JPH0355939B2 - - Google Patents

Info

Publication number
JPH0355939B2
JPH0355939B2 JP57228013A JP22801382A JPH0355939B2 JP H0355939 B2 JPH0355939 B2 JP H0355939B2 JP 57228013 A JP57228013 A JP 57228013A JP 22801382 A JP22801382 A JP 22801382A JP H0355939 B2 JPH0355939 B2 JP H0355939B2
Authority
JP
Japan
Prior art keywords
fuel
oxidizer
electrode
fuel cell
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57228013A
Other languages
Japanese (ja)
Other versions
JPS59121786A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57228013A priority Critical patent/JPS59121786A/en
Publication of JPS59121786A publication Critical patent/JPS59121786A/en
Publication of JPH0355939B2 publication Critical patent/JPH0355939B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は新規な燃料電池装置、特に起動、停止
時に酸化剤極と燃料極間の圧力差を確実に速かに
一定範囲に入るよう制御することができ燃料電池
の破損を来すことのないよう保護することができ
る新規な燃料電池装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a novel fuel cell device, and particularly to a fuel cell device that controls the pressure difference between an oxidizer electrode and a fuel electrode to reliably and quickly fall within a certain range during startup and shutdown. The present invention relates to a novel fuel cell device that can protect the fuel cell from damage.

〔発明の技術的背景〕[Technical background of the invention]

第1図は燃料電池の基本構造を示した斜視図で
ある。1は電解液マトリツクスで、フエノール系
繊維の不織布または炭化けい素の微粒子からなる
層にリン酸電解液を保持させたものである。この
電解液マトリツクス1を両側からはさむ形で酸化
剤極2aと燃料極2bとが配置されている。この
2つの電極は、カーボンぺーパー等を基剤とし、
その電解液マトリツクス1と接する面には、プラ
チナ等の触媒が付着されており、裏面には排水処
理を施した構造となつている。
FIG. 1 is a perspective view showing the basic structure of a fuel cell. 1 is an electrolyte matrix in which a phosphoric acid electrolyte is held in a layer made of a nonwoven fabric of phenolic fibers or fine particles of silicon carbide. An oxidizer electrode 2a and a fuel electrode 2b are arranged to sandwich the electrolyte matrix 1 from both sides. These two electrodes are based on carbon paper, etc.
A catalyst such as platinum is adhered to the surface in contact with the electrolyte matrix 1, and the back surface has a structure in which drainage treatment is performed.

この電解液マトリツクス1と酸化剤極2aおよ
び燃料極2bとから構成されたものは、単電池と
よばれ一体化して製造されるのが普通である。
A cell composed of the electrolyte matrix 1, the oxidizer electrode 2a, and the fuel electrode 2b is called a single cell and is usually manufactured in an integrated manner.

この単電池を積層して燃料電池積層体を形成す
るために、カーボン板3a,3bが単電池をはさ
みこむような形で配置されている。
In order to form a fuel cell stack by stacking these single cells, carbon plates 3a and 3b are arranged so as to sandwich the single cells.

このカーボン板3a,3bには、それぞれ酸化
剤極2a、燃料極2bへそれぞれ酸化剤、燃料を
供給するためのガス流路4a,4bが形成されて
いる。
Gas channels 4a and 4b are formed in the carbon plates 3a and 3b for supplying an oxidizer and fuel to the oxidizer electrode 2a and fuel electrode 2b, respectively.

燃料電池の電極反応は、燃料ガス(または酸化
剤ガス)と触媒および電解液の共存下での反応、
すなわち気体、固体、液体の三相共存下における
界面反応である。すなわち正常な動作状態下で
は、流路4b中を流れる燃料流中のH2が燃料極
2bの表面でH+となり、これが電解液マトリツ
クス1内を酸化剤極2aへと移動し、酸化剤極2
aの表面で流路4a内を流れる酸化剤流中のO2
から生じたO-と反応してH2O(水)が生成され
る。
The electrode reaction of a fuel cell is a reaction in the coexistence of fuel gas (or oxidant gas), catalyst, and electrolyte.
In other words, it is an interfacial reaction in the coexistence of three phases: gas, solid, and liquid. That is, under normal operating conditions, H 2 in the fuel flow flowing through the flow path 4b becomes H + on the surface of the fuel electrode 2b, which moves within the electrolyte matrix 1 to the oxidizer electrode 2a, and is transferred to the oxidizer electrode 2a. 2
O 2 in the oxidant flow flowing in the flow path 4a on the surface of a
H 2 O (water) is generated by reacting with O - generated from

この際、外部回路を通してエレクトロン(e-
が燃料極2bから酸化剤極2aへと流れ直流電力
が得られる。このような燃料電池の性能を最大限
に引き出すためには、三相界面の維持およびその
制御が綿密に行なわれなければならず、したがつ
て酸化剤極2aと燃料極2bとの間の極間差圧の
制御がきわめて重要な問題となる。
At this time, electrons (e - ) are emitted through the external circuit.
flows from the fuel electrode 2b to the oxidizer electrode 2a, and DC power is obtained. In order to maximize the performance of such a fuel cell, the three-phase interface must be maintained and controlled carefully. Controlling the differential pressure becomes an extremely important issue.

しかも、一般に単電池を構成している酸化剤極
2aや燃料極2bは、カーボンぺーパ等の極めて
もろく破損しやすい材質でできており、又電極反
応に際して三相界面を維持し、制御する必要があ
るため酸化剤極2aと燃料極2bとの間の極間差
圧の制御は極めて慎重に行わなければならない。
Moreover, the oxidizer electrode 2a and fuel electrode 2b that generally constitute a unit cell are made of extremely brittle and easily damaged materials such as carbon paper, and it is necessary to maintain and control the three-phase interface during electrode reactions. Therefore, the interelectrode pressure difference between the oxidizer electrode 2a and the fuel electrode 2b must be controlled extremely carefully.

また両極間の極間差圧が増大すると、燃料ある
いは酸化剤が他の流路へもれ出し、電極の表面で
燃焼して燃料や酸化剤を消費してしまうクロスオ
ーバが発生する。このクロスオーバが激さくおこ
ると電極自体が燃焼してしまう可能性もあるの
で、電池性能維持の観点からもクロスオーバの発
生は極力防止しなければならない。
Furthermore, when the interelectrode pressure difference between the two electrodes increases, a crossover occurs in which fuel or oxidant leaks into another flow path, burns on the surface of the electrode, and consumes the fuel or oxidant. If this crossover occurs too much, there is a possibility that the electrode itself will burn out, so from the viewpoint of maintaining battery performance, the occurrence of crossover must be prevented as much as possible.

少量のクロスオーバであつても、電池反応に寄
与しない反応ガスが存在するわけであるからその
分だけ燃料の利用効率、酸化剤の利用効率が低下
することになり、燃料電池の総合効率も低下す
る。
Even if there is a small amount of crossover, there will be reactant gas that does not contribute to the cell reaction, which will reduce the fuel usage efficiency and oxidant usage efficiency, and the overall efficiency of the fuel cell will also decrease. do.

したがつて燃料電池においては、このクロスオ
ーバを極力防止して燃料の利用効率、酸化剤の利
用効率を高めることにより、総合効率の向上を図
ることが必要である。
Therefore, in a fuel cell, it is necessary to improve the overall efficiency by preventing this crossover as much as possible and increasing the fuel usage efficiency and the oxidant usage efficiency.

第2図はかかる燃料電池を用いて作動させる従
来の装置の概略を示すものであつて、第1図に示
されるような積層構造を有する燃料電池積層体が
収納容器5に収納され、燃料電池積層体と収納容
器5との間の空間8にはアルゴンや窒素等の不活
性ガスが充填されている。この不活性ガスは不活
性流体供給系統6から供給され、同排出系統7か
ら排出される。
FIG. 2 schematically shows a conventional device operated using such a fuel cell, in which a fuel cell stack having a stacked structure as shown in FIG. 1 is housed in a storage container 5, and the fuel cell A space 8 between the stacked body and the storage container 5 is filled with an inert gas such as argon or nitrogen. This inert gas is supplied from the inert fluid supply system 6 and discharged from the same discharge system 7.

9は酸化剤供給系統、10は酸化剤排出系統を
示し、同様に11,12は夫々燃料の供給系統と
排出系統を示す。13はガス流路4aを流れる酸
化剤の圧力を空間8内の不活性流体の圧力を基準
として測定する圧力差測定器を示し、14は同様
にガス流路4bを流れる燃料の圧力を空間8内の
不活性流体の圧力を基準として測定する圧力差測
定器を示す。酸化剤排出系統10、燃料排出系統
12に、夫々前記圧力差測定器13,14からの
出力により制御される圧力放出弁15,16が設
けられる。
Reference numeral 9 indicates an oxidizer supply system, 10 indicates an oxidizer discharge system, and similarly, 11 and 12 indicate a fuel supply system and a fuel discharge system, respectively. Reference numeral 13 denotes a pressure difference measuring device that measures the pressure of the oxidant flowing through the gas flow path 4a with reference to the pressure of the inert fluid in the space 8, and 14 similarly measures the pressure of the fuel flowing through the gas flow path 4b in the space 8. 1 shows a pressure difference measuring device that measures the pressure of an inert fluid within. The oxidant discharge system 10 and the fuel discharge system 12 are provided with pressure release valves 15 and 16 that are controlled by the outputs from the pressure difference measuring devices 13 and 14, respectively.

酸化剤、燃料および不活性流体が夫々の供給系
統9,11,6から夫々の流路4a,4b及び空
間8に供給され、後夫々の排出系統10,12,
7から排出される。ガス流路4a,4b内を流れ
る酸化剤、燃料の圧力が夫々圧力差測定器13,
14により測定される。この圧力差測定器13,
14からの出力により圧力放出弁15,16を制
御し、ガス流路4aを流れる酸化剤と空間8内の
不活性流体の間の圧力差及びガス流路4bを流れ
る燃料と空間8内の不活性流体の間の圧力差が予
め設定された範囲内に入るようにしている。
Oxidizer, fuel and inert fluid are supplied from respective supply lines 9, 11, 6 to respective channels 4a, 4b and spaces 8, and then to respective discharge lines 10, 12,
It is discharged from 7. The pressure of the oxidizer and the fuel flowing in the gas flow paths 4a and 4b are measured by pressure difference measuring devices 13 and 13, respectively.
14. This pressure difference measuring device 13,
The pressure release valves 15 and 16 are controlled by the output from the gas flow path 4a, and the pressure difference between the oxidizing agent flowing through the gas flow path 4a and the inert fluid within the space 8, and the pressure difference between the fuel flowing through the gas flow path 4b and the inert fluid within the space 8 are controlled. The pressure difference between the active fluids is kept within a preset range.

〔背景技術の問題点〕[Problems with background technology]

燃料電池の圧力制御の基本は前述のように三相
界面の維持、制御をいかに精度よく行うかという
ことに尽きるが、マクロ的にみれば燃料あるいは
酸化剤が電極や電解液マトリツクス中を突きぬけ
て他の流路へもれ出すのを防ぐこと、さらに電極
の両面に過大な圧力差がついて電極が破損するの
を防止するにある。
As mentioned above, the basics of pressure control in fuel cells is how accurately the three-phase interface can be maintained and controlled, but from a macroscopic perspective, it is important that the fuel or oxidizer penetrates through the electrodes and electrolyte matrix. The purpose is to prevent leakage into other channels, and also to prevent damage to the electrode due to an excessive pressure difference on both sides of the electrode.

第2図に示したような構成に係る従来の燃料電
池装置における極間差圧制御は装置が定常的に運
転されている場合には比較的良好な制御性が得ら
れる。この制御性は主として圧力放出弁15,1
6の応答性により支配されると考えられ、定常運
転の際はこれらの弁が良好に応答するため良好な
制御性がえられるが、装置を起動する場合や停止
する場合、特に緊急を要する場合のように速かな
変化が要求される場合には前記の二つの弁が速か
に応答しないため制御が追いつかず、最大許容差
圧値を越える差圧がつさ、燃料電池が破損するお
それがある。
The interelectrode differential pressure control in the conventional fuel cell device having the configuration shown in FIG. 2 provides relatively good controllability when the device is operated steadily. This controllability is mainly due to the pressure release valves 15, 1
During steady operation, these valves respond well and provide good controllability, but when starting or stopping the equipment, especially when an emergency is required. When such a rapid change is required, the two valves mentioned above do not respond quickly, so the control cannot keep up, and the pressure difference exceeds the maximum allowable pressure difference value, which may damage the fuel cell. be.

このため装置の起動時や停止時のように装置に
大きな外乱が加わるおそれのある場合でも確実に
極間差圧を所定の範囲に保持できるのが望まれ
る。
Therefore, it is desirable to be able to reliably maintain the interelectrode differential pressure within a predetermined range even when there is a risk of large disturbances being applied to the device, such as when the device is started or stopped.

しかも燃料電池の運転時には前述のように燃料
電池の構造上からの制約により、燃料極、酸化剤
極間の圧力差を極めて小さな値に保たねばならな
いため、特に起動時や停止時の操作を慎重にゆつ
くりと行なわざるを得ず、したがつて起動、停止
の所要時間も長いものにならざるを得なかつた。
また一度停止操作に入つた後の再起動にも時間が
かかるのを避けることができなかつた。
Moreover, when operating a fuel cell, the pressure difference between the fuel electrode and the oxidizer electrode must be kept at an extremely small value due to the structural constraints of the fuel cell as mentioned above. This had to be done carefully and slowly, and therefore the time required for starting and stopping had to be long.
Furthermore, it is unavoidable that it takes a long time to restart the system once the shutdown operation has been started.

〔発明の目的〕[Purpose of the invention]

かくして本発明はこれらの問題点を解決して、
燃料電池の起動、停止等の際にも確実によく制御
して燃料電池の燃料極と酸化剤極間に大きな差圧
がつきそれが破損されるのを防ぎ燃料電池の保護
を図るとともに、起動、停止或は更に再起動時に
要する時間を短時間にし、速かに操作しうるよう
にした燃料電池装置を提供することを目的とする
ものである。
Thus, the present invention solves these problems and
When starting and stopping the fuel cell, it is controlled reliably and well to prevent a large pressure difference between the fuel electrode and the oxidizer electrode from being damaged, and to protect the fuel cell. It is an object of the present invention to provide a fuel cell device that can be operated quickly by reducing the time required for stopping or restarting.

〔発明の概要〕[Summary of the invention]

かくて、本発明は燃料極、酸化剤極およびこれ
ら両電極間に介在する電解質からなる燃料電池
と、前記燃料極に燃料を供給する燃料供給系統
と、この極から燃料を排出する燃料排出系統と、
前記酸化剤極に酸化剤を供給する酸化剤供給系統
と、この極から酸化剤を排出する酸化剤排出系統
とを有する燃料電池装置において、 前記燃料供給系統と前記燃料排出系統を直接接
続し、この両系統と前記燃料極を含む燃料流路と
同じ体積及び流路抵抗を有するよう構成された燃
料極バイパス系統と、 前記酸化剤供給系統と前記酸化剤排出系統を直
接接続し、この両系統と前記酸化剤極を含む酸化
剤流路と同じ体積及び流路抵抗を有するよう構成
された酸化剤極バイパス系統と、 前記燃料電池を隔離状態下に置き、前記燃料極
と前記酸化剤極の間の圧力差を所定範囲内に制御
する機構 を有することを特徴とする燃料電池装置を提供す
るものである。
Thus, the present invention provides a fuel cell comprising a fuel electrode, an oxidizer electrode, and an electrolyte interposed between these two electrodes, a fuel supply system that supplies fuel to the fuel electrode, and a fuel discharge system that discharges fuel from this electrode. and,
In a fuel cell device having an oxidizer supply system that supplies an oxidant to the oxidizer electrode and an oxidizer discharge system that discharges the oxidizer from the electrode, the fuel supply system and the fuel discharge system are directly connected, A fuel electrode bypass system configured to have the same volume and flow path resistance as the fuel flow path including these two systems and the fuel electrode, and a fuel electrode bypass system that directly connects the oxidizer supply system and the oxidizer discharge system, and and an oxidant electrode bypass system configured to have the same volume and flow path resistance as the oxidant flow path including the oxidant electrode, and placing the fuel cell in an isolated state and connecting the fuel electrode and the oxidant electrode The present invention provides a fuel cell device characterized by having a mechanism for controlling the pressure difference between the two within a predetermined range.

〔発明の具体的説明〕[Specific description of the invention]

本発明を図面に示す実施例について更に詳細に
説明する。第3図、第4図において第1,2図と
同じ部分は同じ符合で示されている。第3図にお
いては酸化剤供給系統9、酸化剤排出系統10に
夫々酸化剤供給遮断弁23、酸化剤排出遮断弁2
5を設け、燃料供給系統11、燃料排出系統12
に夫々燃料供給遮断弁24、燃料排出遮断弁26
を設ける。
The present invention will be described in more detail with reference to embodiments shown in the drawings. In FIGS. 3 and 4, the same parts as in FIGS. 1 and 2 are designated by the same reference numerals. In FIG. 3, an oxidant supply cutoff valve 23 and an oxidizer discharge cutoff valve 2 are provided in the oxidizer supply system 9 and the oxidizer discharge system 10, respectively.
5, a fuel supply system 11, and a fuel discharge system 12.
a fuel supply cutoff valve 24 and a fuel discharge cutoff valve 26, respectively.
will be established.

そして前記酸化剤供給系統9と同排出系統10
とを燃料電池を経ずに直接接続する酸化剤極バイ
パス系統17を設け、同様に燃料供給系統11と
同排出系統12とを、燃料電池とを経ずに直接接
続する燃料極バイパス系統18を設ける。夫々の
バイパス系統17,18はいづれも燃料電池を通
る系統の夫々の供給遮断弁23,24の上流側か
ら夫々の排出遮断弁25,26の下流側に接続す
るようにする。
And the oxidizing agent supply system 9 and the same discharge system 10
An oxidizer electrode bypass system 17 is provided which directly connects the fuel supply system 11 and the fuel discharge system 12 without going through the fuel cell. establish. The respective bypass systems 17 and 18 are connected from the upstream side of the respective supply cutoff valves 23 and 24 to the downstream side of the respective discharge cutoff valves 25 and 26 of the system passing through the fuel cell.

酸化剤極バイパス系統17には上流側から順に
バイパス酸化剤遮断弁27と酸化剤極バイパス系
統構造体31を設け、同様に燃料極バイパス系統
18にバイパス燃料極遮断弁28と燃料極バイパ
ス系統構造体32を順に設ける。これら両構造体
31,32は夫々体積要素31−1,32−1及
び抵抗要素31−2,32−2を有している。酸
化剤極バイパス系統17の流路体積と流路抵抗は
酸化剤供給系統9、燃料電池内のガス流路4aと
酸化剤排出系統10の流路体積と流路抵抗と等し
くなるようにし、同様に燃料極バイパス系統18
の流路体積と流路抵抗を燃料の供給系統11、流
路2b及び排出系統12の流路体積と流路抵抗に
等しくなるように選定する。
The oxidizer electrode bypass system 17 is provided with a bypass oxidizer cutoff valve 27 and an oxidizer electrode bypass system structure 31 in order from the upstream side, and similarly, the anode bypass system 18 is provided with a bypass fuel electrode cutoff valve 28 and an anode bypass system structure. The bodies 32 are provided in sequence. Both structures 31 and 32 have volume elements 31-1 and 32-1 and resistance elements 31-2 and 32-2, respectively. The flow path volume and flow path resistance of the oxidizer electrode bypass system 17 are made equal to the flow path volume and flow path resistance of the oxidizer supply system 9, the gas flow path 4a in the fuel cell, and the oxidizer discharge system 10, and the same Fuel electrode bypass system 18
The flow path volume and flow path resistance are selected to be equal to the flow path volume and flow path resistance of the fuel supply system 11, flow path 2b, and discharge system 12.

次に両極間の圧力差が所定範囲に入るよう制御
する機構を設ける。まず前記酸化剤供給系統9と
燃料供給系統11の間に二つの圧力差測定器を設
ける。即ち両系統の供給遮断弁23,24の上流
側での圧力差を測定する第1圧力差測定器33と
同遮断弁の下流側での圧力差を測定する第2圧力
差測定器35を設ける。そして酸化剤供給遮断弁
23の上流側と下流側の間の圧力差を測定する第
3圧力差測定器34を設ける。或は燃料供給遮断
弁24の上流側と下流側の間に第3圧力差測定器
を設けるようにしてもよい。
Next, a mechanism is provided to control the pressure difference between the two poles so that it falls within a predetermined range. First, two pressure difference measuring instruments are provided between the oxidizer supply system 9 and the fuel supply system 11. That is, a first pressure difference measuring device 33 for measuring the pressure difference on the upstream side of the supply cutoff valves 23 and 24 of both systems and a second pressure difference measuring device 35 for measuring the pressure difference on the downstream side of the same cutoff valves are provided. . A third pressure difference measuring device 34 is provided to measure the pressure difference between the upstream side and the downstream side of the oxidant supply cutoff valve 23. Alternatively, a third pressure difference measuring device may be provided between the upstream side and the downstream side of the fuel supply cutoff valve 24.

前記酸化剤供給遮断弁23の下流側から同排出
遮断弁25の上流側までの流路内に酸化剤極圧力
放出系統19を設け、同様に燃料供給遮断弁24
の下流側から同排出系統26の上流側までの流路
内に燃料極圧力放出系統20を設ける。夫々の圧
力放出系統19,20には前記第2圧力差測定器
35からの信号を受けて作動する圧力放出弁2
9,30を設ける。
An oxidizer extreme pressure release system 19 is provided in the flow path from the downstream side of the oxidizer supply cutoff valve 23 to the upstream side of the discharge cutoff valve 25, and similarly the fuel supply cutoff valve 24 is provided with an oxidizer extreme pressure release system 19.
An anode pressure release system 20 is provided in the flow path from the downstream side of the fuel electrode to the upstream side of the discharge system 26. Each of the pressure release systems 19 and 20 includes a pressure release valve 2 that operates in response to a signal from the second pressure difference measuring device 35.
9 and 30 are provided.

更に酸化剤供給遮断弁23の下流側から同排出
遮断弁25の上流側までの流路内に、電池反応に
対して不活性な流体を主体とする流体を供給乃至
排出する酸化剤極不活性流体供給排出系統21を
設け、同様に燃料供給遮断弁24の下流側から同
排出遮断弁26の上流側までの流路内に燃料極不
活性流体供給排出系統22を設ける。
Furthermore, an oxidizer extremely inert gas is used to supply or discharge a fluid mainly inert to battery reactions into the flow path from the downstream side of the oxidizer supply cutoff valve 23 to the upstream side of the discharge cutoff valve 25. A fluid supply/discharge system 21 is provided, and a fuel electrode inert fluid supply/discharge system 22 is similarly provided in the flow path from the downstream side of the fuel supply cutoff valve 24 to the upstream side of the discharge cutoff valve 26.

このような構成になる燃料電池装置を起動する
に当つては、まず弁27,28を開き、他の弁を
閉じて各バイパス系統17,18を使つて運転状
態の設定を行なう。それとは別に弁23〜26を
閉じて燃料電池を隔離した状態下におき第2圧力
差測定器35からの信号を受けて酸化剤極及び燃
料極の圧力放出弁29,30により両極間の圧力
差が所定の範囲内に入るように制御しながら酸化
剤極及び燃料極の不活性流体供給排出系統21,
22から夫々酸化剤極及び燃料極へ不活性流体を
流入して所定の圧力まで加圧する。
When starting up the fuel cell system having such a configuration, first the valves 27 and 28 are opened, the other valves are closed, and the operating conditions are set using the bypass systems 17 and 18. Separately, the valves 23 to 26 are closed to isolate the fuel cell, and upon receiving a signal from the second pressure difference measuring device 35, the pressure release valves 29 and 30 of the oxidizer electrode and the fuel electrode are used to release the pressure between the two electrodes. an inert fluid supply and discharge system 21 for the oxidizer electrode and the fuel electrode while controlling the difference to be within a predetermined range;
Inert fluid flows into the oxidizer electrode and the fuel electrode from 22, respectively, and is pressurized to a predetermined pressure.

一方これとは別に弁23〜26を閉じたままで
酸化剤及び燃料のバイパス遮断弁27,28を開
き、夫々のバイパス系統17,18に酸化剤と燃
料を流すとともに加圧を行ない、第1圧力差測定
器33からの信号を受けて両バイパス系統17,
18間の圧力差が所定の範囲内に入るようにす
る。
Separately, the oxidizer and fuel bypass cutoff valves 27 and 28 are opened while the valves 23 to 26 are kept closed, and the oxidizer and fuel are allowed to flow through the respective bypass systems 17 and 18 and pressurized, thereby increasing the first pressure. In response to the signal from the difference measuring device 33, both bypass systems 17,
18 so that the pressure difference is within a predetermined range.

更に酸化剤供給遮断弁23の上流側と下流側の
圧力差を測定する第3圧力差測定器34からの信
号が所定の範囲内に入つたら、両バイパス遮断弁
27,28を閉じ、両供給系統、排出系統の遮断
弁23〜26を開いて酸化剤と燃料の流路をバイ
パス系統17,18から燃料電池を通る系統9〜
12に瞬時に切り換えて通常運転状態に入る。
Furthermore, when the signal from the third pressure difference measuring device 34 that measures the pressure difference between the upstream side and the downstream side of the oxidizer supply cutoff valve 23 falls within a predetermined range, both bypass cutoff valves 27 and 28 are closed, and both bypass cutoff valves 27 and 28 are closed. The supply system and exhaust system shutoff valves 23 to 26 are opened to route the oxidizer and fuel flow paths from the bypass systems 17 and 18 to the systems 9 to 18 that pass through the fuel cell.
12 and enters the normal operating state.

次にこの燃料電池装置を停止させようとすると
きは、燃料電池の負荷を低下させた後燃料電池を
通る系統9〜12の各遮断弁23〜26を閉じ、
バイパス系統遮断弁27,28を開いて酸化剤と
燃料の流路を燃料電池を通る系統からバイパスす
る系統17,18に瞬時に切換える。次に燃料電
池が隔離された状態下に第2圧力差測定器35か
らの信号を受けて夫々の圧力放出弁29,30に
より両電極間の圧力差を所定の範囲に入るように
制御しながら夫々の不活性流体供給排出系統2
1,22から不活性流体を少しづつ排出すること
により減圧する。同時に不活性流体により燃料電
池のパージも行なう。燃料電池を除く装置系は燃
料電池とは独立に停止操作を行なう。
Next, when trying to stop this fuel cell device, after reducing the load on the fuel cell, close the shutoff valves 23 to 26 of the systems 9 to 12 passing through the fuel cell,
The bypass system cutoff valves 27 and 28 are opened to instantly switch the oxidizer and fuel flow paths from the system passing through the fuel cell to the bypass systems 17 and 18. Next, while the fuel cell is isolated, receiving a signal from the second pressure difference measuring device 35, the pressure difference between the two electrodes is controlled to fall within a predetermined range using the pressure release valves 29 and 30, respectively. Respective inert fluid supply and discharge system 2
The pressure is reduced by gradually discharging the inert fluid from ports 1 and 22. At the same time, the fuel cell is purged with an inert fluid. The equipment systems other than the fuel cell are stopped independently of the fuel cell.

このようにしてこの実施例に係る本発明の燃料
電池装置の起動、停止が行なわれるが、酸化剤と
燃料の経路の切り換え、燃料電池の隔離は燃料電
池を通る系統9〜12の上流側、下流側に設けら
れた各遮断弁23〜26と、燃料電池をバイパス
する系統17,18の各遮断弁27,28とを開
閉操作することにより行なうことができる。
In this manner, the fuel cell device of the present invention according to this embodiment is started and stopped, but the switching of the oxidizer and fuel paths and the isolation of the fuel cell are carried out on the upstream side of the systems 9 to 12 passing through the fuel cell. This can be done by opening and closing each of the cutoff valves 23 to 26 provided on the downstream side and the cutoff valves 27 and 28 of the systems 17 and 18 that bypass the fuel cell.

又第2圧力差測定器35からの信号を受けて制
御する圧力放出弁29,30を有する系統19,
20により、燃料電池を隔離した状態下での酸化
剤極、燃料極間の圧力差を所定の範囲に制御する
ことができ、不活性流体供給排出系統21,22
により燃料電池を隔離した状態下で燃料電池を加
圧或は降圧することができ、又燃料電池をパージ
することができる。
Also, a system 19 having pressure release valves 29 and 30 controlled in response to a signal from the second pressure difference measuring device 35;
20 allows the pressure difference between the oxidizer electrode and the fuel electrode to be controlled within a predetermined range when the fuel cell is isolated, and the inert fluid supply and discharge systems 21 and 22
This allows the fuel cell to be pressurized or reduced in pressure while the fuel cell is isolated, and the fuel cell can be purged.

この他、第1、第3圧力差測定器33,34に
よつて圧力制御や流路の切り換えに先立つ圧力条
件設定が完了したか否かを速かに判定することが
できる。
In addition, the first and third pressure difference measuring devices 33 and 34 can quickly determine whether or not the pressure condition setting prior to pressure control and flow path switching has been completed.

第4図は本発明に係る燃料電池装置の他の実施
例を示すものであつて、第3図に示す酸化剤供給
遮断弁23とバイパス酸化剤遮断弁27の代りに
三方弁36、同様に燃料供給遮断弁24とバイパ
ス燃料遮断弁28の代りに三方弁37を設けた点
を除いて他は第3図と同じである。この場合は遮
断弁23,27の開閉操作の代りに三方弁36の
操作により酸化剤を或は燃料電池を通る系統に、
或はバイパスする系統に流すよう切換えることが
できる。燃料側の三方弁37の場合も亦同様であ
る。
FIG. 4 shows another embodiment of the fuel cell device according to the present invention, in which a three-way valve 36 is used instead of the oxidant supply cutoff valve 23 and the bypass oxidizer cutoff valve 27 shown in FIG. The rest is the same as in FIG. 3 except that a three-way valve 37 is provided in place of the fuel supply cutoff valve 24 and the bypass fuel cutoff valve 28. In this case, instead of opening and closing the cutoff valves 23 and 27, the three-way valve 36 is operated to supply the oxidizer or to the system passing through the fuel cell.
Alternatively, it can be switched to a bypass system. The same applies to the three-way valve 37 on the fuel side.

又この第4図示の場合の外、酸化剤排出遮断弁
25とバイパス酸化剤遮断弁27の代りに三方弁
を、或は燃料排出遮断弁26、バイパス燃料遮断
弁28の代りに三方弁を設けて、上記と同様に操
作させることもできる。
In addition to the case shown in the fourth diagram, a three-way valve may be provided in place of the oxidant discharge cutoff valve 25 and the bypass oxidizer cutoff valve 27, or a three-way valve may be provided in place of the fuel discharge cutoff valve 26 and the bypass fuel cutoff valve 28. You can also operate it in the same way as above.

〔発明の効果〕〔Effect of the invention〕

本発明では燃料電池を通る系統の外に燃料電池
を通らずバイパスして供給系統から直接排出系統
に接続する酸化剤と燃料夫々のバイパス系統を設
け夫々に弁を設けたので弁の開閉により燃料電池
部分を他から隔離した状態下におくことができ、
従つて起動、停止時は勿論、外乱がおきてもその
影響が燃料電池部分に及ぶのを防いでその破損を
防ぎ保護し、信頼性を向上させることができる。
In the present invention, a bypass system is provided for each of the oxidizer and fuel, which bypasses the system passing through the fuel cell and connects the supply system directly to the exhaust system, and a valve is provided for each, so the fuel can be removed by opening and closing the valve. The battery part can be kept isolated from other parts,
Therefore, not only during starting and stopping, but also when disturbance occurs, the influence of the disturbance can be prevented from reaching the fuel cell portion, thereby preventing and protecting the fuel cell portion from damage, and improving reliability.

しかも各バイパス系統の流路体積と流路抵抗を
燃料電池を通る系統のそれと等しくなるように構
成し、更に圧力差測定器、圧力放出系統、或は流
体供給排出系統等からなる両極間の圧力差を制御
する機構を設けたので、起電、停止時等に燃料電
池部分の圧力設定、圧力差制御が燃料電池部分を
系統から隔離した状態で行なえるため、燃料電池
運転時に要求される慎重、微妙な操作は必要なく
なり、起動、停止或は更に再起動に要する時間を
大幅に短縮し、装置の応答性乃至制御性の向上を
はかることができて有効である。
In addition, the flow path volume and flow path resistance of each bypass system are configured to be equal to those of the system passing through the fuel cell, and the pressure between the two poles is further configured using a pressure difference measuring device, a pressure release system, or a fluid supply and discharge system, etc. Since a mechanism is provided to control the difference, the pressure setting and pressure difference control of the fuel cell part can be performed while the fuel cell part is isolated from the system during electromotive generation, stoppage, etc., which reduces the caution required when operating the fuel cell. This eliminates the need for delicate operations, greatly reduces the time required for starting, stopping, or even restarting, and is effective in improving the responsiveness and controllability of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料電池の基本構造を示した斜視図、
第2図は従来の燃料電池装置の系統説明図、第3
図、第4図は夫々本発明の燃料電池装置の実施例
の系統説明図である。 2a…酸化剤極、2b…燃料極、4a…酸化剤
ガス流路、4b…燃料ガス流路、5…燃料電池収
納容器、9…酸化剤供給系統、11…燃料供給系
統、10…酸化剤排出系統、12…燃料排出系
統、13,14…圧力差測定器、17…酸化剤バ
イパス系統、18…燃料バイパス系統、23,2
4,25,26,27,28…遮断弁、33,3
4,35…圧力差測定器、36,37…三方弁。
Figure 1 is a perspective view showing the basic structure of a fuel cell.
Figure 2 is an explanatory diagram of the system of a conventional fuel cell device;
FIG. 4 is a system explanatory diagram of an embodiment of the fuel cell device of the present invention. 2a... Oxidizing agent electrode, 2b... Fuel electrode, 4a... Oxidizing gas flow path, 4b... Fuel gas flow path, 5... Fuel cell storage container, 9... Oxidizing agent supply system, 11... Fuel supply system, 10... Oxidizing agent Discharge system, 12... Fuel discharge system, 13, 14... Pressure difference measuring device, 17... Oxidizer bypass system, 18... Fuel bypass system, 23, 2
4, 25, 26, 27, 28...Shutoff valve, 33, 3
4, 35...Pressure difference measuring device, 36, 37...Three-way valve.

Claims (1)

【特許請求の範囲】 1 燃料極、酸化剤極およびこれら両電極間に介
在する電解質からなる燃料電池と、前記燃料極に
燃料を供給する燃料供給系統と、この極から燃料
を排出する燃料排出系統と、前記酸化剤極に酸化
剤を供給する酸化剤供給系統と、この極から酸化
剤を排出する酸化剤排出系統とを有する燃料電池
装置において、 前記燃料供給系統と前記燃料排出系統を直接接
続し、この両系統と前記燃料極を含む燃料流路と
同じ体積及び流路抵抗を有するよう構成された燃
料極バイパス系統と、 前記酸化剤供給系統と前記酸化剤排出系統を直
接接続し、この両系統と前記酸化剤極を含む酸化
剤流路と同じ体積及び流路抵抗を有するよう構成
された酸化剤極バイパス系統と、 前記燃料電池を隔離状態下に置き、前記燃料極
と前記酸化剤極の間の圧力差を所定範囲内に制御
する機構 を有することを特徴とする燃料電池装置。
[Scope of Claims] 1. A fuel cell consisting of a fuel electrode, an oxidizer electrode, and an electrolyte interposed between these electrodes, a fuel supply system that supplies fuel to the fuel electrode, and a fuel discharge system that discharges fuel from the electrode. an oxidizer supply system that supplies an oxidant to the oxidizer electrode, and an oxidizer discharge system that discharges the oxidizer from the electrode, the fuel supply system and the fuel discharge system being directly connected to each other. directly connecting the oxidizer supply system and the oxidizer discharge system; and a fuel electrode bypass system configured to have the same volume and flow path resistance as the fuel flow path including both systems and the fuel electrode; an oxidizer electrode bypass system configured to have the same volume and flow path resistance as the oxidizer flow path including both these systems and the oxidizer electrode; A fuel cell device characterized by having a mechanism for controlling the pressure difference between the electrodes within a predetermined range.
JP57228013A 1982-12-28 1982-12-28 Fuel cell Granted JPS59121786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57228013A JPS59121786A (en) 1982-12-28 1982-12-28 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57228013A JPS59121786A (en) 1982-12-28 1982-12-28 Fuel cell

Publications (2)

Publication Number Publication Date
JPS59121786A JPS59121786A (en) 1984-07-13
JPH0355939B2 true JPH0355939B2 (en) 1991-08-26

Family

ID=16869809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57228013A Granted JPS59121786A (en) 1982-12-28 1982-12-28 Fuel cell

Country Status (1)

Country Link
JP (1) JPS59121786A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088521Y2 (en) * 1988-10-27 1996-03-06 石川島播磨重工業株式会社 Fuel cell differential pressure control device
US7132181B2 (en) * 2003-08-08 2006-11-07 General Motors Corporation Method and apparatus for venting and purging of a fuel cell

Also Published As

Publication number Publication date
JPS59121786A (en) 1984-07-13

Similar Documents

Publication Publication Date Title
US6096448A (en) Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode
JP2660097B2 (en) Fuel cell generator
JP4410965B2 (en) Power generation method using fuel cell power generation system and fuel cell power generation system
JPH1167254A (en) Fuel cell power generating plant and its start/stop operation method
JP2008004319A (en) Fuel cell system, and its operation stop method
CN110364754B (en) Overvoltage protection device for fuel cell and control method
JP2000348745A (en) Fuel cell
JPH0355939B2 (en)
JP2752987B2 (en) Phosphoric acid fuel cell power plant
US10218014B2 (en) Anode-cathode supply device
JPS59105272A (en) Fuel cell power generating system
JP6465178B1 (en) Fuel cell system
JPH0326507B2 (en)
JPS60148067A (en) Fuel cell system
JPS63170864A (en) Fuel cell equipped with protector
JPH0837014A (en) Phosphoric acid type fuel cell power plant and method of maintaining the same
JPH08190929A (en) Fuel cell power generating plant
JPH05225995A (en) Fuel cell
JP7256219B2 (en) Fuel cell system and its operation method
JPS62246266A (en) Fuel cell device
JPH088521Y2 (en) Fuel cell differential pressure control device
JPS61147465A (en) Fuel cell power generation system
JPS5894767A (en) Fuel cell device
JP3244133B2 (en) How to prevent excessive differential pressure in fuel cells
JPH084012B2 (en) Fuel cell