JPH0356428A - Production of isopropyl alcohol - Google Patents

Production of isopropyl alcohol

Info

Publication number
JPH0356428A
JPH0356428A JP1191675A JP19167589A JPH0356428A JP H0356428 A JPH0356428 A JP H0356428A JP 1191675 A JP1191675 A JP 1191675A JP 19167589 A JP19167589 A JP 19167589A JP H0356428 A JPH0356428 A JP H0356428A
Authority
JP
Japan
Prior art keywords
isopropyl alcohol
catalyst
hydrogen
acetone
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1191675A
Other languages
Japanese (ja)
Other versions
JP2762591B2 (en
Inventor
Masashi Inaba
正志 稲葉
Ryozo Hamana
浜名 良三
Hideyuki Hase
長谷 秀行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP1191675A priority Critical patent/JP2762591B2/en
Publication of JPH0356428A publication Critical patent/JPH0356428A/en
Application granted granted Critical
Publication of JP2762591B2 publication Critical patent/JP2762591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To stably obtain isopropyl alcohol for a long period at a high rate of reaction in high selectivity under mild reaction conditions by reducing acetone with hydrogen using a supported ruthenium catalyst treated with a basic substance. CONSTITUTION:A ruthenium catalyst supported on a carrier, such as active carbon, is treated with a basic substance, such as KOH or pyridine, to provide a catalyst, which is then used to reduce acetone with hydrogen and afford isopropyl alcohol. The acetone can be stably reduced with the hydrogen at a high conversion rate according to the above-mentioned method and the isopropyl alcohol can be produced in high selectivity with suppressed formation of di-isopropyl ether as a by-product. The aforementioned method is industrially advantageous. The obtained isopropyl alcohol is useful as a raw material, etc., for solvents and various organic chemicals.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はイソプロビルアルコール(I PAと略すこと
がある)の製造方法に関する。詳しくは、アセトンを水
素還元して溶剤・各種有機薬品の原料等として有用なイ
ソプロビルアルコールを製造する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing isopropyl alcohol (sometimes abbreviated as IPA). Specifically, the present invention relates to a method for producing isopropyl alcohol, which is useful as a solvent and a raw material for various organic chemicals, by reducing acetone with hydrogen.

〔従来の技術〕[Conventional technology]

従来、IPAはプロピレンの永和反応で製造されていた
。この水和反応には、高温高圧下、大過剰の水と共に反
応させる直接永和法と、腐触性のある硫酸を用いる間接
永和法があるが、双方とも工業的製法としては問題があ
る。
Conventionally, IPA has been produced by the Eiwa reaction of propylene. This hydration reaction includes a direct hydration method in which the reaction is carried out under high temperature and pressure with a large excess of water, and an indirect hydration method in which corrosive sulfuric acid is used, but both have problems as industrial production methods.

そこで、反応に水を使用しないでIPAを製造する方法
として、アセトンを水素還元する方法も提案されている
. アセトンのカルボニル基を金属触媒により還元すること
は公知であり、例えば特公昭46 − 9136号公報
および有機合成化学誌第27巻第1号69ページ( 1
969年)には、パラジウム触媒にモリブデンを添加し
て活性を向上させ、カルボニル基を還元するパラジウム
触媒の製造法が記されている。
Therefore, a method of reducing acetone with hydrogen has been proposed as a method of producing IPA without using water in the reaction. It is known that the carbonyl group of acetone is reduced by a metal catalyst, for example, in Japanese Patent Publication No. 46-9136 and Journal of Organic Synthetic Chemistry, Vol. 27, No. 1, page 69 (1)
969) describes a method for producing palladium catalysts in which molybdenum is added to palladium catalysts to improve activity and reduce carbonyl groups.

また、特開昭62 − 12729号公報には、ラネー
ニッケル触媒を用いてアセトンを水素還元してIPAを
得るための改良方法として、該触媒に存在するアルカリ
の量が触媒を浸漬した水溶液のpH値を表わして7.0
〜8.2の範囲にある触媒を用いて、反応系の水分含有
率が5重量%以下、反応温度100〜160℃の範囲で
、アセトンの未反応量が0. 5重量%以上になるよう
にして該反応を行うことが提案されている。
Furthermore, JP-A-62-12729 describes an improved method for obtaining IPA by hydrogen reduction of acetone using a Raney nickel catalyst, in which the amount of alkali present in the catalyst is determined by the pH value of the aqueous solution in which the catalyst is immersed. 7.0
Using a catalyst in the range of ~8.2, the water content of the reaction system is 5% by weight or less, the reaction temperature is in the range of 100 to 160°C, and the amount of unreacted acetone is 0. It has been proposed that the reaction be carried out in such a manner that the amount is 5% by weight or more.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記した2つの方法では、懸濁床弐の反
応B様を用いているので、生成するアルコールと触媒と
を分離するために設備が煩雑となるという問題点を有す
る.また、ラネーニソケル触媒を用いる方法では、IP
Aの収率を99%程度で抑える必要があり、未反応のア
セトンと生成物のIPAを分離するための設備が必要と
なるなど、工業的に大量生産するには不利な問題点があ
る。
However, since the two methods described above use reaction B in a suspended bed, there is a problem in that the equipment required to separate the alcohol produced from the catalyst is complicated. In addition, in the method using Raney Nisokel catalyst, IP
There are disadvantages to industrial mass production, such as the need to suppress the yield of A to about 99% and the need for equipment to separate unreacted acetone and product IPA.

本発明は、従来法よりもはるかに温和な反応条件下にも
かかわらず、高い反応率で、かつ、高選択的にアセトン
からIPAを長期間安定して得られる、工業的に実施す
るのに有利なイソプロピルアルコールの製造方法を提供
しようとするものである。
The present invention is capable of stably obtaining IPA from acetone for a long period of time at a high reaction rate and with high selectivity even under much milder reaction conditions than conventional methods, and is suitable for industrial implementation. It is an object of the present invention to provide an advantageous method for producing isopropyl alcohol.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、アセトンを、塩基性物質で処理した担持ルテ
ニウム触媒の存在下、水素還元することを特徴とするイ
ソプロビルアルコールの製jf4法を提供するものであ
る. 本発明の方法で使用する塩基性物質で処理した担持ルテ
ニウム触媒は、金属ルテニウムが担体に担持されている
ものである。
The present invention provides a jf4 method for producing isopropyl alcohol, which is characterized in that acetone is reduced with hydrogen in the presence of a supported ruthenium catalyst treated with a basic substance. The supported ruthenium catalyst treated with a basic substance used in the method of the present invention is one in which metallic ruthenium is supported on a carrier.

その担体としては、耐熱性の無機化合物担体が好ましく
、例えば、アルミナ、シリカ等の合成ゲ土 ル担体、ケイソウ土、多孔性粘−、活性炭等の天然無機
物担体等が挙げられる。その中でも、特にヤシガラ炭、
木炭、ビート炭、骨炭等から製造した活性炭が、活性、
選択性の点から好ましい。
The carrier is preferably a heat-resistant inorganic compound carrier, such as synthetic gelatin carriers such as alumina and silica, natural inorganic carriers such as diatomaceous earth, porous clay, and activated carbon. Among them, especially coconut husk charcoal,
Activated carbon made from charcoal, beet charcoal, bone charcoal, etc.
Preferable from the viewpoint of selectivity.

ルテニウムの担持方法は、上記の担体に、塩化ルテニウ
ム(1水和物〉、ルテニウム酸カリウム等のルテニウム
化合物溶液を含浸させた後、溶媒を除き、加熱下、水素
気流で還元する。
The method for supporting ruthenium is to impregnate the above-mentioned carrier with a solution of a ruthenium compound such as ruthenium chloride (monohydrate) or potassium ruthenate, remove the solvent, and reduce the carrier with a hydrogen stream while heating.

使用するルテニウム化合物の量は、ルテニウムに換算し
て、担体1重量部に対して0.01〜5重量部%を用い
る。ルテニウム化合物は、通常、塩酸酸性の水溶液とし
て用いるが、溶媒としては、ルテニウム化合物を溶解す
るものならばよい。ルテニウム化合物溶液の濃度は、0
. 1〜10%の範囲が好ましい.担体を5分〜2時間
溶液に含浸し、その後、必要に応じて加熱して、溶媒を
除く。この際には、常圧でも、減圧下でもよい。
The amount of the ruthenium compound used is 0.01 to 5 parts by weight based on 1 part by weight of the carrier in terms of ruthenium. The ruthenium compound is usually used as an acidic aqueous solution of hydrochloric acid, but any solvent that can dissolve the ruthenium compound may be used. The concentration of the ruthenium compound solution is 0
.. A range of 1 to 10% is preferable. The carrier is immersed in the solution for 5 minutes to 2 hours, then heated if necessary to remove the solvent. At this time, the pressure may be normal pressure or reduced pressure.

次に、水素気流により担持させたルテニウム化合物を、
250〜400℃の温度で、3〜24時間還元する. 塩基性物質による担持ルテニウム触媒の処理は、塩基性
物質で処理した担体にルテニウムを担持させても良いが
、通常は、予めルテニウムを担体に担持させた担持ルテ
ニウム触媒を塩基性物質で処理することにより行われる
. 本発明で用いる塩基性物質としては、アルカリ金属やア
ルカリ土類金属の水酸化物および炭酸塩、たとえば水酸
化カリウム、水酸化ナトリウム等、もしくは有機アミン
、イξン化合物、たとえばアルキルアミン、ピリジン、
ピペリジンやアニリン等があげられる。
Next, the ruthenium compound supported by a hydrogen stream is
Reduce at a temperature of 250-400°C for 3-24 hours. The supported ruthenium catalyst may be treated with a basic substance by having ruthenium supported on a carrier that has been treated with a basic substance, but usually, the supported ruthenium catalyst, in which ruthenium has been supported on a carrier in advance, is treated with a basic substance. This is done by The basic substances used in the present invention include hydroxides and carbonates of alkali metals and alkaline earth metals, such as potassium hydroxide and sodium hydroxide, or organic amines, ionic compounds such as alkylamines, pyridine,
Examples include piperidine and aniline.

後、純水で洗浄し、乾燥させる。塩基性物質が液体の場
合は、そのまま用いてもよい。
After that, wash with pure water and dry. If the basic substance is a liquid, it may be used as is.

塩基性物質を溶解または希釈する溶媒としては、水など
の様に、塩基性物質と反応せず、塩基性物質を溶解させ
るものならば良い。塩基性物質の濃度は、0.01モル
/l以上が好ましい。
As the solvent for dissolving or diluting the basic substance, any solvent such as water that does not react with the basic substance and dissolves the basic substance may be used. The concentration of the basic substance is preferably 0.01 mol/l or more.

塩基性物質溶液の量は、担持ルテニウム触媒が充分浸る
程度である。
The amount of basic substance solution is such that the supported ruthenium catalyst is sufficiently immersed.

浸漬は、常温または加温下で、通常30分〜6時間行う
Immersion is usually performed for 30 minutes to 6 hours at room temperature or under heating.

浸漬、水洗した後、一般に、50〜180゜Cの温度、
6〜48時間乾燥する。
After soaking and washing with water, generally at a temperature of 50 to 180°C,
Dry for 6-48 hours.

本発明の方法における反応態様としては回分式、連続式
その他任意の態様で実施することができるが、触媒を!
!!濁床とすると触媒の分離工程が必要となるので、固
定床が好ましい。また、固定床においては、上向き流れ
であると担持ルテニウム触媒が流動化して活性低下をお
こすおそれがあるので、下向き流れの方が好ましい。
The method of the present invention can be carried out in any manner, including batchwise, continuous, etc.
! ! A fixed bed is preferred since a turbid bed requires a catalyst separation step. Further, in a fixed bed, downward flow is preferable because upward flow may cause the supported ruthenium catalyst to fluidize and cause a decrease in activity.

原料アセトンは、希釈して用いるのが好ましく、希釈す
る溶媒としては、製品であるIPAを使用するのが好ま
しい.その他、アセトンおよび製品であるIPAを溶か
しアセトンと反応性のないものなら溶媒として使用でき
るが、水を溶媒としたりあるいは混入させるのは、製品
IPAとの分離が非常に困難であるので、好ましくない
.また、IPA以外のものであるとやはり製品IPAと
の分離のために多大な設備を必要とするので好ましくな
い. 本発明の方法における担持Ru触媒存在下のアセトンの
水素還元反応では反応器内のIPA濃度を50重量%以
上として反応させることが好ましい.濃度が50重量%
未満であると、反応熱による発熱が大きく反応温度が安
定しない、高い活性や、選択性が得られない、などの問
題が生じる.水素還元反応系への水素供給量は、当該水
素還元反応に理論上必要な水素量の1〜50倍、好まし
くは1〜30倍、最も好ましくは1〜20倍程度である
。供給する水素量が多すぎるのはロスとなり水素の回収
系・循環系などの付属設備が膨大となり無駄である。
The raw material acetone is preferably used after being diluted, and the product IPA is preferably used as the diluting solvent. In addition, it is possible to dissolve acetone and the product IPA and use it as a solvent if it has no reactivity with acetone, but it is not preferable to use water as a solvent or mix it with water because it will be very difficult to separate it from the product IPA. .. Moreover, if it is something other than IPA, it is not preferable because it requires a large amount of equipment to separate it from the product IPA. In the hydrogen reduction reaction of acetone in the presence of a supported Ru catalyst in the method of the present invention, it is preferred that the IPA concentration in the reactor be 50% by weight or more. Concentration is 50% by weight
If it is less than 100%, problems will occur such as a large amount of reaction heat generated, unstable reaction temperature, and failure to obtain high activity and selectivity. The amount of hydrogen supplied to the hydrogen reduction reaction system is about 1 to 50 times, preferably 1 to 30 times, and most preferably about 1 to 20 times the amount of hydrogen theoretically required for the hydrogen reduction reaction. If too much hydrogen is supplied, it will be a waste and the associated equipment such as hydrogen recovery system and circulation system will be enormous and wasteful.

水素還元反応は、通常0〜200℃、好ましくはlO〜
170℃、最も好ましくは20−150℃の範囲で行わ
れる.反応温度が高すぎると化学平衡上高い転化率が得
られないし、副反応も起こるなど好ましくない.また、
反応温度が低すぎると、反応速度が遅くなるなどの問題
点が生じる.水素還元反応の全圧は、通常、常圧〜加圧
下、好ましくは常圧〜5 0kg/cjG ..jlも
好ましくは常圧〜30kg/aJ(;である.アセトン
の水素還元反応は上記の圧力で容易に進行するので、反
応圧力を必要以上に高くしても装置の建設コストが大と
なるのみで無駄である. 〔実施例) 以下に実験例を挙げて、本発明をさらに具体的に説明す
る.これらの例に記載の%は特に記載しない限り重量基
準による. 触媒製造例−1 4〜8メッシュに破砕したヤシガラ活性炭に、濃度0.
 8%の塩化ルテニウム(l水和物)の塩酸酸性溶液を
含浸させ、110℃で1昼夜乾燥させた. 次いで、その乾燥物を水素気流下で400℃の温度で1
6時間還元処理して、&IltcがRu(0.5%)/
活性炭の担持ルテニウム触媒を得た.このRu(0.5
%)/活性炭触媒50gを、常温で0.IN水酸化ナト
リウム水溶液200a+1に1時間含浸させ、さらに純
水200llIlにて洗浄した後、110℃で1昼夜乾
燥させ、水酸化ナトリウム処理Ru(0.5%)/活性
炭触媒を得た.触媒調製例−2 塩基性物質・としてピリジンを使用し、0. 1 Nピ
リジン水溶液で処理したこと以外は触媒製造例一1と同
様の操作を行ない、ピリジン処理Ru(0.5%)/活
性炭触媒を得た. 実施例−1 触媒製造例−lに従って調製した水酸化ナトリウム処理
Ru(0.5%)活性炭触媒5gを充填したカゴ型攪拌
機、水素供給管、生威液抜出し管を備えた内容積200
+n1のステンレス製オートクレープに、アセトンlO
%、IPA90%の組威をもつ原料を125m#仕込み
、反応温度60t”、反応圧力9 kg/ cd − 
G、および攪拌速度750rpmで2時間反応を行なっ
た.オートクレープを室温まで冷却後、生成液を抜き出
し、ガスクロマトグラフで分析した.その結果を表−1
に示す.実施例−2 触媒製造例−1に従って調製した触媒5 0 0mlを
外径10nの温度計保護管を備えた内径3 0. 1園
のステンレス製反応管に充填した.触媒層人口温度を5
0℃として、これにアセトン10%、IPA90%の&
Il戒の液を217時、水素を93II/時の速度、反
応圧力9kg/cIII−Gで反応管の上部から連続的
に供給した.供給11t8時間目、75時間目の結果を
表−1に示す。
The hydrogen reduction reaction is usually carried out at a temperature of 0 to 200°C, preferably 10 to 200°C.
It is carried out at 170°C, most preferably in the range of 20-150°C. If the reaction temperature is too high, a high conversion rate cannot be obtained due to chemical equilibrium, and side reactions may also occur, which is undesirable. Also,
If the reaction temperature is too low, problems such as a slow reaction rate will occur. The total pressure of the hydrogen reduction reaction is usually normal pressure to pressurized, preferably normal pressure to 50 kg/cjG. .. jl is also preferably normal pressure to 30 kg/aJ (;.The hydrogen reduction reaction of acetone proceeds easily at the above pressure, so increasing the reaction pressure more than necessary will only increase the construction cost of the equipment. [Example] The present invention will be explained in more detail by giving an experimental example below. The percentages listed in these examples are by weight unless otherwise noted. Catalyst Production Example-1 Coconut shell activated carbon crushed into 4 to 8 meshes was mixed with a concentration of 0.
It was impregnated with an acidic solution of 8% ruthenium chloride (l hydrate) in hydrochloric acid and dried at 110°C for one day and night. Next, the dried product was heated at a temperature of 400°C under a hydrogen stream for 1 hour.
After 6 hours of reduction treatment, &Iltc became Ru (0.5%)/
A ruthenium catalyst supported on activated carbon was obtained. This Ru(0.5
%)/50g of activated carbon catalyst at room temperature. After being impregnated with IN sodium hydroxide aqueous solution 200a+1 for 1 hour, and further washed with 200 lIl of pure water, it was dried at 110°C for one day and night to obtain a sodium hydroxide-treated Ru (0.5%)/activated carbon catalyst. Catalyst Preparation Example-2 Pyridine was used as the basic substance, and 0. A pyridine-treated Ru (0.5%)/activated carbon catalyst was obtained by carrying out the same operation as in Catalyst Production Example 1, except that the catalyst was treated with a 1N aqueous pyridine solution. Example-1 A cage-type stirrer filled with 5 g of sodium hydroxide-treated Ru (0.5%) activated carbon catalyst prepared according to Catalyst Production Example-1, a hydrogen supply pipe, and a raw waste liquid extraction pipe with an internal volume of 200
In a +n1 stainless steel autoclave, add acetone lO
%, 125 m# of raw materials with a composition strength of 90% IPA were charged, reaction temperature was 60 t", reaction pressure was 9 kg/cd -
G, and the reaction was carried out for 2 hours at a stirring speed of 750 rpm. After the autoclave was cooled to room temperature, the product liquid was extracted and analyzed using a gas chromatograph. Table 1 shows the results.
It is shown in Example 2 500 ml of the catalyst prepared according to Catalyst Production Example 1 was heated to a tube with an inner diameter of 30.0 mm and a thermometer protection tube with an outer diameter of 10 nm. It was filled into one stainless steel reaction tube. Catalyst layer population temperature 5
At 0°C, add 10% acetone, 90% IPA &
At 217 hours, hydrogen was continuously supplied from the top of the reaction tube at a rate of 93 II/hour and a reaction pressure of 9 kg/cIII-G. Table 1 shows the results at the 8th hour and 75th hour of supply 11t.

比較例−1 触媒製造例−1において、水酸化ナトリウム水溶液未処
理のRu(0.5%)/活性炭触媒を使用したこと以外
は実施例−1と同様の操作を行ない、表一lに示す結果
を得た. 比較例−2 触媒製造例−1において、水酸化ナトリウム水溶液未処
理のRu(0.5%)/活性炭触媒を使用したこと以外
は実施例−2と同様の操作を行ない、表−1に示す結果
を得た。
Comparative Example-1 In Catalyst Production Example-1, the same operation as in Example-1 was performed except that Ru (0.5%)/activated carbon catalyst that had not been treated with aqueous sodium hydroxide solution was used, and the results are shown in Table 1. I got the results. Comparative Example-2 In Catalyst Production Example-1, the same operation as in Example-2 was performed except that Ru (0.5%)/activated carbon catalyst that had not been treated with an aqueous sodium hydroxide solution was used, and the results are shown in Table-1. Got the results.

表 l 〔発明の効果〕 本発明の製造方法によれば、アセトンを高い転化率で安
定して水素還元することができ、しかもジイソプ口ピル
エーテルの副生を抑え、高い選択率でイソプロピルアル
コールを製造することができる。
Table 1 [Effects of the Invention] According to the production method of the present invention, it is possible to stably reduce acetone with hydrogen at a high conversion rate, suppress the by-product of diisopropyl ether, and produce isopropyl alcohol with high selectivity. can be manufactured.

Claims (1)

【特許請求の範囲】[Claims] アセトンを、塩基性物質で処理した担持ルテニウム触媒
の存在下、水素還元することを特徴とするイソプロピル
アルコールの製造方法。
A method for producing isopropyl alcohol, which comprises reducing acetone with hydrogen in the presence of a supported ruthenium catalyst treated with a basic substance.
JP1191675A 1989-07-25 1989-07-25 Method for producing isopropyl alcohol Expired - Fee Related JP2762591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1191675A JP2762591B2 (en) 1989-07-25 1989-07-25 Method for producing isopropyl alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1191675A JP2762591B2 (en) 1989-07-25 1989-07-25 Method for producing isopropyl alcohol

Publications (2)

Publication Number Publication Date
JPH0356428A true JPH0356428A (en) 1991-03-12
JP2762591B2 JP2762591B2 (en) 1998-06-04

Family

ID=16278587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191675A Expired - Fee Related JP2762591B2 (en) 1989-07-25 1989-07-25 Method for producing isopropyl alcohol

Country Status (1)

Country Link
JP (1) JP2762591B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000035845A1 (en) * 1998-12-16 2000-06-22 Japan Science And Technology Corporation Processes for the preparation of alcohols
CN104478660A (en) * 2014-11-12 2015-04-01 厦门大学 Method for low temperature preparation of isopropanol
JP2015515499A (en) * 2012-05-04 2015-05-28 ライオンデル ケミカル テクノロジー、エル.ピー. Method for purification of crude acetone stream
JP2015117199A (en) * 2013-12-18 2015-06-25 三菱瓦斯化学株式会社 Production method of diisobutyl carbinol by hydrogenation of diisobutyl ketone

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000035845A1 (en) * 1998-12-16 2000-06-22 Japan Science And Technology Corporation Processes for the preparation of alcohols
US6476278B1 (en) 1998-12-16 2002-11-05 Japan Science And Technology Corporation Processes for the preparation of alcohols
JP2015515499A (en) * 2012-05-04 2015-05-28 ライオンデル ケミカル テクノロジー、エル.ピー. Method for purification of crude acetone stream
JP2015117199A (en) * 2013-12-18 2015-06-25 三菱瓦斯化学株式会社 Production method of diisobutyl carbinol by hydrogenation of diisobutyl ketone
CN104478660A (en) * 2014-11-12 2015-04-01 厦门大学 Method for low temperature preparation of isopropanol

Also Published As

Publication number Publication date
JP2762591B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
KR20130095748A (en) Process for the synthesis of 2,5-furandicarboxylic acid
JPH10204006A (en) Production of trifluoromethane iodide
CN102471302A (en) Preparation process of dronedarone and its salts
EP0001070B1 (en) Process for producing pyruvic acid
JPH0356428A (en) Production of isopropyl alcohol
JP2573687B2 (en) Method for producing isopropyl alcohol
JPH01193246A (en) Production of 2,3-dichloropyridine
CA1106349A (en) Catalyst and process for the preparation of amines from alcohols
JPH11228464A (en) Production of methyl isobutyl ketone and/or methyl isobutyl carbinol
JP4066679B2 (en) Process for producing aralkyl ketones and catalyst thereof
CN113087644B (en) Method for preparing 4-acetamino-benzene sulfinic acid
JP2569111B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
JP2512067B2 (en) Manufacturing method of cumyl alcohol
JP4609613B2 (en) Carbon monoxide production method
JP2625490B2 (en) Purification method of pyruvate
JP4502096B2 (en) Regeneration method of strongly basic anion exchange resin
JP3819560B2 (en) Method for producing halogenated phenylpropionic acid compound
JP2001288137A (en) Method for producing formic acid
JPH06122650A (en) Production of 3,3',4,4'-biphenyltetracarboxylic acid
JP2000169101A (en) Production of hydrogen from 2-propanol
JPS6012333B2 (en) Improved production method for resorcinol
JPH10212257A (en) Production of bisphenol a
JPS62185041A (en) Recovery of 2-(p-isobutylphenyl)propionic acid or salt thereof
JP3541448B2 (en) Method for producing acetamide
GB1580811A (en) Hydrogenation of beta naphthol

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees