JP2569111B2 - Method for recovering iodine from waste liquid containing organic iodine compound - Google Patents

Method for recovering iodine from waste liquid containing organic iodine compound

Info

Publication number
JP2569111B2
JP2569111B2 JP63048734A JP4873488A JP2569111B2 JP 2569111 B2 JP2569111 B2 JP 2569111B2 JP 63048734 A JP63048734 A JP 63048734A JP 4873488 A JP4873488 A JP 4873488A JP 2569111 B2 JP2569111 B2 JP 2569111B2
Authority
JP
Japan
Prior art keywords
iodine
waste liquid
reaction
solution
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63048734A
Other languages
Japanese (ja)
Other versions
JPH01224203A (en
Inventor
弘春 景山
一男 小栗
良典 田中
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP63048734A priority Critical patent/JP2569111B2/en
Publication of JPH01224203A publication Critical patent/JPH01224203A/en
Application granted granted Critical
Publication of JP2569111B2 publication Critical patent/JP2569111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、有機沃素化合物を含有する廃液から沃素を
回収する方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for recovering iodine from a waste liquid containing an organic iodine compound.

沃素は、工業的にレントゲン造影剤、工業用殺菌剤、
農園芸用除草剤の原料として広く用いられているほか、
有機化合物の脱水素、異性化、縮合反応の触媒として、
しばしば用いれており、工業的に極めて貴重な資源であ
る。
Iodine is industrially a radiographic contrast agent, industrial bactericide,
Widely used as a raw material for agricultural and horticultural herbicides,
As a catalyst for dehydrogenation, isomerization and condensation of organic compounds,
It is often used and is an extremely valuable resource in industry.

[従来の技術] 従来より沃素の回収に関しては種々の提案がなされて
おり、例えば、特公昭64−5814号及び特公昭46−35244
号には、沃化アルキルとして存在する放射性沃素を除去
するための吸着剤に関する記載があり、特公昭48−4235
7号には。触媒として沃素を使用する有機物の気相脱水
素反応において、反応系から排出する反応混合気体を高
温下で酸化銅と接触させ、次いで一部沃素化された酸化
銅を酸化剤で酸化し、沃素を遊離させ回収する方法につ
いての記載がある。また、特開昭51−34896号には、沃
素又は沃素化合物を含有する廃棄物を焼却炉に導入して
燃焼させ、この燃焼ガス中に含まれる沃素をアルカリ性
のチオ硫酸ナトリウム又は亜硫酸ナトリウムの水溶液に
吸収させ沃素を回収する記載がある。また、芳香族有機
沃素化合物からの沃素の回収方法としては、EP 106934
号に銅系触媒の存在下、強アルカリと加熱処理すること
により沃素を回収する記載がある。
[Prior Art] Various proposals have been made for recovery of iodine. For example, Japanese Patent Publication No. 64-5814 and Japanese Patent Publication No. 46-35244 are disclosed.
No. 48-4235 describes an adsorbent for removing radioactive iodine present as alkyl iodide.
No. 7 In a gas phase dehydrogenation reaction of an organic substance using iodine as a catalyst, the reaction mixture gas discharged from the reaction system is brought into contact with copper oxide at a high temperature, and then the partially iodinated copper oxide is oxidized with an oxidizing agent, and There is a description of a method for releasing and recovering the compound. JP-A-51-34896 discloses that waste containing iodine or an iodine compound is introduced into an incinerator and burned, and iodine contained in the combustion gas is converted to an aqueous solution of alkaline sodium thiosulfate or sodium sulfite. To recover iodine. As a method for recovering iodine from an aromatic organic iodine compound, EP 106934
No. 1 describes that iodine is recovered by heat treatment with a strong alkali in the presence of a copper-based catalyst.

[発明が解決しようとする課題] 近年、有機沃素化合物、特にレントゲン造影剤及び工
業用殺菌剤の延びは著しく、沃素は逼迫した状態となっ
ている。一方、これら有機沃素化合物は極めて複雑な構
造を有するため、多数の工程を経て製造されている。
[Problems to be Solved by the Invention] In recent years, the growth of organic iodine compounds, particularly radiographic contrast agents and industrial germicides, has been remarkable, and iodine has been in a tight state. On the other hand, since these organic iodine compounds have an extremely complicated structure, they are produced through many steps.

当然、各工程毎に廃液が発生し、高価な沃素が副生
物、中間体等の種々の有機化合物として廃液中に失われ
る。このような沃素の損失は、目的のレントゲン造影剤
もしくは殺菌剤の構造が複雑なほど多く、化合物によっ
ては原料として用いる沃素の50〜70%が失われるものも
ある。
Naturally, a waste liquid is generated in each step, and expensive iodine is lost in the waste liquid as various organic compounds such as by-products and intermediates. Such iodine loss increases as the structure of the target X-ray contrast agent or bactericide becomes more complicated, and some compounds lose 50 to 70% of iodine used as a raw material.

本発明は有機沃素化合物の製造において、発生した廃
液から工業的に沃素回収し、再利用する方法を提供する
ことを課題とする。
An object of the present invention is to provide a method for industrially recovering and recycling iodine from a generated waste liquid in the production of an organic iodine compound.

[課題を解決するための手段及び作用] 本発明者らは、上記した課題を解決するために鋭意検
討した結果、有機沃素化合物を含有する廃液を還元反応
により脱沃素化し、次いで酸化することにより沃素を遊
離せしめたのち、空気を導入して遊離した沃素を追い出
し、アルカリ水溶液又は特定の還元性水溶液に吸収させ
ることにより本発明の課題が達成させることを見出し、
本発明を完成させるに至った。
[Means and Actions for Solving the Problems] The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, a waste liquid containing an organic iodine compound is deiodinated by a reduction reaction and then oxidized. After liberating iodine, found that the object of the present invention can be achieved by introducing air to drive out the liberated iodine and absorbing it into an alkaline aqueous solution or a specific reducing aqueous solution.
The present invention has been completed.

すなわち本発明は、 有機沃素化合物を含有する廃液中の有機沃素化合物を
還元し脱沃素化したのち、酸化し遊離した沃素を空気で
追い出し、アルカリ水溶液又は還元性水溶液に吸収させ
ることを特徴とする沃素の回収方法である。
That is, the present invention is characterized in that after the organic iodine compound in the waste liquid containing the organic iodine compound is reduced and deiodinated, the oxidized and released iodine is expelled by air and absorbed in an alkaline aqueous solution or a reducing aqueous solution. This is a method for recovering iodine.

一般に、有機沃素化合物が各種の還元反応により脱沃
素化反応を起こすことはよく知られている。しかし、本
発明のように廃液中の有機沃素化合物を還元脱沃素化す
ることによる沃素の回収に応用する技術は知られていな
い。
It is well known that organic iodine compounds generally undergo a deiodination reaction by various reduction reactions. However, there is no known technique applied to the recovery of iodine by reductive deiodination of an organic iodine compound in a waste liquid as in the present invention.

本発明で用いる廃液は、ジアトリゾ酸(3,5−ジアセ
チルアミノ−2,4,6−トリヨード安息香酸)、アセトリ
ゾ酸(3−アセチルアミノ−2,4,6−トリヨード安息香
酸)、イオパミドール等のレントゲン造影剤、3,5−ジ
アミノ−2,4,6−トリヨード安息香酸、5−アミノ−2,
4,6−トリヨードイソフタル酸等のレントゲン造影剤の
中間体または農園芸用除草剤アイオキシニル、工業用殺
菌剤トリジヨードメチルスルホン等の製造に再し、発生
する反応廃液、洗浄液、再結晶廃液、酸析廃液等、又は
これらの混合物であるが、必ずしもこれらに限定される
ものではない。これらの廃液は適宜PH調整を行った後使
用される。
The waste liquid used in the present invention includes diatrizoic acid (3,5-diacetylamino-2,4,6-triiodobenzoic acid), acetolizoic acid (3-acetylamino-2,4,6-triiodobenzoic acid), iopamidol and the like. X-ray contrast agent, 3,5-diamino-2,4,6-triiodobenzoic acid, 5-amino-2,
An intermediate of an X-ray contrast agent such as 4,6-triiodoisophthalic acid or an agricultural and horticultural herbicide ioxinil, an industrial germicide tridiiodomethylsulfone, etc. Acidic waste liquid and the like, or a mixture thereof, but are not necessarily limited thereto. These waste liquids are used after pH adjustment as appropriate.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明で用いる還元反応としては、接触水素化分解反
応、金属亜鉛、金属錫、金属アルミニウム又は金属的に
よる還元反応、電解還元反応等が挙げられる。
Examples of the reduction reaction used in the present invention include a catalytic hydrogenolysis reaction, a metal zinc, metal tin, metal aluminum or metallic reduction reaction, an electrolytic reduction reaction, and the like.

接触水素化分解反応に使用する水素化触媒は、金属、
担体、添加物、活性化の方法等の組合せによって非常に
多くの種類があり、ニッケル系触媒、コバルト系触媒、
白金族触媒、酸化クロム系触媒、銅系触媒、オスミウム
系触媒、イリジウム系触媒、モリブデン系触媒等がある
が、特にニッケル系触媒、コバルト系触媒、パラジウム
−カーボン触媒が良好な結果を与える。
The hydrogenation catalyst used in the catalytic hydrocracking reaction is metal,
There are numerous types depending on the combination of carriers, additives, activation methods, etc., nickel-based catalysts, cobalt-based catalysts,
There are platinum group catalysts, chromium oxide based catalysts, copper based catalysts, osmium based catalysts, iridium based catalysts, molybdenum based catalysts and the like, and particularly nickel based catalysts, cobalt based catalysts and palladium-carbon catalysts give good results.

水素化分解温度は10〜150℃、好ましくは30〜80℃で
ある。分解温度が低過ぎると反応が進行せず、逆に高過
ぎると大量の廃液を高温にする必要があり経済的見地か
ら好ましくない。
The hydrocracking temperature is from 10 to 150C, preferably from 30 to 80C. If the decomposition temperature is too low, the reaction does not proceed, while if it is too high, a large amount of waste liquid needs to be heated, which is not preferable from an economic viewpoint.

水素圧力は、常圧〜50Kg/cm2でよい。反応は高圧で行
うほど速く進行するが、それと共に水素化分解反応装置
も堅牢なものが要求され、費用も膨大なものとなるため
好ましくない。
The hydrogen pressure may be normal pressure to 50 kg / cm 2 . The reaction proceeds faster as the reaction is carried out at a high pressure, but the hydrogenolysis reactor is also required to be robust and the cost is enormous, which is not preferable.

反応時間は、水素化分解温度、触媒量、水素圧力、廃
液中の有機沃素化合物の温度により変わるが、一般には
1〜15時間撹拌下に反応させればよい。また、この反応
はアルカリ性下に行うと生成した沃素イオンが安定化さ
れるため、PH7〜14で行うのが好ましい。
The reaction time varies depending on the hydrocracking temperature, the amount of the catalyst, the hydrogen pressure, and the temperature of the organic iodine compound in the waste liquid. In general, the reaction may be performed with stirring for 1 to 15 hours. In addition, this reaction is preferably performed at PH 7-14 because the generated iodide ions are stabilized when the reaction is performed under alkaline conditions.

金属亜鉛、金属錫、金属アルミニウム又は金属鉄によ
る還元反応は、金属から有機沃素化合物への電子移動に
よるものと考えられるため、金属の表面積が大きいほど
円滑に進行する。そのため使用する金属は粉状、砂状、
粒状又は華状で用いることが望ましい。
Since the reduction reaction with metal zinc, metal tin, metal aluminum or metal iron is considered to be due to electron transfer from the metal to the organic iodine compound, the reduction proceeds more smoothly as the surface area of the metal is larger. Therefore, the metal used is powdery, sandy,
It is desirable to use it in the form of granules or flowers.

還元温度は10〜100℃の範囲、好ましくは20〜60℃で
ある。反応は酸性下で行う。PH0.5〜5で行うと極めて
円滑に脱沃素化反応が進行する。PHが0.5より低くなる
と、金属が脱沃素化に使用されず副反応として水素ガス
の発生に使用されるため経済的でない。PHが5より高く
なると反応が極度に遅くなる。処理時間は処理温度、使
用する金属の量、処理液のPH、廃液中の有機沃素化合物
の濃度により変わるが、一般には、1〜15時間撹拌下に
反応させればよい。
The reduction temperature is in the range of 10 to 100C, preferably 20 to 60C. The reaction is performed under acidic conditions. When the pH is 0.5 to 5, the deiodination reaction proceeds very smoothly. When the pH is lower than 0.5, the metal is not used for deiodination and is used for generating hydrogen gas as a side reaction, which is not economical. If the pH is higher than 5, the reaction becomes extremely slow. Although the treatment time varies depending on the treatment temperature, the amount of metal used, the pH of the treatment solution, and the concentration of the organic iodine compound in the waste solution, the reaction may generally be performed with stirring for 1 to 15 hours.

電解還元反応は、通常中央に隔膜を設けた陽極室及び
陰極室よりなる電解槽内にて行われる。
The electrolytic reduction reaction is usually performed in an electrolytic cell including an anode chamber and a cathode chamber each having a diaphragm provided at the center.

隔膜としては、カチオン交換膜の他アスベスト、セラ
ミックス等も使用可能であるが、カチオン交換膜が好適
である。また、陽極室は通常硫酸溶液及び陽極より構成
されており、陰極室は目的とする処理液及び陰極より構
成されている。また、陰極室には必要なら支持電解質と
して相当量の塩類、酸または塩基を溶解させ、廃液の導
電性を上げてやるのがよいが、一般には廃液それ自体に
すでに十分な量の塩類が含まれている場合が多く、支持
電解質の添加は不要な場合が多い。
As the diaphragm, asbestos, ceramics and the like can be used in addition to the cation exchange membrane, but the cation exchange membrane is preferable. The anode compartment is usually composed of a sulfuric acid solution and an anode, and the cathode compartment is composed of a target processing solution and a cathode. In the cathode chamber, if necessary, a considerable amount of salts, acids or bases may be dissolved as a supporting electrolyte to increase the conductivity of the waste liquid, but in general, the waste liquid itself already contains a sufficient amount of salts. In many cases, the addition of a supporting electrolyte is unnecessary.

陽極室における硫酸溶液の濃度としては、特に制限さ
れず広い範囲内から適宜選択できるが、通常1〜20重量
%硫酸水溶液又は硫酸アルコール溶液、好ましくは5〜
10重量%硫酸水溶液又は硫酸アルコール溶液を使用する
のがよい。
The concentration of the sulfuric acid solution in the anode chamber is not particularly limited and can be appropriately selected from a wide range.
It is preferable to use a 10% by weight sulfuric acid aqueous solution or a sulfuric acid alcohol solution.

陽極としては、硫酸溶液に溶解されないものであるか
ぎり公知のものをいずれも使用できる。例えば、陽極と
しては、鉛、鉛合金、白金、金、銀、ニッケル、ニッケ
ル合金、亜鉛、亜鉛合金、カドミウム、黒鉛、炭素等が
挙げられる。これらの内でも鉛や白金を使用するのが好
ましい。
Any known anode can be used as long as it is not dissolved in a sulfuric acid solution. For example, examples of the anode include lead, lead alloy, platinum, gold, silver, nickel, nickel alloy, zinc, zinc alloy, cadmium, graphite, and carbon. Among them, it is preferable to use lead or platinum.

陽極としては、鉛、亜鉛、ニッケル、白金、黒鉛、炭
素、酸化鉛、酸化ニッケル、酸化マンガン、酸化鉄、
金、ルテニウムまたはイリジウム、ルビジウム等の貴金
属で被覆された金属等を挙げることができるが、特に
鉛、亜鉛、ニッケル等が好適である。
As the anode, lead, zinc, nickel, platinum, graphite, carbon, lead oxide, nickel oxide, manganese oxide, iron oxide,
Metals coated with a noble metal such as gold, ruthenium or iridium or rubidium can be mentioned, but lead, zinc, nickel and the like are particularly preferable.

本発明の電解還元の還元方法としては、定電圧法及び
定電流法のいずれでも可能であるが、定電流法によるの
が好ましい。
As a reduction method of the electrolytic reduction of the present invention, any of a constant voltage method and a constant current method is possible, but the constant current method is preferable.

定電流法の場合は、電流密度としては通常0.1〜10A/d
m2程度、好ましくは0.5〜3A/dm2である。電解反応に必
要な通電量としては、電解槽の形状、電極の種類、基質
反応性等により一定しないが、通常5〜6F/モル程度の
電気量を通電すればよい。有機沃素化合物の電解による
還元脱沃素代反応の電位は他の大多数の官能基の還元電
位よりも低く、そのため、種々の有機化合物の混合物で
あっても、最も早く還元反応を受けるのは脱沃素化反応
であり、その結果高い電流効率が得られる結果となる。
In the case of the constant current method, the current density is usually 0.1 to 10 A / d
m 2 , preferably 0.5 to 3 A / dm 2 . The amount of electricity required for the electrolysis reaction is not fixed depending on the shape of the electrolytic cell, the type of electrode, the reactivity of the substrate, and the like. The potential of the reductive deiodination reaction by electrolysis of an organic iodine compound is lower than the reduction potential of most of the other functional groups. Therefore, even if a mixture of various organic compounds is subjected to the reduction reaction, it is the earliest that the compound undergoes the reduction reaction. This is an iodination reaction, and as a result, high current efficiency is obtained.

脱沃素化反応終了後、適宜処理液のPH調整を行った
後、処理液を過酸化水素、次亜鉛素酸ナトリウム、塩
素、塩素水、亜硫酸ナトリウム等の酸化剤で酸化すると
沃素が遊離する。
After the completion of the deiodination reaction, the pH of the treatment liquid is appropriately adjusted, and then the treatment liquid is oxidized with an oxidizing agent such as hydrogen peroxide, sodium hypochlorite, chlorine, chlorine water, sodium sulfite, etc., to release iodine.

この遊離沃素は処理液に空気導入管を用いて通気する
ことにより、処理液から追い出され、吸収液に導くこと
により容易に捕集、濃縮される。
The free iodine is expelled from the processing solution by passing the processing solution through an air introduction tube, and is easily collected and concentrated by leading to the absorbing solution.

より効率的に前記作業を行うためには、追い出し塔の
上部から処理液を長し、下部より空気を通じ、沃素を空
気に捕集させる方法が適している。追い出し塔での接触
をよくするために磁性の環等の充填物を使用するか、ま
たは追い出し塔上部よりシャワー状態で導入するのがよ
い。
In order to perform the above operation more efficiently, it is appropriate to use a method in which the treatment liquid is lengthened from the upper part of the driving tower, and the iodine is collected in the air through the lower part. It is preferable to use a packing such as a magnetic ring or the like in order to improve the contact in the removal tower, or to introduce the filler in a shower state from the upper part of the removal tower.

このようにして追い出された沃素は吸収塔に送られ
る。吸収液としては水酸化ナトリウム、水酸化カリウム
等のアルカリ水溶液又は、亜硫酸水溶液、チオ硫酸ナト
リウム、亜硫酸ナトリウム等の還元性水溶液を用いる。
The iodine thus expelled is sent to an absorption tower. As the absorbing solution, an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide or a reducing aqueous solution such as an aqueous solution of sulfurous acid, sodium thiosulfate, or sodium sulfite is used.

遊離沃素を吸収した液は沃化ナトリウム、沃化カリウ
ム又は過剰のチオ硫酸ナトリウム、亜硫酸ナトリウム等
の還元剤、硫酸ナトリウム、炭酸ナトリウムを含んでい
る。従って、この吸収液から沃素を回収するときは、吸
収液を酸性としたのち塩素を吹き込み、遊離の沃素を沈
澱させるなど公知の方法で回収する。
The solution that has absorbed free iodine contains sodium iodide, potassium iodide or an excess of a reducing agent such as sodium thiosulfate and sodium sulfite, sodium sulfate, and sodium carbonate. Therefore, when recovering iodine from the absorbing solution, the absorbing solution is acidified and then blown with chlorine to precipitate free iodine.

沃素は極めて腐食性の大きい元素であり、従って、一
般に沃素回収装置の構成材料の選択及び設計は極めて困
難である。ところが、本発明では低温かつ還元性の条件
下での回収であり、沃素の腐食作用は極度に抑えられ
る。従来技術のように高温または酸性下で遊離沃素又は
沃素塩を処理しないため、構成材料の選定及び設計が他
の公知の沃素回収装置よりも格段に容易になる大きな利
点を有している。
Iodine is an extremely corrosive element, and therefore, it is generally very difficult to select and design a constituent material of an iodine recovery apparatus. However, in the present invention, the recovery is performed under a low-temperature and reducing condition, and the corrosive action of iodine is extremely suppressed. Since free iodine or iodide salt is not treated at high temperature or under acidic conditions as in the prior art, there is a great advantage that the selection and design of the constituent materials is much easier than other known iodine recovery apparatuses.

〔実施例〕〔Example〕

次に、実施例により本発明の方法を具体的に説明す
る。
Next, the method of the present invention will be specifically described with reference to examples.

実施例1 試料廃液として5−アミノ−2,4,6−トリヨードイソ
フタル酸製造において生じた廃液を用いた。
Example 1 As a sample waste liquid, a waste liquid generated in the production of 5-amino-2,4,6-triiodoisophthalic acid was used.

試料廃液の調整は次の通りであった。 The adjustment of the sample waste liquid was as follows.

水4800mlと5−アミノイソフタル酸182gを反応器に仕
込み、撹拌しながら90℃に昇温した。次に、一塩化沃素
536gを約1時間で滴下した。その後、約5時間同温度で
撹拌したのち室温まで冷却した。結晶を濾別し、1000ml
の水で洗浄した。濾液及び洗浄液を合わせ5500mlの試料
用廃液を得た。
4800 ml of water and 182 g of 5-aminoisophthalic acid were charged into a reactor, and the temperature was raised to 90 ° C. while stirring. Next, iodine monochloride
536 g was dripped in about 1 hour. Then, after stirring at the same temperature for about 5 hours, the mixture was cooled to room temperature. The crystals are filtered off and 1000 ml
And washed with water. The filtrate and the washing solution were combined to obtain 5500 ml of sample waste liquid.

この廃液中には、5−アミノ−2−ヨードイソフタル
酸、5−アミノ−4−ヨードイソフタル酸、5−アミノ
−2,4−ジヨードイソフタル酸、5−アミノ−4,6−ジヨ
ードイソフタル酸、5−アミノ−2,4,6−トリヨードイ
ソフタル酸等の各種有機沃素化合物及び未反応の一塩化
沃素、遊離沃素等の無機沃素化合物が含有されており、
廃液100ml中に含まれる沃素量は1.156gであり、そのう
ち有機沃素化合物中に含まれる分は0.693gであった。
This waste liquid contains 5-amino-2-iodoisophthalic acid, 5-amino-4-iodoisophthalic acid, 5-amino-2,4-diiodoisophthalic acid, 5-amino-4,6-diiodoisophthalic acid. Acid, various organic iodine compounds such as 5-amino-2,4,6-triiodoisophthalic acid and unreacted iodine monochloride, inorganic iodine compounds such as free iodine are contained,
The amount of iodine contained in 100 ml of the waste liquid was 1.156 g, of which 0.693 g was contained in the organic iodine compound.

上記により得た廃液500mlを反応器に仕込み、30重量
%水酸化ナトリウム水溶液でPHを13に調整したのち、10
0mgの5重量%パラジウム−カーボン触媒を加えた。50
℃に加熱し、撹拌しながら水素ガスを50ml/minの流速で
導入した。常圧下、5時間、水素の導入を続けたのち、
水素の導入を止め、室温に冷却した。
500 ml of the waste liquid obtained above was charged into a reactor, and the pH was adjusted to 13 with a 30% by weight aqueous sodium hydroxide solution.
0 mg of 5% by weight palladium-carbon catalyst was added. 50
C., and hydrogen gas was introduced at a flow rate of 50 ml / min while stirring. After continuing the introduction of hydrogen under normal pressure for 5 hours,
The introduction of hydrogen was stopped, and the mixture was cooled to room temperature.

パラジウム−カーボン触媒を濾別し、濾液を空気導入
管及び排気管を付けた反応器に移し、濃硫酸でPHを3に
調整した。有効塩素量5%の次亜塩素酸ナトリウム水溶
液にて処理液を酸化し、沃素を遊離した。次いで、空気
を導入し、排気管を10重量%水酸化ナトリウム水溶液に
吸収させた。この吸収液中には沃素として5.528gが含ま
れており、廃液中からの沃素回収率は95.6%であった。
The palladium-carbon catalyst was filtered off, and the filtrate was transferred to a reactor equipped with an air introduction pipe and an exhaust pipe, and the pH was adjusted to 3 with concentrated sulfuric acid. The treatment liquid was oxidized with an aqueous solution of sodium hypochlorite having an effective chlorine amount of 5% to release iodine. Subsequently, air was introduced and the exhaust pipe was absorbed in a 10% by weight aqueous sodium hydroxide solution. This absorption liquid contained 5.528 g of iodine, and the recovery rate of iodine from the waste liquid was 95.6%.

実施例2 実施例1で得た廃液500mlを反応器に仕込み、30重量
%水酸化ナトリウム水溶液でPHを2.5に調整したのち、
砂状亜鉛3.75gを加えて50℃にて4時間撹拌した。未反
応の亜鉛を濾別したのち、濾液に塩素ガスを吹き込み、
沃素を遊離させた。濾液を空気導入管及び排気管を付け
た反応器に移し、空気を導入し、排気管を10重量%水酸
化ナトリウム水溶液へと導くことにより遊離した沃素を
アルカリ溶液に吸収させた。この吸収液中には沃素とし
て5.465gが含まれており、廃液中からの沃素回収率は9
4.5%であった。
Example 2 500 ml of the waste liquid obtained in Example 1 was charged into a reactor, and the pH was adjusted to 2.5 with a 30% by weight aqueous sodium hydroxide solution.
3.75 g of sandy zinc was added and the mixture was stirred at 50 ° C. for 4 hours. After filtering off unreacted zinc, chlorine gas is blown into the filtrate,
Iodine was liberated. The filtrate was transferred to a reactor equipped with an air introduction pipe and an exhaust pipe, air was introduced, and the iodine released was absorbed by the alkaline solution by introducing the exhaust pipe to a 10% by weight aqueous sodium hydroxide solution. The absorption solution contained 5.465 g of iodine, and the recovery rate of iodine from the waste solution was 9%.
4.5%.

実施例3 試料廃液としてジアトリゾ酸の精製時に生じた廃液を
用いた。
Example 3 A waste liquid generated during purification of diatrizoic acid was used as a sample waste liquid.

粗ジアトリゾ酸のナトリウム塩100gを水:イソプロパ
ノール=40:60の混合溶媒400mlで再結晶した。得られた
濾液及び洗浄液を合わせ、減圧下にイソプロパノールを
溜去し、残部を水で500mlに希釈し試料廃液とした。こ
の廃液中に含まれる沃素量は100ml当り1.840gであっ
た。
100 g of the crude sodium salt of diatrizoic acid was recrystallized from 400 ml of a mixed solvent of water: isopropanol = 40: 60. The obtained filtrate and washing solution were combined, isopropanol was distilled off under reduced pressure, and the remainder was diluted to 500 ml with water to obtain a sample waste liquid. The amount of iodine contained in this waste liquid was 1.840 g per 100 ml.

上記で得た廃液500mlを硫酸でPHを1に調整したの
ち、隔膜(カチオン交換膜、セレミオンCMV、旭硝子
製)で隔てられた電解槽の陰極室へ入れ、陽極室には10
重量%硫酸水溶液500mlを入れた。陰極材料としてニッ
ケル、陽極材料として白金を用いて30℃で定電流電解
(0.5A/dm2)を行い、6F/モル通電し還元脱沃素化を行
った。
After adjusting the pH to 1 with sulfuric acid, 500 ml of the waste liquid obtained above is put into a cathode compartment of an electrolytic cell separated by a diaphragm (cation exchange membrane, Selemion CMV, manufactured by Asahi Glass), and 10
500 ml by weight of a sulfuric acid aqueous solution was added. Constant current electrolysis (0.5 A / dm 2 ) was performed at 30 ° C. using nickel as a cathode material and platinum as an anode material, and a current of 6 F / mol was applied to perform reductive deiodination.

電解液を実施例1と同様に後処理した。吸収液中には
沃素として8.74gが含まれており、廃液中からの沃素回
収率は95.0%であった。
The electrolyte was post-treated as in Example 1. The absorption liquid contained 8.74 g as iodine, and the recovery rate of iodine from the waste liquid was 95.0%.

実施例4 実施例1で得た廃液500mlを用い、水素化分解触媒と
してラネーニッケル2.0gを使用して実施例1と同じ条件
にて水素化分解を行った。分解終了後、しばらく静置し
触媒が沈降したのち、上澄み液をデカンテーションで分
離した。触媒に再び廃液500mlを加え、水素化分解を行
った。この操作を5回繰り換し、計2500mlの廃液を処理
した後、処理液を濃硫酸にてPHを3に調整し、塩素ガス
を導入し沃素を遊離させた。
Example 4 Hydrocracking was performed under the same conditions as in Example 1 using 500 ml of the waste liquid obtained in Example 1 and 2.0 g of Raney nickel as a hydrocracking catalyst. After the decomposition, the catalyst was allowed to settle for a while and the supernatant liquid was separated by decantation. 500 ml of the waste liquid was added to the catalyst again, and hydrogenolysis was performed. This operation was repeated five times to treat a total of 2500 ml of the waste liquid, then the pH of the treated liquid was adjusted to 3 with concentrated sulfuric acid, and chlorine gas was introduced to release iodine.

この処理液から沃素を回収する装置として下記の装置
を用意した。
The following apparatus was prepared as an apparatus for recovering iodine from this processing solution.

追い出し塔としては、長さ800mm、内径30mmのガラス
カラムを用い、その中央部に液導入口を、下部に空気導
入口を付けた。空気導入口と液導入口の間には内径5mm
のガラス管を7mm間隔に切断したガラスリングを高さ300
mm充填した。
A glass column with a length of 800 mm and an inner diameter of 30 mm was used as a drive-out tower, with a liquid inlet at the center and an air inlet at the bottom. 5 mm inside diameter between air inlet and liquid inlet
300mm high glass ring cut at 7mm intervals
mm.

吸収塔としては、長さ600mm、内径30mmのガラスカラ
ムを用い、その上部に液導入口を、下部に空気導入口を
付け、追い出し塔と同様にガラスリングを充填した。
As an absorption tower, a glass column having a length of 600 mm and an inner diameter of 30 mm was used, a liquid inlet was provided at an upper part thereof, and an air inlet was provided at a lower part thereof.

追い出し塔カラム上端はビニル管により、吸収塔下部
の空気導入口に連結し、吸収液は受器から定量ポンプで
吸収塔上部の液導入口へ運びリサイクル使用した。
The upper end of the column of the discharge tower was connected to the air inlet of the lower part of the absorption tower by a vinyl tube, and the absorption liquid was transported from the receiver to the liquid inlet of the upper part of the absorption tower by a metering pump for recycling.

上記の装置に追い出し塔中央部の液導入口から沃素遊
離液を10ml/minの流速で送液した。下部の空気導入口か
らは空気を50ml/minの流速で送気した。吸収液として10
重量%亜硫酸ナトリウム水溶液を用い、吸収塔上部より
10ml/minの流速で供給した。
The iodine-free liquid was sent to the above apparatus at a flow rate of 10 ml / min from the liquid inlet at the center of the drive-out tower. Air was supplied from the lower air inlet at a flow rate of 50 ml / min. 10 as absorbent
Weight percent sodium sulfite aqueous solution
It was supplied at a flow rate of 10 ml / min.

沃素遊離液2500mlを処理し、吸収液中に沃素として2
6.85gを回収した。回収率92.9%であった。
Treat 2500 ml of iodine free solution, and add 2
6.85 g was recovered. The recovery rate was 92.9%.

[発明の効果] 本発明の方法によれば、有機沃素化合物を含有する廃
液から極めて高収率で沃素を回収することができる。ま
た、回収装置の構成材料の選択及び設計が従来公知の回
収方法よりも容易であり、有機沃素化合物を含有する廃
液から沃素を回収する方法として工業的に極めて有用で
ある。
[Effect of the Invention] According to the method of the present invention, iodine can be recovered from a waste liquid containing an organic iodine compound in an extremely high yield. Further, the selection and design of the constituent materials of the recovery device are easier than conventionally known recovery methods, and are extremely industrially useful as a method for recovering iodine from a waste liquid containing an organic iodine compound.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/72 CDV C02F 1/46 101C (56)参考文献 特開 昭48−72109(JP,A) 特開 昭63−1448(JP,A) 特公 昭57−20037(JP,B2) 用水廃水便覧編集委員会編「用水廃水 便覧」昭和48年10月30日丸善(株)発行 576〜577頁7.11.4の項 野崎、藤代著「ヨウ素とその工業」昭 和37年4月1日東京電機大学出版部発行 29頁末9行〜30頁9行232頁[3]234頁 [1]──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location C02F 1/72 CDV C02F 1/46 101C (56) References JP-A-48-72109 (JP, A JP-A-63-1448 (JP, A) JP-B-57-20037 (JP, B2) Irrigation Wastewater Handbook Handbook, edited by the Editing Committee for Irrigation Wastewater Handbook, published October 30, 1973 by Maruzen Co., Ltd. 576-577 Page 7.11.4, Nozaki and Fujishiro, "Iodine and Its Industry" Published by Tokyo Denki University Press, April 1, 1962, page 29, 9 lines to 30 pages, 9 lines, 232 pages [3] 234 pages [ 1]

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機沃素化合物を含有する廃液中の有機沃
素化合物を還元し脱沃素化したのち、酸化し遊離した沃
素を空気で追い出し、アルカリ水溶液又は還元性水溶液
に吸収させることを特徴とする沃素の回収方法。
An organic iodine compound in a waste liquid containing an organic iodine compound is reduced and deiodinated, and then oxidized and released iodine is expelled by air and absorbed in an alkaline aqueous solution or a reducing aqueous solution. How to recover iodine.
【請求項2】脱沃素化が接触水素化分解反応である請求
項1に記載の方法。
2. The method according to claim 1, wherein the deiodination is a catalytic hydrocracking reaction.
【請求項3】脱沃素化が金属亜鉛、金属錫、金属アルミ
ニウム又は金属鉄による還元反応である請求項1に記載
の方法。
3. The method according to claim 1, wherein the deiodination is a reduction reaction with metallic zinc, metallic tin, metallic aluminum or metallic iron.
【請求項4】脱沃素化が電解還元反応である請求項1に
記載の方法。
4. The method according to claim 1, wherein the deiodination is an electrolytic reduction reaction.
JP63048734A 1988-03-03 1988-03-03 Method for recovering iodine from waste liquid containing organic iodine compound Expired - Fee Related JP2569111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63048734A JP2569111B2 (en) 1988-03-03 1988-03-03 Method for recovering iodine from waste liquid containing organic iodine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63048734A JP2569111B2 (en) 1988-03-03 1988-03-03 Method for recovering iodine from waste liquid containing organic iodine compound

Publications (2)

Publication Number Publication Date
JPH01224203A JPH01224203A (en) 1989-09-07
JP2569111B2 true JP2569111B2 (en) 1997-01-08

Family

ID=12811517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63048734A Expired - Fee Related JP2569111B2 (en) 1988-03-03 1988-03-03 Method for recovering iodine from waste liquid containing organic iodine compound

Country Status (1)

Country Link
JP (1) JP2569111B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4236724A1 (en) * 1992-10-30 1994-05-05 Schering Ag Process for the recovery of iodine from iodinated organic compounds
CN113173653A (en) * 2021-03-02 2021-07-27 浙江奇彩环境科技股份有限公司 Method for recycling iodine-containing wastewater
CN112778151B (en) * 2021-03-03 2022-11-25 浙江司太立制药股份有限公司 Preparation method of 5-amino-2, 4, 6-triiodo-1, 3-phthalic acid impurity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4872109A (en) * 1971-12-29 1973-09-29
JPS5720037A (en) * 1980-07-11 1982-02-02 Toshiba Corp Channel changeover system of frequency synthesizer
EP0246957B1 (en) * 1986-05-19 1992-09-30 Delphi Research Inc. A method for treating organic waste material and a catalyst/cocatalyst composition useful therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
用水廃水便覧編集委員会編「用水廃水便覧」昭和48年10月30日丸善(株)発行576〜577頁7.11.4の項
野崎、藤代著「ヨウ素とその工業」昭和37年4月1日東京電機大学出版部発行29頁末9行〜30頁9行232頁[3]234頁[1]

Also Published As

Publication number Publication date
JPH01224203A (en) 1989-09-07

Similar Documents

Publication Publication Date Title
US5389211A (en) Method for producing high purity hydroxides and alkoxides
US4917781A (en) Process for preparing quaternary ammonium hydroxides
US5409581A (en) Tetravalent titanium electrolyte and trivalent titanium reducing agent obtained thereby
JP2569111B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
JP2569110B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
JP2569104B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
CN115928110A (en) Hydrogenation dechlorination method of high-concentration chlorinated aromatic compound
JPH0730475B2 (en) Method for producing 1-aminoanthraquinones
JP2569124B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
JP2569125B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
CN1414125A (en) Method of recovering rhodium from spent rhodium catalyst in carbongl group synthesis reaction
JP5378205B2 (en) Electrochemical preparation method of halogenated carbonyl group-containing compound
JPH06158372A (en) Method for recovering iodine from waste liquid containing organic iodine compound
JPH06144802A (en) Recovery of iodine from waste liquid containing organoiodine compound
JP2002105686A (en) Cathode and manufacturing method thereof
JP3478893B2 (en) Method for producing high-purity choline
CA1189821A (en) Electrochemical maintenance of optimum catalytic activity in copper-catalyzed nitrile hydrolysis processes
JPH06144804A (en) Recovery of iodine from waste liquid containing organoiodine compound
JPS59129790A (en) Manufacture of ketones from secondary alcohol using ruthenium compound
JPH06157007A (en) Method for recovering iodine from waste liquor containing organic iodine compound
JP2569105B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
JPH0356428A (en) Production of isopropyl alcohol
JPH06144803A (en) Recovery of iodine from waste liquid containing organoiodine compound
JPH06157006A (en) Method for recovering iodine from waste liquor containing organic iodine compound
JPH0645908B2 (en) Process for producing 1-aminoanthraquinones

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees