JP2569110B2 - Method for recovering iodine from waste liquid containing organic iodine compound - Google Patents

Method for recovering iodine from waste liquid containing organic iodine compound

Info

Publication number
JP2569110B2
JP2569110B2 JP63048733A JP4873388A JP2569110B2 JP 2569110 B2 JP2569110 B2 JP 2569110B2 JP 63048733 A JP63048733 A JP 63048733A JP 4873388 A JP4873388 A JP 4873388A JP 2569110 B2 JP2569110 B2 JP 2569110B2
Authority
JP
Japan
Prior art keywords
iodine
waste liquid
recovering
compound
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63048733A
Other languages
Japanese (ja)
Other versions
JPH01224202A (en
Inventor
弘春 景山
一男 小栗
良典 田中
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP63048733A priority Critical patent/JP2569110B2/en
Publication of JPH01224202A publication Critical patent/JPH01224202A/en
Application granted granted Critical
Publication of JP2569110B2 publication Critical patent/JP2569110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、有機沃素化合物を含有する廃液から沃素を
回収する方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for recovering iodine from a waste liquid containing an organic iodine compound.

沃素は、工業的にレントゲン造影剤、工業用殺菌剤、
農園芸用除草剤等の原料として広く用いられているほ
か、有機化合物の脱水素、異性化、縮合反応の触媒とし
てしばしば用いられており、工業的に極めて貴重な資源
である。
Iodine is industrially a radiographic contrast agent, industrial bactericide,
It is widely used as a raw material for agricultural and horticultural herbicides, and is often used as a catalyst for dehydrogenation, isomerization, and condensation reactions of organic compounds, and is an extremely valuable industrial resource.

[従来の技術] 従来より、沃素の回収に関しては、種々の提案がなさ
れており、例えば、特公昭46−5814号及び特公昭46−35
244号には、沃化アルキルとして存在する放射性沃素を
除去するための吸着剤に関する記載があり、特公昭48−
42357号には、触媒として沃素を使用する有機物の気相
脱水素反応において、反応系から排出する反応混合気体
を高温下で酸化銅と接触させ、次いで一部沃素化された
酸化銅を酸化剤で酸化し、沃素を遊離させ回収する方法
についての記載がある。また、特開昭51−34896号に
は、沃素又は沃素化合物を含有する廃棄物を燃焼炉にて
燃焼させ、この燃焼ガス中の沃素をアルカリのチオ硫酸
ナトリウム又は亜硫酸ナトリウムの水溶液に吸収させ、
沃素を回収する記載がある。また、芳香族有機沃素化合
物からの沃素の回収方法としては、EP 106934号に銅系
触媒の存在下、強アルカリと加熱処理することにより沃
素を回収する記載がある。
[Prior Art] Conventionally, various proposals have been made regarding the recovery of iodine, for example, Japanese Patent Publication No. 46-5814 and Japanese Patent Publication No. 46-35.
No. 244 describes a sorbent for removing radioactive iodine present as an alkyl iodide.
No. 42357 discloses that in a gas phase dehydrogenation reaction of an organic substance using iodine as a catalyst, a reaction mixture gas discharged from a reaction system is brought into contact with copper oxide at a high temperature, and then a partially iodinated copper oxide is converted into an oxidizing agent. There is a description of a method for recovering by oxidizing with iodine to release iodine. Also, JP-A-51-34896 discloses that waste containing iodine or an iodine compound is burned in a combustion furnace, and iodine in the combustion gas is absorbed into an aqueous solution of alkali sodium thiosulfate or sodium sulfite.
There is a description of recovering iodine. As a method for recovering iodine from an aromatic organic iodine compound, EP 106934 describes that iodine is recovered by heat treatment with a strong alkali in the presence of a copper-based catalyst.

[発明が解決しようとする課題] 近年、有機沃素化合物、特にレントゲン造影剤及び工
業用殺菌剤の伸びは著しく、沃素は逼迫した状態となっ
ている。一方、これら有機沃素化合物は極めて複雑な構
造を有するため、多数の工程を経て製造されている。
[Problems to be Solved by the Invention] In recent years, the growth of organic iodine compounds, in particular, radiographic contrast agents and industrial germicides, has been remarkable, and iodine is in a tight state. On the other hand, since these organic iodine compounds have an extremely complicated structure, they are produced through many steps.

当然、各工程毎に廃液が発生し、高価な沃素が副生
物、中間体等の種々の有機沃素化合物として廃液中に失
われる。このような沃素の損失は、目的のレントゲン造
影剤もしくは殺菌剤の構造が複雑なほど多く、化合物に
よっては、原料として用いる沃素の50〜70%が失われる
ものである。
Naturally, a waste liquid is generated in each process, and expensive iodine is lost in the waste liquid as various organic iodine compounds such as by-products and intermediates. Such iodine loss increases as the structure of the target X-ray contrast agent or bactericide becomes more complicated. Depending on the compound, 50 to 70% of iodine used as a raw material is lost.

本発明は有機沃素化合物の製造において、発生した廃
液から、工業的に沃素を回収し、再利用する方法を提供
することを課題とする。
An object of the present invention is to provide a method for industrially recovering and reusing iodine from generated waste liquid in the production of an organic iodine compound.

[課題を解決するための手段及び作用] 本発明者らは、上記した課題を達成するために鋭意検
討した結果、有機沃素化合物を含有する廃液を電解還元
したのち、電解処理液を酸化剤で酸化することにより本
発明の課題が達成されることを見出し、本発明を完成さ
せるに至った。
[Means and Actions for Solving the Problems] The inventors of the present invention have conducted intensive studies in order to achieve the above-described problems, and as a result, after electrolytically reducing a waste liquid containing an organic iodine compound, the electrolytic treatment liquid was treated with an oxidizing agent The inventors have found that the object of the present invention can be achieved by oxidation, and have completed the present invention.

すなわち本発明は、 有機沃素化合物を含有する廃液を電解還元して脱沃素
化したのち、酸化し沃素を遊離せしめることを特徴とす
る沃素の回収方法である。
That is, the present invention is a method for recovering iodine, which comprises subjecting a waste liquid containing an organic iodine compound to electrolytic reduction and deiodination, and then oxidizing to release iodine.

一般に、有機沃素化合物が電解還元により脱沃素化反
応を起こすことはよく知られている。
Generally, it is well known that an organic iodine compound causes a deiodination reaction by electrolytic reduction.

しかし、本発明のように廃液中の有機沃素化合物を電
解還元により脱沃素化することによる、沃素の回収に応
用する技術は知られていない。
However, there is no known technique for recovering iodine by deiodinating an organic iodine compound in a waste liquid by electrolytic reduction as in the present invention.

本発明で用いる廃液は、ジアトリゾ酸(3,5−ジアセ
チルアミノ−2,4,6−トリヨード安息香酸)、アセトリ
ゾ酸(3−アセチルアミノ−2,4,6−トリヨード安息香
酸)、イオパミドール等のレントゲン造影剤、3,5−ジ
アミノ−2,4,6−トリヨード安息香酸、5−アミノ−2,
4,6−トリヨードイソフタル酸等のレントゲン造影剤の
中間体または農園芸用除草剤アイオキシニル、工業用殺
菌剤トリルジヨードメチルスルホン等の製造に際し、発
生する反応廃液、洗浄液、再結晶廃液、酸析廃液等、又
はこれらの混合物であるあ、必ずしもこれらに限定され
るものではない。これらの廃液は適宜PH調整を行った後
使用される。
The waste liquid used in the present invention includes diatrizoic acid (3,5-diacetylamino-2,4,6-triiodobenzoic acid), acetolizoic acid (3-acetylamino-2,4,6-triiodobenzoic acid), iopamidol and the like. X-ray contrast agent, 3,5-diamino-2,4,6-triiodobenzoic acid, 5-amino-2,
In the production of intermediates of radiographic contrast agents such as 4,6-triiodoisophthalic acid or the herbicide ioxinil for agricultural and horticultural use, industrial fungicide tolyldiiodomethylsulfone, etc. It is a precipitation waste liquid or the like, or a mixture thereof, but is not necessarily limited thereto. These waste liquids are used after pH adjustment as appropriate.

本発明の電解還元は、通常中央に隔膜を設けた陽極室
及び陰極室よりなる電解槽中にて行われる。
The electrolytic reduction of the present invention is usually carried out in an electrolytic cell comprising an anode chamber and a cathode chamber provided with a diaphragm at the center.

隔膜としては、カチオン交換膜の他アスベスト、セラ
ミックス等も使用可能であるが、カチオン交換膜が好適
である。
As the diaphragm, asbestos, ceramics and the like can be used in addition to the cation exchange membrane, but the cation exchange membrane is preferable.

また、陽極室は通常硫酸溶液及び陽極より構成されて
おり、陰極室は目的とする処理液及び陰極より構成され
ている。
The anode compartment is usually composed of a sulfuric acid solution and an anode, and the cathode compartment is composed of a target processing solution and a cathode.

また、陰極室には必要なら、支持電解質として相当量
の塩酸、酸または塩基を溶解させ、廃液の導電性を上げ
てやるのがよいが、一般には廃液それ自体に既に十分な
量の塩類が含まれている場合が多く、支持電解質の添加
は不要な場合が多い。
Also, if necessary, it is preferable to dissolve a considerable amount of hydrochloric acid, acid or base as a supporting electrolyte to increase the conductivity of the waste liquid, but in general, a sufficient amount of salts is already contained in the waste liquid itself. In many cases, it is included, and in many cases, the addition of a supporting electrolyte is unnecessary.

陽極室における硫酸溶液の濃度としては、特に制限さ
れず広い範囲内から適宜選択できるが、通常1〜20重量
%硫酸水溶液又は硫酸アルコール溶液、好ましくは5〜
10重量%硫酸水溶液又は硫酸アルコール溶液を使用する
のがよい。
The concentration of the sulfuric acid solution in the anode chamber is not particularly limited and can be appropriately selected from a wide range.
It is preferable to use a 10% by weight sulfuric acid aqueous solution or a sulfuric acid alcohol solution.

陽極としては、硫酸溶液により溶解されないものであ
るかぎり、いずれも公知のものを使用でき、例えば鉛、
鉛合金、白金、金、銀、ニッケル、ニッケル合金、亜
鉛、亜鉛合金、カドミウム、黒鉛、、炭素等を挙げるこ
とができる。これらの内でも、鉛や白金を使用するのが
好ましい。陰極としては鉛、亜鉛、ニッケル、白金、黒
鉛、炭素、酸化鉛、酸化ニッケル、酸化マンガン、酸化
鉄、金、ルテニウムまたはイリジウム、ルビジウム等の
貴金属で被覆された金属等を挙げることができるが、
鉛、亜鉛、ニッケル等が好適である。
As the anode, any known one can be used as long as it is not dissolved by the sulfuric acid solution.
Lead alloy, platinum, gold, silver, nickel, nickel alloy, zinc, zinc alloy, cadmium, graphite, carbon and the like can be mentioned. Among them, it is preferable to use lead or platinum. Examples of the cathode include lead, zinc, nickel, platinum, graphite, carbon, lead oxide, nickel oxide, manganese oxide, iron oxide, gold, ruthenium or iridium, metals coated with noble metals such as rubidium, and the like.
Lead, zinc, nickel and the like are preferred.

本発明の電解還元において、還元方法としては定電圧
法及び定電流法のいずれでも可能であるが、定電流法に
よるのが好ましい。
In the electrolytic reduction of the present invention, any of a constant voltage method and a constant current method can be used as a reduction method, but a constant current method is preferable.

定電流法を採用する場合、電流密度は通常0.1〜10A/d
m2、好ましくは0.5〜3A/dm2である。
When using the constant current method, the current density is usually 0.1 to 10 A / d
m 2 , preferably 0.5 to 3 A / dm 2 .

電解反応に必要な通電量としては、電解槽の形状、電
極の種類、基質反応性等により一定しないが、通常5〜
6F/モル程度の電気量を通電すればよい。
The amount of electricity required for the electrolytic reaction is not constant due to the shape of the electrolytic cell, the type of the electrode, the reactivity of the substrate, and the like.
What is necessary is just to supply electricity of about 6 F / mol.

有機沃素化合物の電解還元による脱沃素化反応の電位
は、他の大多数の官能基の還元電位よりも低く、そのた
め、種々の有機化合物の混合物であっても、最も早く還
元反応を受けるのは脱沃素化反応であり、その結果高い
電流効率が得られる結果となる。
The potential of the deiodination reaction by electrolytic reduction of an organic iodine compound is lower than the reduction potentials of most other functional groups. Therefore, even a mixture of various organic compounds undergoes the reduction reaction first. This is a deiodination reaction, and as a result, high current efficiency can be obtained.

該電解温度は、通常0〜80℃、好ましくは30〜60℃の
範囲で行う。電解温度が低すぎると反応が進行せず、逆
に高すぎると大量の廃液を高温にする必要があり経済的
見地から好ましくない。
The electrolysis temperature is usually in the range of 0 to 80 ° C, preferably 30 to 60 ° C. If the electrolysis temperature is too low, the reaction does not proceed, while if it is too high, a large amount of waste liquid needs to be heated to a high temperature, which is not preferable from an economic viewpoint.

反応時間は、電解還元の温度、電極材料、電解電流、
廃液中の有機沃素化合物の濃度により変わるが、通常撹
拌下1〜15時間反応させればよい。
The reaction time depends on the temperature of electrolytic reduction, electrode material, electrolytic current,
Depending on the concentration of the organic iodine compound in the waste liquid, the reaction may be usually carried out under stirring for 1 to 15 hours.

この電解還元は、回分式でも連続式でも行うことが可
能である。
This electrolytic reduction can be performed in a batch system or a continuous system.

電解還元による脱沃素化反応終了後、処理液を酸化剤
で酸化すると沃素が遊離する。
After the completion of the deiodination reaction by electrolytic reduction, the treatment liquid is oxidized with an oxidizing agent to release iodine.

酸化剤としては、過酸化水素、次亜鉛素酸ナトリウ
ム、塩素、亜硫酸ナトリウム等が挙げられる。
Examples of the oxidizing agent include hydrogen peroxide, sodium hypochlorite, chlorine, sodium sulfite, and the like.

かくして得られた遊離の沃素は、空気を導入すること
により処理液から追い出し、水酸化ナトリウム、水酸化
カリウム等のアルカリ水溶液または、アルカリ性のチオ
硫酸ナトリウム、亜硫酸ナトリウム等の還元性水溶液に
吸収させる(ブローイングアウト法)、又は、遊離した
沃素を活性炭に吸着固定させる(活性炭法)、又は、イ
オン交換樹脂に吸着固定させる(イオン交換樹脂法)等
の周知の方法により回収し、沃素として再利用すること
が可能である。
The free iodine thus obtained is expelled from the processing solution by introducing air, and is absorbed in an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide or a reducing aqueous solution such as alkaline sodium thiosulfate or sodium sulfite ( Blow-out method), or by adsorbing and fixing free iodine to activated carbon (activated carbon method), or by adsorbing and fixing to ion exchange resin (ion exchange resin method), and reusing it as iodine. It is possible.

沃素は極めて腐食性の大きい元素であり、従って、一
般に沃素回収装置の構成材料の選択及び設計は極めて困
難である。
Iodine is an extremely corrosive element, and therefore, it is generally very difficult to select and design a constituent material of an iodine recovery apparatus.

ところが、本発明では低温かつ還元性の条件下での回
収であり、沃素の腐食作用は極度に抑えられる。従来技
術のように高温または酸化性の条件下で遊離沃素又は沃
化塩を処理しないため、構成材料の選定及び設計が、他
の公知の沃素回収装置よりも格段に容易になる大きな利
点を有している。
However, in the present invention, the recovery is performed under a low-temperature and reducing condition, and the corrosive action of iodine is extremely suppressed. Since free iodine or iodide salt is not treated under high temperature or oxidizing conditions as in the prior art, there is a great advantage that the selection and design of the constituent materials is much easier than other known iodine recovery devices. doing.

〔実施例〕〔Example〕

次に、実施例により本発明の方法を具体的に説明す
る。
Next, the method of the present invention will be specifically described with reference to examples.

実施例1 資料廃液として5−アミノ−2,4,6−トリヨードイソ
フタル酸製造において生じた廃液を用いた。
Example 1 A waste liquid produced in the production of 5-amino-2,4,6-triiodoisophthalic acid was used as a waste liquid for data.

試料廃液の調整は次の通りであった。 The adjustment of the sample waste liquid was as follows.

水4800mlと5−アミノイソフタル酸182gを反応器に仕
込み、撹拌しながら90℃に昇温した。
4800 ml of water and 182 g of 5-aminoisophthalic acid were charged into a reactor, and the temperature was raised to 90 ° C. while stirring.

次に、一塩化沃素536gを約1時間で滴下した。その
後、約5時間同温度で撹拌したのち室温まで冷却した。
結晶を濾別し、1000mlの水で洗浄した。反応濾液及び洗
浄液を合わせ5500mlの試料用廃液を得た。この廃液中に
は、5−アミノ−2−ヨードイソフタル酸、5−アミノ
−4−ヨードイソフタル酸、5−アミノ−2,4−ジヨー
ドイソフタル酸、5−アミノ−4,6−ジヨードイソフタ
ル酸、5−アミノ−2,4,6−トリヨードイソフタル酸等
の各種有機沃素化合物及び未反応の一塩化沃素、遊離沃
素等の無機沃素化合物が含有されており、廃液100ml中
に含まれる沃素量は1.156gであり、そのうち有機沃素化
合物中に含まれるものは0.693gであった。
Next, 536 g of iodine monochloride was added dropwise in about 1 hour. Then, after stirring at the same temperature for about 5 hours, the mixture was cooled to room temperature.
The crystals were filtered off and washed with 1000 ml of water. The reaction filtrate and the washing solution were combined to obtain 5500 ml of sample waste liquid. This waste liquid contains 5-amino-2-iodoisophthalic acid, 5-amino-4-iodoisophthalic acid, 5-amino-2,4-diiodoisophthalic acid, 5-amino-4,6-diiodoisophthalic acid. It contains various organic iodine compounds such as acid, 5-amino-2,4,6-triiodoisophthalic acid and inorganic iodine compounds such as unreacted iodine monochloride and free iodine, and iodine contained in 100 ml of waste liquid. The amount was 1.156 g, of which 0.693 g was contained in the organic iodine compound.

上記により得た廃液500mlを隔膜(カチオン交換膜、
商品名:セレミオンCMV、旭硝子(株)製)で隔てられ
た電解槽の陰極室へ入れ、陽極室には10重量%硫酸500m
lを入れた。陰極材料としてニッケル、陽極材料として
白金を用いて30℃で定電流電解(0.5A/dm2)を行い、6F
/モル通電し、還元脱沃素化を行った。
500 ml of the waste liquid obtained above is applied to a diaphragm (cation exchange membrane,
(Product name: Seremion CMV, manufactured by Asahi Glass Co., Ltd.)
I put l. Perform constant current electrolysis (0.5A / dm 2 ) at 30 ° C using nickel as the cathode material and platinum as the anode material.
/ Mol, and subjected to reductive deiodination.

電解液を空気導入管及び排気管を付けた1反応器に
移し、有効塩素量5%の次亜塩素酸ナトリウム水溶液に
て酸化し沃素を遊離した。
The electrolytic solution was transferred to one reactor equipped with an air introduction pipe and an exhaust pipe, and oxidized with an aqueous solution of sodium hypochlorite having an effective chlorine amount of 5% to release iodine.

次いで、空気を導入し、排気管を10重量%水酸化ナト
リウム水溶液へと導くことにより遊離した沃素をアルカ
リ溶液に吸収させた。この吸収液中には、沃素として5.
46g含まれており、廃液中からの沃素回収率は94.5%で
あった。
Then, air was introduced, and the iodine released by leading the exhaust pipe to a 10% by weight aqueous sodium hydroxide solution was absorbed into the alkaline solution. In this absorbing solution, 5.
It contained 46 g, and the recovery rate of iodine from the waste liquid was 94.5%.

実施例2 試料廃液として、ジアトリゾ酸の精製時に生じた廃液
を用いた。
Example 2 As a sample waste liquid, a waste liquid generated during purification of diatrizoic acid was used.

著ジアトリゾ酸のナトリウム塩100gを水:イソプロパ
ノール=40:60の混合溶媒400mlで再結晶した。
100 g of the sodium salt of diatrizoic acid was recrystallized with 400 ml of a mixed solvent of water: isopropanol = 40: 60.

得られた瀘液及び洗浄液を合わせ、減圧下にイソプロ
パノールを留去し、残部を水で500mlに希釈し試料廃液
とした。
The obtained filtrate and washing solution were combined, isopropanol was distilled off under reduced pressure, and the remainder was diluted to 500 ml with water to obtain a sample waste liquid.

この廃液中に含まれる沃素量は、100ml当り1.840gで
あった。
The amount of iodine contained in this waste liquid was 1.840 g per 100 ml.

上記で得た廃液500mlを硫酸でPHを1に調整したの
ち、実施例1と同様に処理を行い、沃素8.74gを得た。
沃素収率は95.0%であった。
After adjusting the PH to 1 with sulfuric acid, 500 ml of the waste liquid obtained above was treated in the same manner as in Example 1 to obtain 8.74 g of iodine.
The iodine yield was 95.0%.

実施例3 10重量%硫酸水溶液の代わりに10重量%硫酸メタノー
ル溶液、ニッケルの代わりに鉛、白金の代わりに鉛を用
い、実施例1と同様の操作を行い、沃素5.28gを得た。
沃素回収率91.3%であった。
Example 3 The same operation as in Example 1 was performed using 10% by weight of a methanol solution of sulfuric acid instead of the aqueous solution of 10% by weight of sulfuric acid, lead instead of nickel, and lead instead of platinum to obtain 5.28 g of iodine.
The iodine recovery was 91.3%.

[発明の効果] 本発明の方法によれば、有機沃素化合物を含有する廃
液から極めて高収率で沃素を回収することができる。ま
た、回収装置の構成材料の選択及び設計が、公知の回収
方法よりも容易であり、有機沃素化合物を含有する廃液
から沃素を回収する方法として工業的に極めて有用であ
る。
[Effect of the Invention] According to the method of the present invention, iodine can be recovered from a waste liquid containing an organic iodine compound in an extremely high yield. In addition, the selection and design of the constituent materials of the recovery apparatus are easier than known recovery methods, and are extremely industrially useful as a method for recovering iodine from a waste liquid containing an organic iodine compound.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−1448(JP,A) 用水廃水便覧編集委員会編「用水廃水 便覧」昭和48年10月30日丸善(株)発行 576〜577頁7.11.4の項 野崎、藤代著ヨウ素とその工業昭和37 年4月1日東京電機大学出版部発行29頁 末9行〜30頁9行 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP, 633-1448 (JP, A) Irrigation Wastewater Handbook Handbook, edited by the Committee for Irrigation Wastewater Handbook, published October 30, 1973 by Maruzen Co., Ltd. 576-577 Page 7.11.4, Nozaki and Fujishiro, Iodine and its industry April 1, 1962, Tokyo Denki University Press, p.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機沃素化合物を含有する廃液を電解還元
して脱沃素化したのち、酸化し沃素を遊離せしめること
を特徴とする沃素の回収方法。
1. A method for recovering iodine, comprising subjecting a waste liquid containing an organic iodine compound to electrolytic reduction and deiodination and then oxidizing to release iodine.
JP63048733A 1988-03-03 1988-03-03 Method for recovering iodine from waste liquid containing organic iodine compound Expired - Fee Related JP2569110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63048733A JP2569110B2 (en) 1988-03-03 1988-03-03 Method for recovering iodine from waste liquid containing organic iodine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63048733A JP2569110B2 (en) 1988-03-03 1988-03-03 Method for recovering iodine from waste liquid containing organic iodine compound

Publications (2)

Publication Number Publication Date
JPH01224202A JPH01224202A (en) 1989-09-07
JP2569110B2 true JP2569110B2 (en) 1997-01-08

Family

ID=12811489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63048733A Expired - Fee Related JP2569110B2 (en) 1988-03-03 1988-03-03 Method for recovering iodine from waste liquid containing organic iodine compound

Country Status (1)

Country Link
JP (1) JP2569110B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ891500A0 (en) * 2000-07-21 2000-08-17 Iodine Technologies Australia Pty Ltd Process, method and apparatus for recovery of halogens
ITMI20081282A1 (en) * 2008-07-15 2010-01-16 Industrie De Nora Spa PROCESS OF INDUSTRIAL WASTE TREATMENT
JP5359466B2 (en) * 2009-03-31 2013-12-04 ダイキン工業株式会社 Oxidative precipitation method of iodine
CN112551733B (en) * 2020-11-03 2022-07-12 浙江海拓环境技术有限公司 Device and method for treating hypophosphite in chemical nickel plating waste liquid
CN112778151B (en) * 2021-03-03 2022-11-25 浙江司太立制药股份有限公司 Preparation method of 5-amino-2, 4, 6-triiodo-1, 3-phthalic acid impurity

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3781930T2 (en) * 1986-05-19 1993-04-15 Delphi Research Inc METHOD FOR TREATING ORGANIC WASTE MATERIALS AND THE USEFUL CATALYST / CO-CATALYST COMPOSITION THEREFOR.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
用水廃水便覧編集委員会編「用水廃水便覧」昭和48年10月30日丸善(株)発行576〜577頁7.11.4の項
野崎、藤代著ヨウ素とその工業昭和37年4月1日東京電機大学出版部発行29頁末9行〜30頁9行

Also Published As

Publication number Publication date
JPH01224202A (en) 1989-09-07

Similar Documents

Publication Publication Date Title
US4917781A (en) Process for preparing quaternary ammonium hydroxides
JP2569110B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
JP2569111B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
JP2569104B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
JPH0730475B2 (en) Method for producing 1-aminoanthraquinones
RU2094534C1 (en) Electrolytic method for dissolving platinum, platinum metals' impurities and/or platinum metals' alloys containing radium, palladium, iridium, gold, and silver
CN115928110A (en) Hydrogenation dechlorination method of high-concentration chlorinated aromatic compound
JP2569124B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
JP5378205B2 (en) Electrochemical preparation method of halogenated carbonyl group-containing compound
JP2569125B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
JP4181297B2 (en) Electrolytic production method of organic compound and electrode for electrolytic production
JPH06158372A (en) Method for recovering iodine from waste liquid containing organic iodine compound
CA1189821A (en) Electrochemical maintenance of optimum catalytic activity in copper-catalyzed nitrile hydrolysis processes
JP2002105686A (en) Cathode and manufacturing method thereof
US5066369A (en) Process for preparing para-aminophenol
JPS59129790A (en) Manufacture of ketones from secondary alcohol using ruthenium compound
US5558754A (en) Method for preparing 3-alkyl-2,6-dichloroacylanilides by electrolytic debromination of 3-alkyl-4-bromo-2,6-dichloroacylanilides
JPS6342712B2 (en)
JPH06144804A (en) Recovery of iodine from waste liquid containing organoiodine compound
JPH0356428A (en) Production of isopropyl alcohol
JPS6070193A (en) Production of piperonal
KR100437483B1 (en) Electrochemical synthesis of p-aminophenol
JPH06157007A (en) Method for recovering iodine from waste liquor containing organic iodine compound
JP3424687B2 (en) Method for producing quaternary ammonium hydroxide aqueous solution
JPH06144803A (en) Recovery of iodine from waste liquid containing organoiodine compound

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees