JPH0327724B2 - - Google Patents

Info

Publication number
JPH0327724B2
JPH0327724B2 JP57063597A JP6359782A JPH0327724B2 JP H0327724 B2 JPH0327724 B2 JP H0327724B2 JP 57063597 A JP57063597 A JP 57063597A JP 6359782 A JP6359782 A JP 6359782A JP H0327724 B2 JPH0327724 B2 JP H0327724B2
Authority
JP
Japan
Prior art keywords
oil
temperature
lubricating oil
circulation system
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57063597A
Other languages
Japanese (ja)
Other versions
JPS58180706A (en
Inventor
Katsuyuki Sawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6359782A priority Critical patent/JPS58180706A/en
Publication of JPS58180706A publication Critical patent/JPS58180706A/en
Publication of JPH0327724B2 publication Critical patent/JPH0327724B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、発電プラントにおける蒸気タービン
の潤滑油温度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a lubricating oil temperature control device for a steam turbine in a power generation plant.

(従来の技術) 一般に、蒸気タービンや発電機(負荷回転機)
の各軸受の潤滑油は、回転軸の回転数が小さいと
き、その周速度が小であるため、軸受と回転軸と
の間に油膜が形成されにくいから、潤滑油の温度
を低くして、油の粘度(粘性)を高くして潤滑機
能を損なわないようになつている。
(Conventional technology) Generally, steam turbines and generators (load rotating machines)
When the rotation speed of the rotating shaft is low, the lubricating oil for each bearing is difficult to form an oil film between the bearing and the rotating shaft because the peripheral speed is small, so the temperature of the lubricating oil is kept low. The viscosity of the oil is increased so as not to impair its lubricating function.

又一方、上記回転軸の回転が高いとき、その周
速度が大であるため、潤滑油の温度を高くして油
の粘性を低くして、粘性抵抗による回転機能を損
わないようにし、これにより、常に、適正な軸受
荷重を維持し、軸受における回転軸を円滑に支承
し得るようになつている。
On the other hand, when the rotation of the rotating shaft is high, its circumferential speed is high, so the temperature of the lubricating oil is raised to lower the viscosity of the oil so as not to impair the rotational function due to viscous resistance. This makes it possible to always maintain an appropriate bearing load and smoothly support the rotating shaft in the bearing.

そこで、既に提案されているこの種のタービン
の潤滑油温度調整装置は、第1図及び第2図に示
されるように、潤滑油を貯溜した油タンク1に給
油管系2の油供給管2aを配管し、この油供給管
2aに油送ポンプ3及び切換弁(四方弁)4を設
け、この切換弁4の下流側の上記油供給管2aに
油冷却器5及び予備用油冷却器6を、上記切換弁
4を切換えることにより、選択的に給油し得るよ
うにして並設し、この両油冷却器5,6に接続さ
れた給油管系2の吐出管2bを途中から各分岐管
7a,7bを介して蒸気タービン8及び発電機9
の各軸受10a,10b,10c,10dに接続
し、さらに、上記各分岐管7a,7bに各油圧調
整弁23a,23bを、、又、上記分岐管7a,
7bからさらに分岐された各分岐管7c,7d,
7e,7fに各オリフイス11a,11b,11
c,11dを付設し、しかも、上記各軸受10
A,10b,10c,10dに各枝管を介して油
還流路12を上記油タンク1に接続し、さらに、
上記両油冷却器5,6に冷却装置Iの冷却水循環
系I0を接続したものである。
Therefore, as shown in FIGS. 1 and 2, this type of turbine lubricating oil temperature regulating device that has already been proposed is constructed such that an oil supply pipe 2a of an oil supply pipe system 2 is connected to an oil tank 1 storing lubricating oil. An oil feed pump 3 and a switching valve (four-way valve) 4 are installed in this oil supply pipe 2a, and an oil cooler 5 and a standby oil cooler 6 are installed in the oil supply pipe 2a on the downstream side of this switching valve 4. are arranged in parallel so that they can be selectively refueled by switching the switching valve 4, and the discharge pipe 2b of the oil supply pipe system 2 connected to both oil coolers 5 and 6 is connected to each branch pipe from the middle. Steam turbine 8 and generator 9 via 7a, 7b
Further, each branch pipe 7a, 7b is connected to each hydraulic pressure regulating valve 23a, 23b, and the branch pipe 7a,
Each branch pipe 7c, 7d further branched from 7b,
Each orifice 11a, 11b, 11 on 7e, 7f
c, 11d, and each of the above bearings 10
The oil return path 12 is connected to the oil tank 1 through each branch pipe A, 10b, 10c, and 10d, and further,
A cooling water circulation system I0 of a cooling device I is connected to both the oil coolers 5 and 6.

又、上記冷却装置Iの冷却水循環系I0は、上記
両油冷却器5,6に、冷却水の各入口弁13a,
13b及びその各出口弁14a,14bを備えた
冷水供給管15a,15b及び冷水吐出管16
a,16bを、それぞれ設け、上記冷水供給管1
5a,15bに油温度調整弁(油温度御弁)17
を有する冷水管18を接続し、この冷水管18に
冷水ポンプ19及び各冷却器20a,20b,2
0c,20dをそれぞれに並列にして設け、上記
冷水吐出管16a,16bに戻し管21を上記冷
水ポンプ19に接続するようにして設け、更に、
上記温度調整弁17に、上記給油管系2の吐出管
2bに付設された潤滑油の温度検出器(温度セン
サー)22接続したものである。
In addition, the cooling water circulation system I0 of the cooling device I has cooling water inlet valves 13a,
13b and its respective outlet valves 14a, 14b, cold water supply pipes 15a, 15b and cold water discharge pipe 16
a and 16b, respectively, and the cold water supply pipe 1
Oil temperature adjustment valve (oil temperature control valve) 17 at 5a, 15b
A cold water pipe 18 having a
0c and 20d are provided in parallel to each other, a return pipe 21 is provided to the cold water discharge pipes 16a and 16b to be connected to the cold water pump 19, and further,
A lubricating oil temperature detector (temperature sensor) 22 attached to the discharge pipe 2b of the oil supply pipe system 2 is connected to the temperature regulating valve 17.

従つて、上述した構成によるタービンの潤滑油
温度制御装置は、予め、冷却装置Iの冷却水で油
冷却器5,6を冷却すると共に、油送ポンプ3を
駆動することにより行われる。
Therefore, the turbine lubricating oil temperature control device having the above-described configuration is performed by cooling the oil coolers 5 and 6 with the cooling water of the cooling device I in advance and driving the oil feed pump 3.

即ち、この油送ポンプ3を駆動すると、上記油
タンク1の潤滑油は、汲み上げられて油供給管2
aの切換弁4を通つて、油冷却器5に供給され
る。ここで、潤滑油は冷却水によつて熱交換して
冷却され、この冷却された潤滑油は、吐出管7を
通つて途中で分岐した各分岐管7a,7bの油圧
調整弁23a,23b及び各分枝管7c,7d,
7e,7fの各オリフイス11a,11b,11
c,11dを介して上記各軸受10a,10b,
10c,10dへ、それぞれ供給し、この各軸受
10a,10b,10c,10dに給油された潤
滑油は、各軸受に潤滑作用を施し、しかる後、こ
の潤滑油は、油還流路12を通して上記油タンク
1へ還流するようになつている。
That is, when this oil feed pump 3 is driven, the lubricating oil in the oil tank 1 is pumped up and sent to the oil supply pipe 2.
It is supplied to the oil cooler 5 through the switching valve 4 of a. Here, the lubricating oil is cooled by heat exchange with the cooling water, and this cooled lubricating oil passes through the discharge pipe 7, and then passes through the oil pressure regulating valves 23a, 23b of each branch pipe 7a, 7b branched in the middle. Each branch pipe 7c, 7d,
Each orifice 11a, 11b, 11 of 7e, 7f
The respective bearings 10a, 10b,
10c and 10d, and the lubricating oil supplied to each bearing 10a, 10b, 10c, and 10d applies a lubricating effect to each bearing, and then this lubricating oil passes through the oil return path 12 to the above-mentioned oil. It is designed to flow back to tank 1.

又一方、上記給油管系2の吐出管2bに付設さ
れた温度検出器22は、油温度調整弁17を開閉
制御し、冷却装置Iの冷却水循環系I0の冷却水流
量を制御するようになつている。
On the other hand, the temperature detector 22 attached to the discharge pipe 2b of the oil supply pipe system 2 controls the opening and closing of the oil temperature regulating valve 17, and controls the flow rate of cooling water in the cooling water circulation system I0 of the cooling device I. It's summery.

即ち、タービン8の起動開始時には、潤滑油の
温度を低くするため、冷却水の流量を油温度調整
弁17を大きく開弁して、上記油冷却器5を冷却
し、他方、タービン8の通常運転時に達したとき
は、潤滑油温度を高くするために、上記油温度調
整弁17を小さく絞つて開弁して、上記油冷却器
5を昇温するようになつている。
That is, at the start of startup of the turbine 8, in order to lower the temperature of the lubricating oil, the oil temperature adjustment valve 17 is opened wide to cool the oil cooler 5, and the flow rate of the cooling water is lowered to lower the temperature of the lubricating oil. When the operating time is reached, the oil temperature regulating valve 17 is slightly throttled and opened to raise the temperature of the lubricating oil, thereby raising the temperature of the oil cooler 5.

これを第2図A,Bのグラフについて説明する
と、蒸気タービン8の回転軸のターニング(回転
体の自重による撓みによつて永久変形しないよう
に、極低回転でローリングする動作)から通常運
転による回転に至るまでの回転軸(回転体)の回
転数r.p.mと時間Tとの関係を示したものであつ
て、第2図Aのグラフにおいて、ターニング運転
範囲、中間回転数までの昇速範囲、中間回転
数の潤滑有温度上昇運転範囲、目標回転数の昇
速範囲、通常運転範囲を示しており、回転体
は、段階的に回転数を上げるようになつている。
To explain this with respect to the graphs in Fig. 2 A and B, the turning of the rotating shaft of the steam turbine 8 (rolling at an extremely low rotational speed to prevent permanent deformation due to deflection due to the rotating body's own weight) to normal operation. It shows the relationship between the rotational speed rpm of the rotating shaft (rotating body) until rotation and the time T, and in the graph of FIG. The diagram shows a lubricated and temperature-increasing operating range at an intermediate rotational speed, an increasing range of target rotational speed, and a normal operating range, in which the rotational speed of the rotating body is increased in stages.

又、第2図Bのグラフについて説明すると、軸
受給油温度tと時間Tとの関係を示したものであ
つて、曲線Aは、潤滑油の上限温度曲線を示し、
曲線Bは、潤滑油の下降曲線を示し、さらに、曲
線cは、回転上昇に伴う潤滑油温度の上昇する行
程を示したものである。
Also, to explain the graph in FIG. 2B, it shows the relationship between the bearing oil supply temperature t and the time T, and the curve A shows the upper limit temperature curve of the lubricating oil.
Curve B shows a descending curve of the lubricating oil, and curve c shows a process in which the lubricating oil temperature increases as the rotation increases.

そこで、第2Aの上記ターニング運転範囲Iに
おける潤滑油温度制限は、例えば、通常時の上限
温度を32℃、下限温度を27℃の低温度に制限し、
通常運転範囲においては、上限温度を49℃、下
限温度を43℃の高温度に上昇させる必要がある。
Therefore, the lubricating oil temperature limit in the above-mentioned turning operation range I of 2A is, for example, to limit the upper limit temperature to 32 degrees Celsius and the lower limit temperature to 27 degrees Celsius in normal times,
In the normal operating range, it is necessary to raise the upper limit temperature to 49°C and the lower limit temperature to 43°C.

(発明が解決しようとする課題) しかしながら、上述したタービン潤滑油温度調
整装置は、油冷却器5を冷却装置Iの冷却水によ
つて冷却のみ行つている関係上、第2図A,Bに
示されるように、潤滑油の昇温時間の所要時間が
長くなるから、タービン8の回転軸を通常運転状
態に短時間で行うことが困難である。
(Problem to be Solved by the Invention) However, in the above-mentioned turbine lubricating oil temperature adjusting device, the oil cooler 5 is only cooled by the cooling water of the cooling device I. As shown, since the time required to raise the temperature of the lubricating oil becomes long, it is difficult to bring the rotating shaft of the turbine 8 into a normal operating state in a short time.

又一方、最近の発電プラントにおいて、昼夜の
電力需要の差が大きいことから、夜間の運転を停
止し、朝方、急速に起動を開始したり、又、電力
の需要と供給とのバランスをとるために、急速
に、しかも、大幅に発電電力を変動させることも
要望されており、これら、発電プラントにおける
運転特性としての機動性も望まれており、これに
基づいて、蒸気タービンの起動時間を早めること
は、増々、必要性が高まつているにも拘わらず、
上述したように、第2図Aのターニング運転範囲
から通常運転範囲までに潤滑油温度の上昇を
待ちながら、第2図Aの曲線aに示されるよう
に、段階的に昇速し、しかも中間回転数の上昇運
転範囲で潤滑油温度上昇運転が長時間に亘るこ
とを余儀なくされ、さらに、潤滑油の加熱源を備
えていないために、潤滑油の加熱源として、軸受
の摩擦熱によつて昇温を施すから、起動時間を短
縮することは困難である。
On the other hand, in recent power generation plants, there is a large difference in power demand between day and night, so it is necessary to stop operation at night and start up quickly in the morning, or to balance power demand and supply. In addition, there is a need to rapidly and significantly fluctuate the generated power, and there is also a demand for maneuverability as an operating characteristic of power plants.Based on this, the startup time of the steam turbine is accelerated This is despite the ever-increasing need for
As mentioned above, while waiting for the lubricating oil temperature to rise from the turning operation range to the normal operation range in Figure 2A, the speed increases in stages as shown by curve a in Figure 2A, and furthermore, in the middle The lubricating oil temperature is forced to increase over a long period of time in the operating range where the rotational speed increases, and since there is no heating source for the lubricating oil, the frictional heat of the bearing is used as a heating source for the lubricating oil. Since the temperature is raised, it is difficult to shorten the startup time.

さらに又、上述したタービン潤滑油温度調整装
置は、冷却装置Iの冷却水が、油温度調整弁17
を温度検出器22との関係で、上記油温度調整弁
17を全閉状態に閉弁することはできないので、
冷却水が油冷却器5内に、僅かながら、循環して
昇温すべき潤滑油を冷却する等の欠点がある。
Furthermore, in the turbine lubricating oil temperature adjusting device described above, the cooling water of the cooling device I is
Due to the relationship with the temperature detector 22, the oil temperature adjustment valve 17 cannot be fully closed.
There is a drawback that a small amount of cooling water circulates in the oil cooler 5 and cools the lubricating oil that should be heated.

本発明は、上述した事情に鑑みてなされたもの
であつて、油冷却器を油熱交換器にして、これに
タービン給水系の温水を積極的に取り入れると共
に、この油熱交換器に冷却水を必要に応じて選択
的に供給して、タービンの潤滑油を加温したり、
又は冷却し得るようにして、タービンの起動時間
を大幅に短縮すると共に、タービン運転の機動性
の向上を図ることを目的としたタービンの潤滑油
温度調整装置を提供するものである。
The present invention has been made in view of the above-mentioned circumstances.The present invention has been made in view of the above-mentioned circumstances. is selectively supplied as needed to heat turbine lubricating oil,
Alternatively, the present invention provides a turbine lubricating oil temperature regulating device that is capable of cooling the turbine, thereby significantly shortening the startup time of the turbine and improving the maneuverability of turbine operation.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、蒸気タービン及び発電機等の軸受に
給油管系及び還流管を通して接続された油熱交換
器と、この油熱交換器に冷却水の入口弁を有する
冷水供給管及び出口弁を有する冷水吐出管とによ
る却却水循環系を通して接続された冷却装置とを
備えたタービンの潤滑油温度調整装置において、
上記油熱交換器に復水器及び脱気器を加熱水循環
系を通して接続し、上記冷却水循環系及び上記加
熱水循環系に各一対の切換弁を選択的に切換えて
上記油熱交換器へ冷却水若しくは加熱水を供給す
るように設け、上記給油管系に温度検出器を付設
し、この温度検出器に油温度設定器を備えた比較
器を接続し、この比較器に低値優先回路及び高値
優先回路を偏差信号で作動するように並設し、こ
の低値優先回路に接続された加熱水温度制御弁を
上記加熱水循環系へ付設し、高値優先回路に接続
された冷却水温度制御弁を上記冷却水循環系へ付
設したものである。
(Means for Solving the Problems) The present invention provides an oil heat exchanger connected to bearings of a steam turbine, a generator, etc. through an oil supply pipe system and a return pipe, and a cooling water inlet valve connected to the oil heat exchanger. A lubricating oil temperature regulating device for a turbine, comprising a cooling device connected through a cooling water circulation system with a cold water supply pipe having a cold water supply pipe and a cold water discharge pipe having an outlet valve,
A condenser and a deaerator are connected to the oil heat exchanger through a heated water circulation system, and each pair of switching valves in the cooling water circulation system and the heating water circulation system are selectively switched to supply the cooling water to the oil heat exchanger. Alternatively, a temperature sensor is attached to the oil supply pipe system, and a comparator equipped with an oil temperature setting device is connected to the temperature sensor, and a low value priority circuit and a high value priority circuit are connected to the comparator. Priority circuits are arranged in parallel so as to be activated by the deviation signal, a heated water temperature control valve connected to this low value priority circuit is attached to the above heated water circulation system, and a cooling water temperature control valve connected to the high value priority circuit is connected to the above heating water circulation system. This is attached to the cooling water circulation system mentioned above.

(作用) 本発明は、蒸気タービン及び発電機等の始動時
における回転軸のターニング運転範囲における潤
滑油調整のとき、上記冷却装置の冷却水によつて
上記油熱交換器を冷却すると共に、油送ポンプを
駆動して、上記油熱交換器を通して冷却した潤滑
油と蒸気タービン及び発電機等の軸受に給油管系
及び還流管を通して循環供給し、この潤滑油の温
度を低くして油の粘性を高くして軸受と回転軸と
の間に油膜を形成し、他方、回転軸の昇速範囲か
ら通常運転範囲における潤滑油調整のとき、各一
対の切換弁を切換えると共に、上記油熱交換器へ
加熱水を供給して熱交換するようにし、上記給油
管系に付設された温度検出器で潤滑油の温度を検
出し、この検出信号を油温度設定器に備えた比較
器へ送信し、この比較器に低値優先回路及び高値
優先回路を偏差信号で作動することにより、この
低値優先回路に接続された加熱水温度制御弁を上
記加熱水循環系へ切換えて、上記油熱交換器を通
して加熱した潤滑油を蒸気タービン及び発電機等
の軸受に給油管系及び還流管を通して循環供給
し、この潤滑油の温度を高くして油の粘性を低く
して軸受と回転軸との間に油膜を形成するように
したものである。
(Function) The present invention cools the oil heat exchanger with the cooling water of the cooling device when adjusting the lubricating oil in the turning operation range of the rotating shaft at the time of starting a steam turbine, a generator, etc. By driving the feed pump, the lubricating oil cooled through the oil heat exchanger is circulated and supplied to the bearings of steam turbines, generators, etc. through the oil supply pipe system and the return pipe, and the temperature of the lubricating oil is lowered to reduce the viscosity of the oil. is raised to form an oil film between the bearing and the rotating shaft, and on the other hand, when adjusting the lubricating oil from the speed increase range of the rotating shaft to the normal operating range, each pair of switching valves is switched, and the oil heat exchanger supply heated water to exchange heat, detect the temperature of the lubricating oil with a temperature sensor attached to the oil supply pipe system, and send this detection signal to a comparator provided in the oil temperature setting device, By operating the low value priority circuit and the high value priority circuit in this comparator with a deviation signal, the heated water temperature control valve connected to this low value priority circuit is switched to the above heated water circulation system, and the heated water is passed through the oil heat exchanger. Heated lubricating oil is circulated and supplied to the bearings of steam turbines, generators, etc. through the oil supply pipe system and return pipe, and the temperature of this lubricating oil is raised to lower the viscosity of the oil to form an oil film between the bearing and the rotating shaft. It is designed to form a .

(発明の実施例) 以下、本発明の図示の一実施例について説明す
る。
(Embodiment of the Invention) An illustrated embodiment of the present invention will be described below.

なお、本発明は、上述した具体例と同一構成部
材には、同一符号を付して説明する。
Note that the present invention will be described with the same reference numerals assigned to the same constituent members as in the above-described specific example.

第3図乃至第5図において、符号1は、潤滑油
を貯溜した油タンクであつて、この油タンク1に
は、給油管系2の油供給管2aが配管されてお
り、この油供給管2aには、油送ポンプ3及び切
換弁4が設けられている。又、この切換弁4の下
流側の上記油供給管2aには、油熱交換器24及
び予備用の油熱交換器25が、上記切換弁4を切
換えることにより、選択的に給油して熱交換し得
るように並設されており、この両油熱交換器2
4,25に接続された給油管系2の吐出管2b
は、途中から各分岐管7a,7bを介して蒸気タ
ービン8及び発電機9の各軸受10a,10b,
10c,10dに接続されており、さらに、上記
各分岐管7a,7bには、各油圧調整弁23a,
23bが、又、上記各分岐管7a,7bからさら
に分岐された各枝管7c,7d,7e,7fに各
オリフイス11a,11b,11c,11dがそ
れぞれ付設されている。又、上記各軸受10a,
10b,10c,10dには、油還流路12が各
枝管を通して上記油タンク1に接続されており、
上記両油熱交換器24及び25には、冷却装置I
の冷却水循環系I0が接続されている。
3 to 5, reference numeral 1 denotes an oil tank storing lubricating oil, and an oil supply pipe 2a of an oil supply pipe system 2 is connected to this oil tank 1. 2a is provided with an oil feed pump 3 and a switching valve 4. Further, an oil heat exchanger 24 and a standby oil heat exchanger 25 are selectively supplied with oil to the oil supply pipe 2a on the downstream side of the switching valve 4 to supply heat by switching the switching valve 4. These two oil heat exchangers 2 are installed in parallel so that they can be exchanged.
The discharge pipe 2b of the oil supply pipe system 2 connected to 4, 25
The bearings 10a, 10b,
10c, 10d, and each branch pipe 7a, 7b is connected to each oil pressure regulating valve 23a,
23b, and orifices 11a, 11b, 11c, and 11d are attached to branch pipes 7c, 7d, 7e, and 7f further branched from the branch pipes 7a and 7b, respectively. Moreover, each of the above bearings 10a,
10b, 10c, and 10d, an oil return path 12 is connected to the oil tank 1 through each branch pipe,
Both the oil heat exchangers 24 and 25 are equipped with a cooling device I.
A cooling water circulation system I 0 is connected.

なお上記冷却装置Iの冷却水循環系I0は、上記
両油熱交換器24,25に各入口弁13a,13
b及び各出口弁14a,14bによる各切換弁を
備えた冷水供給管15a,15b及び水冷吐出管
16a,16bを、それぞれ設け、上記冷水供給
管15a,15bに冷却水温度制御弁(油温度調
整弁)17を有する冷水管18(第1図参照)を
接続し、この冷水管18に冷水ポンプ19及び各
冷却器20a,20b,20c,20dをとそれ
ぞれ並列に設け、上記冷水吐出管16a,16b
に戻し管21を上記冷水ポンプ19に接続するよ
うにして設け、さらに、上記冷却水温度制御弁1
7に、上記給油管系2の吐出管2bに付設された
潤滑油の温度検出器(温度センサー)22を接続
したものである。
The cooling water circulation system I0 of the cooling device I has two inlet valves 13a and 13 connected to the oil heat exchangers 24 and 25.
Cold water supply pipes 15a, 15b and water-cooled discharge pipes 16a, 16b are provided, respectively, and each of the cold water supply pipes 15a, 15b is equipped with a cooling water temperature control valve (oil temperature adjustment valve). A cold water pipe 18 (see FIG. 1) having a valve) 17 is connected to the cold water pipe 18, and a cold water pump 19 and each cooler 20a, 20b, 20c, and 20d are respectively provided in parallel with the cold water discharge pipe 16a, 16b
A return pipe 21 is provided to be connected to the cold water pump 19, and a return pipe 21 is provided to connect the cooling water temperature control valve 1.
7 is connected to a lubricating oil temperature detector (temperature sensor) 22 attached to the discharge pipe 2b of the oil supply pipe system 2.

又一方、第4図に示されるように、上記各油熱
交換器24,25には、加熱水の入口弁26a,
27a及び出口弁26a,27bによる各切換弁
を備えた加熱水供給管28a,29a及び加熱水
吐出管28b,29bがそれぞれ設けられてお
り、この両加熱水供給管28a,29aと加熱水
吐出管28b,29bとは加熱水循環系を構成
している。
On the other hand, as shown in FIG. 4, each oil heat exchanger 24, 25 has a heated water inlet valve 26a,
Heated water supply pipes 28a, 29a and heated water discharge pipes 28b, 29b each equipped with respective switching valves by 27a and outlet valves 26a, 27b are provided. 28b and 29b constitute a heating water circulation system.

他方、上記加熱水循環形の一端部は、第3図
及び第4図に示されるように、約80℃〜100℃程
度の温水を生成する脱気器30と各ボイラー吸水
ポンプ31との間を接続した給水管32に接続さ
れており、この給水管32には、ボイラー33が
配設されている。さらに、このボイラー33に
は、発電機9を備えた蒸気タービン8が蒸気管3
5を通して繁がれており、この蒸気タービン8の
直下には、復水器36が設置されている。さらに
又、この復水器36には、上記給水管32が接続
されており、この給水管32には、復水ポンプ3
7が上記脱水器30へ復水を吸水するようになつ
ている。さらに又、上記復水器36には、上記加
熱水循環系の戻り管34が接続されており、こ
の戻り管34には、加熱水温度制御弁38が付設
されている。
On the other hand, as shown in FIGS. 3 and 4, one end of the heated water circulation type is connected between the deaerator 30 that generates hot water of approximately 80°C to 100°C and each boiler water suction pump 31. It is connected to a connected water supply pipe 32, and a boiler 33 is disposed in this water supply pipe 32. Further, in this boiler 33, a steam turbine 8 equipped with a generator 9 is connected to a steam pipe 3.
5, and a condenser 36 is installed directly below the steam turbine 8. Furthermore, the water supply pipe 32 is connected to the condenser 36, and the water supply pipe 32 is connected to the condensate pump 3.
7 is designed to absorb condensate into the dehydrator 30. Furthermore, a return pipe 34 of the heated water circulation system is connected to the condenser 36, and a heated water temperature control valve 38 is attached to the return pipe 34.

一方、第5図に示されるように、上記給油管2
に設けられた温度検出器22には、比較器39が
持続されており、この比較器39には、例えば、
潤滑油の温度を30℃又は45℃に設定する油温設定
器40が付設されている。又、上記比較器39に
は、上記温度検出器22によつて検出した潤滑油
の温度と油温設定器40による30℃又は45℃の設
定温度とを比較して得られた温度検出値による出
力信号を受信する調整計41が設けられており、
この調整計41には、低値優先回路42と高値優
先回路43とが分岐して並設されている。さら
に、この低値優先回路42には、上記加熱水温度
制御弁38が開閉制御し得るようにして繋がれて
おり、上記高値優先回路43には、上記冷却水温
度調整弁17が開閉制御し得るようにして接続さ
れている。
On the other hand, as shown in FIG.
A comparator 39 is connected to the temperature detector 22 provided at
An oil temperature setting device 40 is attached to set the temperature of the lubricating oil to 30°C or 45°C. The comparator 39 also has a temperature detection value obtained by comparing the temperature of the lubricating oil detected by the temperature detector 22 and the set temperature of 30°C or 45°C by the oil temperature setting device 40. A regulator 41 is provided to receive the output signal,
In this regulator 41, a low value priority circuit 42 and a high value priority circuit 43 are branched and arranged in parallel. Furthermore, the heating water temperature control valve 38 is connected to the low value priority circuit 42 so as to be able to control opening and closing, and the cooling water temperature control valve 17 is connected to the high value priority circuit 43 so as to be able to control the opening and closing. Get connected.

なお、上記低値優先回路42と高値優先回路4
3には、各ロツク用手動スイツチ42a,43a
が設けられており、この各ロツク用手動スイツチ
42a,43aには手導切換操作し得るようにな
つている。
Note that the low value priority circuit 42 and the high value priority circuit 4
3 includes manual switches 42a and 43a for each lock.
A manual lock switch 42a, 43a is provided, and each lock manual switch 42a, 43a can be operated manually.

従つて、第2図Bのグラフに示されるように、
ターニング運転範囲の潤滑油温度32℃から、通
常運転範囲における潤滑油温度45℃に昇温する
場合には、第5図に示される油温設定器40に対
して、設定温度値として45℃を、予め、設定す
る。すると、上記給油管2上に付設された温度検
出器22の検出信号が比較器39に入力し、ここ
で、上記油温設定器40からの設定温度値と比較
し、この油温設定器40の設定温度値よりも負
(−)数のときは、調整計41を介して低値優先
回路42を作動し、この低値優先回路42は、上
記加熱水温度制御弁38を開弁して、加熱水循環
系の加熱水(約80〜100℃)を油熱交換器25
へ供給して、潤滑油と祢交換して加温し、各軸受
10a,10b,10c,10dの潤滑油を昇温
する。
Therefore, as shown in the graph of Figure 2B,
When increasing the lubricating oil temperature from 32°C in the turning operation range to 45°C in the normal operating range, set the temperature value of 45°C to the oil temperature setting device 40 shown in Fig. 5. , set in advance. Then, the detection signal of the temperature detector 22 attached to the oil supply pipe 2 is input to the comparator 39, where it is compared with the set temperature value from the oil temperature setting device 40. When the temperature is negative (-) than the set temperature value, the low value priority circuit 42 is activated via the regulator 41, and this low value priority circuit 42 opens the heated water temperature control valve 38. , the heated water (approximately 80 to 100°C) in the heated water circulation system is transferred to the oil heat exchanger 25.
The lubricating oil is supplied to the bearings 10a, 10b, 10c, and 10d and heated by exchanging heat with the lubricating oil to raise the temperature of the lubricating oil in each bearing 10a, 10b, 10c, and 10d.

このようにして潤滑油の温度を徐々に昇温し
て、上記温度検出器22が設定温度値(45℃)を
検出し、さらに、潤滑油が設定温度値よりも昇温
すると、上記比較器39が設定温度値45℃よりも
正(+)数となり、上記低値優先回路42の加熱
水温制御弁38は徐々に閉弁されるようになつて
いる。
In this way, the temperature of the lubricating oil is gradually increased, and when the temperature detector 22 detects the set temperature value (45°C), and furthermore, the temperature of the lubricating oil rises above the set temperature value, the comparator 39 becomes a positive (+) number than the set temperature value of 45° C., and the heated water temperature control valve 38 of the low value priority circuit 42 is gradually closed.

以下、本発明の作用について説明する。 Hereinafter, the effects of the present invention will be explained.

(1) ターニング運転範囲における潤滑油調整の場
合、 このターニング運転範囲の潤滑油調整は、第
1図に示されるものと全く同じく行われる。
(1) In the case of lubricant adjustment in the turning operating range, the lubricant adjustment in this turning operating range is carried out exactly as shown in Figure 1.

即ち、予め、冷却装置の冷却水によつて、
油熱交換器24,25を冷却すると共に、油送
ポンプ3を駆動することにより行なわれる。
That is, in advance, by the cooling water of the cooling device,
This is done by cooling the oil heat exchangers 24 and 25 and driving the oil feed pump 3.

つまり、この油送ポンプ3を駆動すると、上
記油タンク1の潤滑油は、汲み上げられて油供
給管2aの切換弁4を通つて、油熱交換器24
に供給される。ここで、潤滑油は、冷却水によ
つて熱交換して冷却され、この冷却された潤滑
油は、吐出管7を通つて、途中で分岐した各分
岐管7a,7bの油圧調整弁23a,23b及
び各枝管7c,7d,7e,7fの各オリフイ
ス11a,11b,11c,11dを介して上
記各軸受10a,10b,10dへ、それぞれ
供給され、この各軸受10a,10b,10
c,10dに給油された潤滑油は、各軸受に潤
滑作用を施し、しかる後、この潤滑油は、油還
流路12を通して上記油タンク1へ還流するよ
うになつている。
That is, when the oil feed pump 3 is driven, the lubricating oil in the oil tank 1 is pumped up and passed through the switching valve 4 of the oil supply pipe 2a to the oil heat exchanger 24.
is supplied to Here, the lubricating oil is cooled by heat exchange with the cooling water, and the cooled lubricating oil passes through the discharge pipe 7, and the oil pressure regulating valves 23a, 23a, 23b of each branch pipe 7a, 7b branched midway, 23b and the orifices 11a, 11b, 11c, 11d of the branch pipes 7c, 7d, 7e, 7f to the bearings 10a, 10b, 10d, respectively.
The lubricating oil supplied to the bearings c and 10d lubricates each bearing, and then returns to the oil tank 1 through the oil return path 12.

又一方、上記給油管系2の温度検出器22
は、第5図に示されるように、油温設定器40
に対して、設定温度値として30℃を予め設定し
てあるので、この油温度設定器40と上記油温
度検出器22により検出信号が比較器39に入
力し、ここで、上記油温度設定器40の設定温
度値と比較演算し、この油温度設定器40の設
定温度値よりも正(−)数のとき、調整計41
を介して、高値優先回路43を作動し、この高
値優先回路43は、上記冷水度制御弁17を開
弁して冷水循環令Iの冷水を油熱交換器25へ
供給して潤滑油と熱交換して冷却され、各軸受
10a,10b,10c,10dの潤滑油を冷
却するようになつている。
On the other hand, the temperature detector 22 of the oil supply pipe system 2
As shown in FIG. 5, the oil temperature setting device 40
Since 30°C is preset as the set temperature value for 40 is compared with the set temperature value, and if the value is positive (-) than the set temperature value of this oil temperature setting device 40, the controller 41
The high value priority circuit 43 operates the high value priority circuit 43, which opens the cold water level control valve 17 and supplies cold water of the cold water circulation order I to the oil heat exchanger 25 to exchange lubricating oil and heat. The bearings are replaced and cooled to cool the lubricating oil of each bearing 10a, 10b, 10c, and 10d.

(2) 回転軸の中間回転数の昇速範囲〜通常運転
範囲における潤滑油調整の場合、 潤滑油を昇温して回転軸の軸受を通常運転範
囲の状態に潤滑油調整をするには、加熱水循
環系の約80〜100℃の温水によつて油熱交換
器24を加熱すると共に、油送ポンプ3を駆動
することにより行われる。
(2) When adjusting the lubricating oil between the intermediate speed increase range of the rotating shaft and the normal operating range, in order to raise the temperature of the lubricating oil and adjust the lubricating oil to bring the bearing of the rotating shaft into the normal operating range, This is carried out by heating the oil heat exchanger 24 with hot water of approximately 80 to 100° C. in the heated water circulation system and driving the oil feed pump 3.

即ち、第3図において、油送ポンプ3を駆動
すると、上記油タンク1の潤滑油は、汲上げら
れて油供給管2aの切換弁4を通つて、油熱交
換器24に供給される。ここで、潤滑油は、温
水によつて熱交換されて加熱され、この加熱さ
れた潤滑油は、吐出管7を通つて、各分岐管7
a,7bの油圧調整弁23a,23b及び各枝
管7c,7d,7e,7fの各オリフイス11
a,11b,11c,11dを介して上記各軸
受10a,10b,10c,10dへ、それぞ
れ供給され、この各軸受10a,10b,10
c,10dに給油された潤滑油は、各軸受に潤
滑作用を施し、しかる後、この潤滑油は、油還
流管12を通して上記油タンク1へ還流され
る。
That is, in FIG. 3, when the oil feed pump 3 is driven, the lubricating oil in the oil tank 1 is pumped up and supplied to the oil heat exchanger 24 through the switching valve 4 of the oil supply pipe 2a. Here, the lubricating oil is heated by heat exchange with the hot water, and this heated lubricating oil passes through the discharge pipe 7 to each branch pipe 7.
Hydraulic pressure regulating valves 23a, 23b of a, 7b and each orifice 11 of each branch pipe 7c, 7d, 7e, 7f
a, 11b, 11c, 11d to each of the above bearings 10a, 10b, 10c, 10d, and each of these bearings 10a, 10b, 10
The lubricating oil supplied to bearings c and 10d lubricates each bearing, and then this lubricating oil is returned to the oil tank 1 through the oil return pipe 12.

又一方、上記給油管系2の油温度検出器22
は、第5図に示されるように、油温度設定器4
0に対して、設定温度値として45℃を予め入力
して設定してあるので、上記油温度検出器22
による検出信号が比較器39に入力し、ここ
で、上記油温度設定器40からの設定温度値と
比較演算し、この油温度設定器40の設定温度
値よりも負(−)数のとき、調整計41を介し
て低値優先回路42を作動し、この低値優先回
路42は、加熱水温度制御弁38を開弁して上
記加熱水循環系の約80〜100℃の温水を供給
して、潤滑油と熱交換して加熱し、上記各軸受
10a,10b,10c,10dの潤滑油を昇
温するようになつている。
On the other hand, the oil temperature detector 22 of the oil supply pipe system 2
As shown in FIG. 5, the oil temperature setting device 4
Since 45°C has been input and set in advance as the set temperature value for 0, the oil temperature detector 22
The detection signal is input to the comparator 39, where it is compared with the set temperature value from the oil temperature setting device 40, and when it is a negative (-) number than the set temperature value of the oil temperature setting device 40, A low value priority circuit 42 is activated via the regulator 41, and this low value priority circuit 42 opens the heated water temperature control valve 38 to supply hot water of approximately 80 to 100°C to the heated water circulation system. , heat exchanges with the lubricating oil to heat it and raise the temperature of the lubricating oil in each of the bearings 10a, 10b, 10c, and 10d.

なお、この場合、第4図に示されるような、
冷却水循環系の入口弁14a,出口弁14b
及び油熱交換器24の入口弁24a、出口弁2
7bは、共に閉弁されているものとする。
In this case, as shown in FIG.
Cooling water circulation system inlet valve 14a, outlet valve 14b
and the inlet valve 24a and outlet valve 2 of the oil heat exchanger 24
It is assumed that both valves 7b are closed.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、タービンの
軸受等に配管される給油管系を備えた油熱交換器
に脱気器及び復水器に連結されている給水管を加
熱水の入口弁及び出口弁を有する加熱水循環系
を介して接続し、他方、上記油熱交換器に冷却水
の入口弁及び出口弁を有する冷却水循環系を設
け、上記油熱交換器に加熱水又は冷却水を各一対
の切換弁を介して選択的に供給し得るようにして
あるので、蒸気タービン及び発電機等の始動時に
おける回転軸のターニング運転範囲における潤滑
油調整のとき、この潤滑油の温度を低くして油の
粘性を高くして軸受と回転軸との間に油膜を形成
して潤滑機能を損なわないようにできるばかりで
なく、回転軸の昇速範囲から通常運転範囲におけ
る潤滑油調整のとき、潤滑油の温度を高くして油
の粘性を低くして軸受と回転軸との間に油膜を形
成して潤滑機能を損なわないようにしながら、常
に、適正な軸受荷重を維持し、回転軸を円滑に支
承できるし、蒸気タービン及び発電機等の軸受に
使用される潤滑油を選択的に冷却したり、加熱す
ることができると共に、潤滑油の加熱時間を大幅
に短縮できるため、蒸気タービン運転の機動性を
有効適切に発揮できるし、冷却装置を備えた冷却
水循環系に各一対の切換弁を介して加熱水循環系
を接続するのみで、省エネルギー化を図つた加熱
用の熱源を得ることができる等の優れた効果を有
する。
As described above, according to the present invention, the water supply pipe connected to the deaerator and the condenser is connected to the heated water inlet valve in the oil heat exchanger equipped with the oil supply pipe system that is piped to the bearing of the turbine. and an outlet valve, and on the other hand, the oil heat exchanger is provided with a cooling water circulation system having a cooling water inlet valve and an outlet valve, and the heating water or cooling water is supplied to the oil heat exchanger. Since the lubricating oil can be supplied selectively through each pair of switching valves, the temperature of the lubricating oil can be lowered when adjusting the lubricating oil in the turning operation range of the rotating shaft at the time of starting a steam turbine or generator. This not only makes it possible to increase the viscosity of the oil and prevent the formation of an oil film between the bearing and the rotating shaft, impairing the lubrication function, but also when adjusting the lubricating oil from the speed increase range of the rotating shaft to the normal operating range. , the temperature of the lubricating oil is raised to lower the viscosity of the oil to prevent the formation of an oil film between the bearing and the rotating shaft and impairing the lubrication function. The lubricating oil used in the bearings of steam turbines and generators can be selectively cooled and heated, and the heating time of the lubricating oil can be greatly shortened. To obtain a heat source for heating that can effectively and appropriately demonstrate operational maneuverability and that saves energy by simply connecting a heating water circulation system to a cooling water circulation system equipped with a cooling device through a pair of switching valves. It has excellent effects such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、既に提案されているタービンの潤滑
油温度調整装置の系統図、第2図A,Bは、回転
軸の回転数及び温度と時間との関係を示すグラ
フ、第3図は、本発明によるタービンの潤滑油温
度調整装置の系統図、第4図は、本発明の主要部
を示す系統図、第5図は、本発明に組込まれる制
御回路図である。 1……油ンク、3……油送ポンプ、4……切換
弁、5,6……油冷却器、8……蒸気タービン、
9……発電機、10a,10b,10c,10d
……軸受、17……冷却水温度制御弁、18……
冷水管、19……冷水ポンプ、22……油温度検
出器、24,25……油熱交換器、30……脱気
器、31……ボイラー吸水ポンプ、33……ボイ
ラー、36……復水器、37……復水ポンプ、3
8……加熱水温度制御弁、39……比較器、40
……油温度設定器、41……調整計、42……低
値優先回路、43……高値優先回路。
FIG. 1 is a system diagram of a turbine lubricating oil temperature adjustment device that has already been proposed, FIGS. 2A and B are graphs showing the relationship between the rotation speed and temperature of the rotating shaft and time, and FIG. FIG. 4 is a system diagram showing the main parts of the present invention, and FIG. 5 is a control circuit diagram incorporated in the present invention. 1... Oil tank, 3... Oil feed pump, 4... Switching valve, 5, 6... Oil cooler, 8... Steam turbine,
9... Generator, 10a, 10b, 10c, 10d
... Bearing, 17 ... Cooling water temperature control valve, 18 ...
Cold water pipe, 19... Cold water pump, 22... Oil temperature detector, 24, 25... Oil heat exchanger, 30... Deaerator, 31... Boiler water suction pump, 33... Boiler, 36... Recovery Water device, 37... Condensate pump, 3
8...Heating water temperature control valve, 39...Comparator, 40
... Oil temperature setting device, 41 ... Adjustment meter, 42 ... Low value priority circuit, 43 ... High value priority circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸気タービン及び発電機等の軸受に給油管系
及び還流管を通して接続された油熱交換器と、こ
の油熱交換器に冷却水の入口弁を有する冷水供給
管及び出口弁を有する冷水吐出管とによる冷却水
循環系を通して接続された冷却装置とを備えたタ
ービンの潤滑油温度調整装置において、上記油熱
交換器に加熱水循環系を通して接続された復水器
及び脱気器と、上記冷却水循環系及び上記加熱水
循環系に選択的に切換えて上記油熱交換器へ冷却
水若しくは加熱水を供給するように設けられた各
一対の切換弁と、上記給油管系に付設された温度
検出器と、この温度検出器に接続された油温度設
定器を備えた比較器と、この比較器に偏差信号で
作動するように並設された低値優先回路及び高値
優先回路と、この低値優先回路に接続され、しか
も、上記加熱水循環系に付設された加熱水温度制
御弁と、上記高値優先回路に接続され、しかも、
上記冷却水循環系に付設された冷却水温度制御弁
とを具備したことを特徴とするタービンの潤滑油
温度調整装置。
1. An oil heat exchanger connected to bearings of steam turbines, generators, etc. through oil supply pipe systems and return pipes, and a cold water supply pipe having a cooling water inlet valve and a cold water discharge pipe having an outlet valve to this oil heat exchanger. and a cooling device connected through a cooling water circulation system, the turbine lubricating oil temperature regulating device comprising: a condenser and a deaerator connected to the oil heat exchanger through a heated water circulation system; and a cooling water circulation system. and a pair of switching valves provided to selectively switch to the heated water circulation system to supply cooling water or heated water to the oil heat exchanger, and a temperature detector attached to the oil supply pipe system; A comparator equipped with an oil temperature setting device connected to this temperature sensor, a low value priority circuit and a high value priority circuit arranged in parallel to this comparator so as to be activated by a deviation signal, and this low value priority circuit. connected to the heated water temperature control valve attached to the heated water circulation system and the high value priority circuit;
A lubricating oil temperature regulating device for a turbine, comprising a cooling water temperature control valve attached to the cooling water circulation system.
JP6359782A 1982-04-16 1982-04-16 Temperature regulator of lubricating oil in turbine Granted JPS58180706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6359782A JPS58180706A (en) 1982-04-16 1982-04-16 Temperature regulator of lubricating oil in turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6359782A JPS58180706A (en) 1982-04-16 1982-04-16 Temperature regulator of lubricating oil in turbine

Publications (2)

Publication Number Publication Date
JPS58180706A JPS58180706A (en) 1983-10-22
JPH0327724B2 true JPH0327724B2 (en) 1991-04-16

Family

ID=13233835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6359782A Granted JPS58180706A (en) 1982-04-16 1982-04-16 Temperature regulator of lubricating oil in turbine

Country Status (1)

Country Link
JP (1) JPS58180706A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101448657B (en) 2006-05-24 2010-08-25 横滨橡胶株式会社 Pneumatic tire
JP4725464B2 (en) * 2006-09-01 2011-07-13 横浜ゴム株式会社 Pneumatic tire
JP6001909B2 (en) * 2012-04-11 2016-10-05 株式会社東芝 Steam turbine plant
CN114508391B (en) * 2022-03-17 2024-01-19 西安热工研究院有限公司 Monitoring and early warning system and method for turbine lubricating oil system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164304U (en) * 1978-02-28 1979-11-17

Also Published As

Publication number Publication date
JPS58180706A (en) 1983-10-22

Similar Documents

Publication Publication Date Title
US6626635B1 (en) System for controlling clearance between blade tips and a surrounding casing in rotating machinery
EP0502157B1 (en) Power plant with means for lubricating of the bearings
KR102015689B1 (en) Thermal energy recovery device and control method
JPH02259237A (en) Liquid cooling mechanism for internal combustion engine with supercharger
US4043130A (en) Turbine generator cycle for provision of heat to an external heat load
JPH0353443B2 (en)
JP2001091087A (en) Method for controlling refrigerator of absorption heater chiller
JPH0327724B2 (en)
KR102117826B1 (en) Plant and driving method
JPS6213490B2 (en)
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JP2017101751A (en) Lubricating oil temperature control system and power generation facility
JP2021515138A (en) Drive unit with integrated ORC
KR102006308B1 (en) Control Method of Organic Rankine Cycle Power System
JPS61145305A (en) Control device for turbine plant using hot water
JPH0377430B2 (en)
JPH0356796A (en) Oil heating device
JPH11107709A (en) Binary power generating system
JPH07200069A (en) Cooling water controller
RU53731U1 (en) HEATING MACHINE COOLING SYSTEM
JPS6079107A (en) Turbine starting method
JPH0157269B2 (en)
JP2020002892A (en) Binary power generation device and binary power generation method
US10851678B2 (en) Thermal energy recovery device and startup operation method for the same
JPS60164095A (en) Lubricant temperature controller in turbine plant