

Country Status (1)

Country Link
JP (1) JPH0769038B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19634454A1 (en) * 1996-08-26 1998-03-05 Safematic Schmiertechnik Gmbh Heating arrangement for oil lubrication system
KR20030048520A (en) * 2001-12-12 2003-06-25 한영수 An ageing tester for analog timer
KR100445345B1 (en) * 2001-12-12 2004-08-25 한영수 A combination test jig for temperature controller
KR100445344B1 (en) * 2001-12-12 2004-08-25 한영수 A test jig for temperature controller
KR100465365B1 (en) * 2001-12-12 2005-01-13 한영수 Temperature controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19634454A1 (en) * 1996-08-26 1998-03-05 Safematic Schmiertechnik Gmbh Heating arrangement for oil lubrication system
KR20030048520A (en) * 2001-12-12 2003-06-25 한영수 An ageing tester for analog timer
KR100445345B1 (en) * 2001-12-12 2004-08-25 한영수 A combination test jig for temperature controller
KR100445344B1 (en) * 2001-12-12 2004-08-25 한영수 A test jig for temperature controller
KR100465365B1 (en) * 2001-12-12 2005-01-13 한영수 Temperature controller

Also Published As

Publication number Publication date
JPH0769038B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
RU2007109422A (en) VEHICLE OR STATIONARY POWER PLANT WITH INTERNAL COMBUSTION ENGINE WITH SUPPLY AS A DRIVE SOURCE
US4473063A (en) Solar heater
JP2015218626A (en) Heat energy recovery device and control method
US6109346A (en) Waste heat auxiliary tank system method and apparatus
US6644030B2 (en) Cooling systems and methods of cooling
CN201155358Y (en) Engine cooling apparatus
CN207922926U (en) Fuse salt pipe-line system and solar power plant
JPH0356796A (en) Oil heating device
JP5828219B2 (en) Cogeneration system, waste heat utilization apparatus, cogeneration system control method, and heat pump hot water supply apparatus
JPS628695B2 (en)
JP3862251B2 (en) Hot water generator
JP2019128073A (en) Hot water storage water heater
JPS591998A (en) Heat medium pressure control device for waste heat restrieving device
RU2134804C1 (en) System to maintain optimum temperature condition of internal combustion engine
JPH0327724B2 (en)
JP6403630B2 (en) Hot water storage unit
RU53731U1 (en) HEATING MACHINE COOLING SYSTEM
JP3961144B2 (en) Water heater with other functions
JPH09310933A (en) Waste heat recovering device for engine
JP3661648B2 (en) Hot water storage type combustion device
RU2211943C2 (en) System for pre-starting heating of internal combustion engine
JPS601020A (en) Bus heater
SU1659239A1 (en) System of diesel engine liquid cooling and city bus interior heating
JPH0280818A (en) Device for controlling temperature of bearing oil
JPS6133465Y2 (en)