JPH0355164A - Grinding disc and its manufacture - Google Patents

Grinding disc and its manufacture

Info

Publication number
JPH0355164A
JPH0355164A JP19016789A JP19016789A JPH0355164A JP H0355164 A JPH0355164 A JP H0355164A JP 19016789 A JP19016789 A JP 19016789A JP 19016789 A JP19016789 A JP 19016789A JP H0355164 A JPH0355164 A JP H0355164A
Authority
JP
Japan
Prior art keywords
diamond
polishing
disc
film
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19016789A
Other languages
Japanese (ja)
Inventor
Hajime Kitamura
肇 北村
Tamaki Iida
飯田 玉樹
Toshihiro Tsumori
俊宏 津森
Masatsugu Kamioka
上岡 正嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP19016789A priority Critical patent/JPH0355164A/en
Publication of JPH0355164A publication Critical patent/JPH0355164A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To raise the polishing and grinding power and the durability by covering the surface of a disc-shaped base material with needle-shaped or columnar diamond film and/or diamond like carbon film. CONSTITUTION:A needle-shaped or columnar diamond film and/or a diamond like carbon film are formed over the surface of a disc-shaped base material by the plasma gaseous phase deposition method in which 1-10GHz is impressed under the hydrocarbonic and hydrogen atmosphere. Thus the desired grinding material is obtained. This should enhance the polishing and grinding power and the durability of a grinding disc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属、木材、セラミックスおよびプラスチック
などの精密研磨に用いる耐久性に優れ、目詰まりし難い
、研削力に優れた研磨板およびその製造方法に関するも
のである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a polishing plate with excellent durability, clogging resistance, and excellent grinding power used for precision polishing of metals, wood, ceramics, plastics, etc., and its manufacture. It is about the method.

(従来の技術) 従来、研磨板は金属または木材等を基材としてその表面
に砥粒を塗布または電着したり、砥粒スラリーを掛け流
すことにより研磨を行なうための基材になる場合と、砥
石の様に研磨材そのものを基材として使用する場合とが
あった。両者共表面の砥粒の大きさの下限には粉砕機の
性能や粉砕方法により限度があり、また、極微粒を基材
に均一に塗布することの困難さ、および砥石の様に固め
ることは容易であるが目詰まりし易く、精密研磨を必要
とするものに対しては良質の研磨板とは言えなかった。
(Prior Art) Conventionally, a polishing plate has been used as a base material for polishing by coating or electrodepositing abrasive grains on the surface of metal or wood, or by pouring abrasive slurry on the surface. In some cases, the abrasive material itself was used as a base material, such as a whetstone. For both, there is a lower limit to the size of the abrasive grains on the surface depending on the performance of the grinder and the grinding method, and it is difficult to uniformly apply ultrafine grains to the base material, and it is difficult to harden them like a grindstone. Although it is easy to use, it is easily clogged and cannot be said to be a good quality polishing plate for items that require precision polishing.

(発明が解決しようとする課題) 本発明は上記のような欠点を改良した優れた研磨力と目
詰まりを起こし難い、耐久性のある研磨板を提供しよう
とするも、のである。
(Problems to be Solved by the Invention) The present invention aims to provide a durable polishing plate which improves the above-mentioned drawbacks, has excellent polishing power, is resistant to clogging, and is resistant to clogging.

(課題を解決するための手段) 本発明者等は、上記課題を解決するために、研磨板の材
質およびその表面処理方法について鋭意検討を重ね本発
明に到達したもので、その要旨とするところは、 1.円板状基材表面が針状および/または柱状のダイヤ
モンド膜および/またはダイヤモンド状炭素膜で被覆さ
れてなる研磨板および 2.円板状基材表面に炭化水素および水素雰囲気中で1
〜10GHzを印加するプラズマ気相沈積法により針状
および/または柱状のダイヤモンド膜および/またはダ
イヤモンド状炭素膜を形成させることを特徴とする請求
項1に記載の研磨板の製造方法にある。
(Means for Solving the Problems) In order to solve the above problems, the present inventors have conducted intensive studies on the material of the polishing plate and its surface treatment method, and have arrived at the present invention. 1. 2. A polishing plate in which the surface of a disc-shaped base material is coated with an acicular and/or columnar diamond film and/or a diamond-like carbon film; 1 on the surface of a disc-shaped substrate in a hydrocarbon and hydrogen atmosphere.
2. The method of manufacturing a polishing plate according to claim 1, wherein the acicular and/or columnar diamond film and/or diamond-like carbon film is formed by a plasma vapor deposition method applying a frequency of up to 10 GHz.

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

先ず、本発明の研磨板の構成について述べる。First, the structure of the polishing plate of the present invention will be described.

円板状の基材に砥粒を塗布、電着することなく、直接基
材に砥粒、即ち本発明では針状および/または柱状のダ
イヤモンド膜および/またはダイヤモンド状炭素膜を付
着させることによって砥粒の大サイズのものから微小サ
イズのものまで任意のものが得られる。円板状研磨板の
基材にはアルミナ、カーボランダム、ジルコニア等のセ
ラミックス、Mo. W, Ta.Ti等の金属または
ステンレス等の合金が使用され、さらにこれら板状基材
の片面または一部に上記金属を蒸着したもの等が例示さ
れる。次いで、この基材表面に、プラズマ気相沈積法に
よりダイヤモンド膜および/またはダイヤモンド状炭素
膜をコーティングする。この目的は、材料の中で最も硬
度の高いダイヤモンドを必要最小限度の量を使用して最
大の研磨効果を発揮させようとするものである。プラズ
マ気相沈積法により基材表面に析出するダイヤモンド膜
および/またはダイヤモンド状炭素は針状および/また
は柱状結晶をしており、その厚さは10〜1,000μ
m、好ましくは20〜500μmの範囲とするのが良い
。lOμm未満では薄過ぎて信頼性に乏しいものとなり
、l, 000μmを超えると研磨時の摩擦抵抗が大き
くなり、目詰まりし易く、研磨力が急速に低下してしま
う。 この円板状研磨板の製造方法の特徴は、プラズマ
気相沈積法によるダイヤモンド膜のコーティングにある
。プラズマ気相沈積法は公知の技術を使用すれば良く、
炭化水素および水素あるいは必要に応じて不活性ガスか
らなる混合ガスを用い、基材表面上に炭化水素からダイ
ヤモンド膜および/またはダイヤモンド状炭素膜を析出
させる方法で実施される。 炭化水素(A)と水素ガス
(B)の容量割合は、A/B=500〜o.ooiの広
範囲で使用できる。また使用する水素ガス(B)と不活
性ガス(C)および炭化水素(A)の容量割合はA/B
+C=500〜0.001 , CのBに対する置換率
は50%以下であることが好ましい。 この場合のプラ
ズマ気相沈積法には、高周波、直流、マイクロ波および
金属線の加熱コイルを入れたプラズマ法、イオンビーム
蒸着法が例示されるが、I GHz以上、好ましくは1
〜10GHzのマイクロ波高周波電力を利用するのがよ
い。1G}{z未満では信頼性のある膜は得られない。
By directly attaching abrasive grains, that is, needle-shaped and/or columnar diamond films and/or diamond-like carbon films, to the disc-shaped base material without applying or electrodepositing the abrasive grains to the disc-shaped base material. Any abrasive grain size can be obtained, from large to minute abrasive grains. The base material of the disc-shaped polishing plate includes ceramics such as alumina, carborundum, and zirconia, Mo. W, Ta. Metals such as Ti or alloys such as stainless steel are used, and examples include those in which the above metals are vapor-deposited on one side or a part of a plate-shaped base material. Next, a diamond film and/or a diamond-like carbon film is coated on the surface of this base material by plasma vapor deposition. The purpose of this is to use the minimum necessary amount of diamond, which has the highest hardness among materials, to achieve the maximum polishing effect. The diamond film and/or diamond-like carbon deposited on the surface of the substrate by the plasma vapor deposition method has acicular and/or columnar crystals, and the thickness is 10 to 1,000 μm.
m, preferably in the range of 20 to 500 μm. If it is less than 10 μm, it will be too thin and unreliable, and if it exceeds 1,000 μm, the frictional resistance during polishing will increase, clogging will occur easily, and the polishing power will decrease rapidly. The feature of this method for producing a disc-shaped polishing plate is that it is coated with a diamond film by plasma vapor deposition. For the plasma vapor deposition method, any known technology may be used.
This method is carried out by depositing a diamond film and/or a diamond-like carbon film from the hydrocarbon on the surface of the substrate using a mixed gas consisting of hydrocarbon and hydrogen or, if necessary, an inert gas. The volume ratio of hydrocarbon (A) and hydrogen gas (B) is A/B=500 to o. Can be used in a wide range of ooi. The volume ratio of hydrogen gas (B), inert gas (C) and hydrocarbon (A) used is A/B.
+C=500 to 0.001, and the substitution ratio of C to B is preferably 50% or less. Examples of the plasma vapor deposition method in this case include high frequency, direct current, microwave, plasma methods using metal wire heating coils, and ion beam evaporation methods.
It is preferable to use microwave high frequency power of ~10 GHz. 1G}{z, a reliable film cannot be obtained.

ここで使用される炭化水素としてはメタン、エタン、プ
ロパン、エチレンなどが例示されるが、メタンが好まし
い。
Examples of the hydrocarbon used here include methane, ethane, propane, and ethylene, with methane being preferred.

この方法の実施に当たっては、まず反応器内に研磨板基
材を設置し、この反応器内に炭化水素と水素または必要
により不活性ガスとの混合ガスを導入する。器内の圧力
はプラズマを安定に維持するために100〜220パス
カルの範囲になるように調整し、ついでこれにマイクロ
波高周波電力を印加して系内にプラズマを発生させると
共に、部材の温度が500〜l300℃になるように調
整する。部材温度が500℃以下では析出したダイヤモ
ンド膜中に水素が混入する恐れがあり、1300℃を越
えると析出したダイヤモンドが黒鉛に逆転移する欠点を
生ずるので、700〜1200℃の範囲とするのが好ま
しい。これにより、炭化水素がプラズマ火炎との接触で
熱分解されてダイヤモンドあるいは黒鉛を含むダイヤモ
ンド膜および/またはダイヤモンド状炭素膜が均一な板
状形となって基材上に所望の厚さに被着される。
In carrying out this method, first, a polishing plate substrate is placed in a reactor, and a mixed gas of hydrocarbon and hydrogen or, if necessary, an inert gas is introduced into the reactor. The pressure inside the chamber is adjusted to be in the range of 100 to 220 Pascals in order to maintain a stable plasma, and then microwave high frequency power is applied to generate plasma within the system and the temperature of the components is increased. Adjust the temperature to 500-1300°C. If the member temperature is below 500°C, hydrogen may be mixed into the precipitated diamond film, and if it exceeds 1300°C, the deposited diamond will undergo reverse transition to graphite, so it is recommended to keep it in the range of 700 to 1200°C. preferable. As a result, the hydrocarbon is thermally decomposed by contact with the plasma flame, and a diamond film containing diamond or graphite and/or a diamond-like carbon film is formed into a uniform plate shape and deposited on the substrate to a desired thickness. be done.

つぎに本発明の具体的態様を実施例を挙げて説明するが
、本発明はこれらに限定されるものではない。
Next, specific aspects of the present invention will be explained with reference to Examples, but the present invention is not limited thereto.

(実施例) Moの直径22mmφ、厚さ0.2 mmtの円板状基
材を内部に導波管口とプランジャ一対を有する反応装置
の基体支持台上にガス状混合物の流れ方向に対して平に
広げて並べた。次いで、この反応器内の圧力を5パスカ
ル程度まで排気した後、ここにメタン(含有濃度3容量
%)と水素の混合ガスを導入し、ガス流通下にこの雰囲
気下でマグネトロンから発信したマイクロ波(2.45
GHz )をアイソレーター、パワーモーター、スリー
スタプチューナーを通し、導波管で石英製反応管に導い
て、基材の周囲にプラズマ放電を発生させ、基材が所定
の温度である930℃になるようにマイクロ波電力を2
50Wに調整したところ、基材に150μmの柱状のダ
イヤモンド結晶の膜が形成された。
(Example) A Mo disk-shaped substrate with a diameter of 22 mmφ and a thickness of 0.2 mm was placed on a substrate support of a reaction device having a waveguide port and a pair of plungers inside, in the direction of flow of a gaseous mixture. Spread it out flat and line it up. Next, after exhausting the pressure inside this reactor to about 5 Pascals, a mixed gas of methane (concentration: 3% by volume) and hydrogen was introduced into the reactor, and microwaves emitted from a magnetron were generated in this atmosphere while the gas was flowing. (2.45
GHz) is guided through an isolator, a power motor, and a three-stap tuner to a quartz reaction tube using a waveguide to generate a plasma discharge around the substrate, bringing the substrate to a predetermined temperature of 930°C. microwave power 2
When the power was adjusted to 50 W, a 150 μm columnar diamond crystal film was formed on the base material.

このようにして出来た研磨板を研磨機の基盤に止めて、
研磨試験を行なった。研磨条件として設定切り込み0.
 6mm、送り速度4 m/min.で研磨した結果、
面粗さ6μmであった。これと同じ条件でアルミナ研磨
板で行なった場合、AA120#で仕上げ面粗さは12
μmであったので、これと比較して明らかに効果がある
ことが分かった。
The polishing plate made in this way is fixed on the base of the polishing machine,
A polishing test was conducted. Setting the cutting depth as polishing conditions: 0.
6mm, feed speed 4m/min. As a result of polishing with
The surface roughness was 6 μm. When using an alumina polishing plate under the same conditions, the finished surface roughness was 12 with AA120#.
μm, it was found that it was clearly effective compared with this.

(発明の効果) 本発明は、円板状研磨板の表面をプラズマ気相沈着法に
よりダイヤモンド膜および/またはダイヤモンド状炭素
膜で被覆することにより、優れた研磨、研削力を有する
研磨板で、産業上その利用価値は極めて高いものである
(Effects of the Invention) The present invention provides a polishing plate having excellent polishing and grinding power by coating the surface of the disc-shaped polishing plate with a diamond film and/or a diamond-like carbon film by plasma vapor deposition method. Its industrial value is extremely high.

Claims (2)

【特許請求の範囲】[Claims] 1.円板状基材表面が針状および/または柱状のダイヤ
モンド膜および/またはダイヤモンド状炭素膜で被覆さ
れてなる研磨板。
1. A polishing plate in which the surface of a disc-shaped base material is coated with an acicular and/or columnar diamond film and/or a diamond-like carbon film.
2.円板状基材表面に炭化水素および水素雰囲気中で1
〜10GHzを印加するプラズマ気相沈積法により針状
および/または柱状のダイヤモンド膜および/またはダ
イヤモンド状炭素膜を形成させることを特徴とする請求
項1に記載の研磨板の製造方法。
2. 1 on the surface of a disc-shaped substrate in a hydrocarbon and hydrogen atmosphere.
2. The method for manufacturing a polishing plate according to claim 1, wherein the acicular and/or columnar diamond film and/or diamond-like carbon film are formed by plasma vapor deposition method applying a frequency of ~10 GHz.
JP19016789A 1989-07-21 1989-07-21 Grinding disc and its manufacture Pending JPH0355164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19016789A JPH0355164A (en) 1989-07-21 1989-07-21 Grinding disc and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19016789A JPH0355164A (en) 1989-07-21 1989-07-21 Grinding disc and its manufacture

Publications (1)

Publication Number Publication Date
JPH0355164A true JPH0355164A (en) 1991-03-08

Family

ID=16253550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19016789A Pending JPH0355164A (en) 1989-07-21 1989-07-21 Grinding disc and its manufacture

Country Status (1)

Country Link
JP (1) JPH0355164A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014553A1 (en) * 1993-11-23 1995-06-01 Plasmoteg Engineering Center An abrasive material for precision surface treatment and a method for the manufacturing thereof
US5643343A (en) * 1993-11-23 1997-07-01 Selifanov; Oleg Vladimirovich Abrasive material for precision surface treatment and a method for the manufacturing thereof
US5711773A (en) * 1994-11-17 1998-01-27 Plasmoteg Engineering Center Abrasive material for precision surface treatment and a method for the manufacturing thereof
US6660342B1 (en) 1990-09-25 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Pulsed electromagnetic energy method for forming a film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237870A (en) * 1987-03-26 1988-10-04 Goei Seisakusho:Kk Diamond coated grinding wheel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237870A (en) * 1987-03-26 1988-10-04 Goei Seisakusho:Kk Diamond coated grinding wheel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660342B1 (en) 1990-09-25 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Pulsed electromagnetic energy method for forming a film
WO1995014553A1 (en) * 1993-11-23 1995-06-01 Plasmoteg Engineering Center An abrasive material for precision surface treatment and a method for the manufacturing thereof
US5643343A (en) * 1993-11-23 1997-07-01 Selifanov; Oleg Vladimirovich Abrasive material for precision surface treatment and a method for the manufacturing thereof
US5711773A (en) * 1994-11-17 1998-01-27 Plasmoteg Engineering Center Abrasive material for precision surface treatment and a method for the manufacturing thereof

Similar Documents

Publication Publication Date Title
JP4354630B2 (en) CVD diamond-coated substrate for polishing pad conditioning head and method for producing the same
US4260647A (en) Method of depositing an abrasive layer
JPH04224128A (en) Glass cutting blade
US6860803B2 (en) Polishing plate
JPH0355164A (en) Grinding disc and its manufacture
Haubner et al. Diamond nucleation and growth on refractory metals using microwave plasma deposition
JPH01230496A (en) Novel diamond carbon membrane and its production
US5783335A (en) Fluidized bed deposition of diamond
JPH0355163A (en) Grinding material and its manufacture
JPS63237870A (en) Diamond coated grinding wheel
JP2962631B2 (en) Method for producing diamond-like carbon thin film
JPS63262468A (en) Production of abrasive material
JPH06262525A (en) Grinding wheel and its manufacture
JPS61201698A (en) Diamond film and its production
JPS60255366A (en) Preparation of diamond grinding paper
US4243395A (en) Method for precision grinding of hard, pointed materials
JPH0326247A (en) Microdrill for dental purpose and production thereof
JPH0665466B2 (en) Soot mixed diamond polishing wheel
JPH08158051A (en) Rigid carbon film
JPH0197570A (en) Diamond grinding material for metal bond grinding stone
JPH01103987A (en) Method for synthesizing diamond by vapor phase method
JPH0326246A (en) Microcutter for dental purpose and production thereof
JPH05202482A (en) Method and device for producing diamond film
JPH05105587A (en) Method for producing artificial diamond-coated powder
Ravi High-rate synthesis of high-quality diamond for IR optics