JPH0355163A - Grinding material and its manufacture - Google Patents
Grinding material and its manufactureInfo
- Publication number
- JPH0355163A JPH0355163A JP19016689A JP19016689A JPH0355163A JP H0355163 A JPH0355163 A JP H0355163A JP 19016689 A JP19016689 A JP 19016689A JP 19016689 A JP19016689 A JP 19016689A JP H0355163 A JPH0355163 A JP H0355163A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- abrasive
- film
- abrasive grains
- polishing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000000463 material Substances 0.000 title abstract description 7
- 239000010432 diamond Substances 0.000 claims abstract description 25
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 24
- 239000006061 abrasive grain Substances 0.000 claims abstract description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000001257 hydrogen Substances 0.000 claims abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 13
- 229930195733 hydrocarbon Natural products 0.000 claims description 9
- 150000002430 hydrocarbons Chemical class 0.000 claims description 9
- 239000004215 Carbon black (E152) Substances 0.000 claims description 8
- 239000003082 abrasive agent Substances 0.000 claims description 8
- 238000007740 vapor deposition Methods 0.000 claims description 7
- 238000005498 polishing Methods 0.000 abstract description 11
- 238000000151 deposition Methods 0.000 abstract 1
- 239000007792 gaseous phase Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910001651 emery Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は金属、木材、セラミックスおよびプラスチック
などの研磨に用いられる研削力の高い、耐久性に優れ、
目詰まりし難い研磨材およびその製造方法に関するもの
である。Detailed Description of the Invention (Industrial Application Field) The present invention is a highly durable and highly abrasive product that is used for polishing metals, wood, ceramics, plastics, etc.
The present invention relates to an abrasive material that does not easily clog and a method for producing the same.
(従来の技術)
従来、研磨材にはアルミナ、カーボランダムおよびジル
コニアなどの硬度の高いものや、硅砂、エメリーの様な
硬度の比較的低いもの等被研磨材に合わせた種々の砥粒
を布、紙の表面に接着剤で固定した研磨布、サンドペー
パー、研磨、研削機械用に成型加工した研磨ベルト、研
磨ディスク、砥石などの研磨材がある。これら研磨材の
砥粒はは天然鉱石や合成鋳造物を破砕して種々の粒度分
布を持つものを製造しているが、これには膨大な電力と
長い工程を必要とする欠点を有していた。(Prior art) Conventionally, various abrasive grains are applied to the material to be polished, such as those with high hardness such as alumina, carborundum, and zirconia, and those with relatively low hardness such as silica sand and emery. There are abrasive materials such as abrasive cloths fixed to paper surfaces with adhesives, sandpaper, abrasive belts molded for polishing and grinding machines, abrasive discs, and whetstones. The abrasive grains of these abrasive materials are manufactured by crushing natural ores and synthetic castings to produce products with various particle size distributions, but this method has the disadvantage of requiring a huge amount of electricity and a long process. Ta.
砥粒の中で最高の硬度を持つものは、ダイヤモンド砥粒
であるが、工業用としての天然資源は少なく、高温、高
圧下に合成される人工ダイヤモンドも生産性が低く、高
価で産業界に広く普及するには至っていない。Diamond abrasive grains have the highest hardness among abrasive grains, but there are few natural resources for industrial use, and artificial diamonds, which are synthesized under high temperature and pressure, have low productivity and are expensive, making them difficult to use in industry. It has not yet become widely popular.
(発明が解決しようとする課題)
本発明は上記のような欠点を改良した優れた研磨力と目
詰まりを起こし難い、比較的安価なダイヤモンド研磨材
を提供しようとするものである。(Problems to be Solved by the Invention) An object of the present invention is to provide a relatively inexpensive diamond abrasive that has excellent polishing power, is less likely to cause clogging, and has improved the above-mentioned drawbacks.
(課題を解決するための手段)
本発明者等は、上記課題を解決するために、砥粒の材質
およびその表面処理方法について鋭意検討を重ね本発明
に到達したもので、その要旨とするところは、
1.砥粒表面が針状および/または柱状のダイヤモンド
膜および/またはダイヤモンド状炭素膜で被覆されてな
る研磨材および
2.砥粒表面に炭化水素および水素雰囲気中で1〜10
GHzを印加するプラズマ気相沈積法により針状および
/または柱状のダイヤモンド膜および/またはダイヤモ
ンド状炭素膜を形成させることを特徴とする請求項1に
記載の研磨材の製造方法にある。(Means for Solving the Problems) In order to solve the above problems, the inventors of the present invention have conducted intensive studies on the material of abrasive grains and the method of surface treatment thereof, and have arrived at the present invention. 1. 2. An abrasive material whose abrasive grain surface is coated with an acicular and/or columnar diamond film and/or a diamond-like carbon film; 1 to 10 on the abrasive grain surface in a hydrocarbon and hydrogen atmosphere.
2. The method of manufacturing an abrasive material according to claim 1, wherein the acicular and/or columnar diamond film and/or diamond-like carbon film is formed by a plasma vapor deposition method applying GHz.
以下、本発明を詳細に説明する。The present invention will be explained in detail below.
先ず、砥粒としては、アルミナ、カーボランダムおよび
ジルコニアなどの硬度の高い、ダイヤモンドに近いもの
や、硅砂、エメリーの様な硬度の比較的低いもの等が例
示されるが、本発明では、後述する表面処理によるダイ
ヤモンド膜および/またはダイヤモンド状炭素膜が良く
接着し、容易に剥離せず、しかも安価なものが良く、ア
ルミナシリコンカーバイド等が好ましい。砥粒の粒度は
その目的とする被研磨材の材質、硬度、仕上げ粗さ等の
物性を考慮して適宜選択すれば良いが、一般的には、#
120〜# 1500とされる。またその形状は、不規
則な多面体であることが重要で、平滑で広い表面や、鋭
角の角の少ない粒子では、研磨力に欠ける。First, examples of abrasive grains include those with high hardness similar to diamond, such as alumina, carborundum, and zirconia, and those with relatively low hardness, such as silica sand and emery. A surface-treated diamond film and/or diamond-like carbon film that adheres well, does not peel off easily, and is inexpensive is preferable, such as alumina silicon carbide. The particle size of the abrasive grains may be selected appropriately taking into account the material, hardness, finish roughness, and other physical properties of the target material to be polished, but in general, #
120~#1500. It is also important that the shape is an irregular polyhedron; particles with smooth and wide surfaces or with few acute angles lack polishing power.
次いで、この砥粒の表面に、プラズマ気相沈積法により
ダイヤモンド膜および/またはダイヤモンド状炭素膜を
コーティングする。この目的は、材料の中で最も硬度の
高いダイヤモンドを必要最小限度の量を使用して最大の
研磨効果を発揮させようとするものである。プラズマ気
相沈積法により表面に析出するダイヤモンド膜および/
またはダイヤモンド状炭素は針状および/または柱状結
晶をしており、その厚さはlO〜1,000μm、好ま
しくは20〜500μmの範囲とするのが良い。10μ
m未満では薄過ぎて信頼性に乏しいものとなり、1,0
00μmを超えると研磨時の摩擦抵抗が大きくなり、目
詰まりし易く、研磨力が急速に低下してしまう。このプ
ラズマ気相沈積法は公知の技術を使用すれば良く、炭化
水素および水素あるいは必要に応じて不活性ガスからな
る混合ガスを用い、表面上に炭化水素からダイヤモンド
膜および/またはダイヤモンド状炭素膜を析出させる方
法で実施される。 炭化水素(A)と水素ガス(B)の
容量割合は、A/B=500〜0. 001の広範囲で
使用できる。また使用する水素ガス(B)と不活性ガス
(C)および炭化水素(A)の容量割合はA/B+C=
5’OO〜0.001 , CのBに対する置換率は5
0%以下であることが好ましい。 この場合のプラズマ
気相沈積法には、高周波、直流、マイクロ波および金属
線の加熱コイルを入れたプラズマ法、イオンビーム蒸着
法などが例示されるが、lGHz以上、好ましくは1〜
10GHzのマイクロ波高周波電力を利用するのがよい
。I GHz未満では信頼性のある薄膜が得られない。Next, the surface of the abrasive grains is coated with a diamond film and/or a diamond-like carbon film by plasma vapor deposition. The purpose of this is to use the minimum necessary amount of diamond, which has the highest hardness among materials, to achieve the maximum polishing effect. Diamond film and/or diamond film deposited on the surface by plasma vapor deposition method.
Alternatively, the diamond-like carbon has needle-like and/or columnar crystals, and the thickness thereof is preferably in the range of 10 to 1,000 μm, preferably 20 to 500 μm. 10μ
If it is less than 1.0 m, it will be too thin and unreliable.
If it exceeds 00 μm, the frictional resistance during polishing will increase, clogging will occur easily, and the polishing power will decrease rapidly. This plasma vapor deposition method can be performed using a known technique, using a gas mixture consisting of hydrocarbon and hydrogen or, if necessary, an inert gas, to form a diamond film and/or diamond-like carbon film from hydrocarbon to diamond film on the surface. It is carried out by a method of precipitating. The volume ratio of hydrocarbon (A) and hydrogen gas (B) is A/B=500 to 0. Can be used in a wide range of 001. The volume ratio of hydrogen gas (B), inert gas (C) and hydrocarbon (A) to be used is A/B+C=
5'OO~0.001, the substitution rate of C for B is 5
It is preferably 0% or less. Examples of plasma vapor deposition methods in this case include high frequency, direct current, microwave, plasma methods using metal wire heating coils, and ion beam evaporation methods.
It is preferable to use microwave high frequency power of 10 GHz. Reliable thin films cannot be obtained below I GHz.
ここで使用される炭化水素としてはメタン、エタン、プ
ロパン、エチレンなどが例示されるが、メタンが好まし
い。Examples of the hydrocarbon used here include methane, ethane, propane, and ethylene, with methane being preferred.
この方法の実施に当たっては、まず反応器内に砥粒を粒
子が重なり合わないように単層に設置しこの反応器内に
炭化水素と水素または必要により不活性ガスとの混合ガ
スを導入する。器内の圧力はプラズマを安定に維持する
ために10(1〜220パスカルの範囲になるように調
整し、ついでこれにマイクロ波高周波電力を印加して系
内にプラズマを発生させると共に、部材の温度が500
〜1300℃になるように調整する。部材温度が500
℃以下では析出したダイヤモンド膜中に水素が混入する
恐れがあり、1300℃を越えると析出したダイヤモン
ドが黒鉛に逆転移する欠点を生ずるので、700〜12
00℃の範囲とするのが好ましい。これにより、炭化水
素がプラズマ火炎との接触で熱分解されてダイヤモンド
あるいは黒鉛を含むダイヤモンド膜および/またはダイ
ヤモンド状炭素膜が均一な板状形となって上に所望の厚
さに被着される。In carrying out this method, first, abrasive grains are placed in a single layer in a reactor so that the particles do not overlap, and a mixed gas of hydrocarbon and hydrogen or, if necessary, an inert gas is introduced into the reactor. The pressure inside the chamber is adjusted to a range of 10 (1 to 220 Pascals) in order to maintain a stable plasma, and then microwave high frequency power is applied to this to generate plasma in the system, and the parts are heated. temperature is 500
Adjust the temperature to ~1300°C. Part temperature is 500
If the temperature is below 1300°C, hydrogen may be mixed into the precipitated diamond film, and if the temperature exceeds 1300°C, the deposited diamond will undergo reverse transition to graphite.
The temperature is preferably within the range of 00°C. As a result, the hydrocarbons are thermally decomposed by contact with the plasma flame, and a diamond film containing diamond or graphite and/or a diamond-like carbon film is formed into a uniform plate shape and deposited to a desired thickness. .
つぎに本発明の具体的態様を実施例を挙げて説明するが
、本発明はこれらに限定されるものではない。Next, specific aspects of the present invention will be explained with reference to Examples, but the present invention is not limited thereto.
(実施例)
多面体を有しているアルミナの砥粒を#120に整粒し
たものを、内部に導波管口とブランジャー対を有する反
応装置の砥粒支持台上にガス状混合物の流れ方向に対し
て平に広げて並べた。次いでこの反応器内の圧力を5パ
スカル程度まで排気した後、ここにメタン(含有濃度4
容量%)と水素の混合ガスを導入し、ガス流通下に反応
器内の圧力を150パスカルに調整し、この雰囲気下で
マグネトロンから発信したマイクロ波( 2. 45G
Hz )をアイソレーター、パワーモーター、スリース
タプチューナーを通し、導波管で石英製反応管に導いて
、砥粒の周囲にプラズマ放電を発生させ、砥粒が所定の
温度である930℃になるようにマイクロ波電力を30
0Wに調整したところ、砥粒に100μmの柱状のダイ
ヤモンド結晶の膜が出来た。こうして出来た砥粒とフェ
ノール樹脂とでベルト状の研磨布を作威し、研削試験を
行なった。研削条件を送り速度4 m/min.、湿式
ダウンカットで行なった場合の有効切り込みは研削回数
500の時、0.1mmであった。同じ条件でアルミナ
砥粒の場合、AA80#で0. 04mmであったので
、これと比較して明らかに効果のあることが判かった。(Example) Alumina abrasive grains having polyhedrons sized to #120 were placed on an abrasive support table of a reactor having a waveguide port and a pair of plungers inside, and a gaseous mixture was flowed onto the abrasive They were laid out flat in the direction. Next, after exhausting the pressure inside this reactor to about 5 Pascal, methane (concentration concentration 4
A mixed gas of hydrogen (% by volume) and hydrogen was introduced, the pressure inside the reactor was adjusted to 150 Pascals under gas flow, and under this atmosphere microwaves (2.45 G) were transmitted from a magnetron.
Hz) is guided through an isolator, a power motor, and a three-stap tuner to a quartz reaction tube using a waveguide to generate a plasma discharge around the abrasive grains, bringing the abrasive grains to a predetermined temperature of 930°C. microwave power to 30
When the power was adjusted to 0W, a 100 μm columnar diamond crystal film was formed on the abrasive grains. A belt-shaped polishing cloth was made from the abrasive grains thus produced and phenolic resin, and a grinding test was conducted. The grinding conditions were a feed rate of 4 m/min. In the case of wet down cutting, the effective depth of cut was 0.1 mm when the number of grinding was 500. Under the same conditions, in the case of alumina abrasive grains, AA80# is 0. 04mm, it was found that it was clearly effective compared to this.
(発明の効果)
本発明は、砥粒の表面をプラズマ気相沈着法によりダイ
ヤモンド膜および/またはダイヤモンド状炭素膜で被覆
することにより、優れた研磨、研削力、耐久性に優れ、
目詰まりし難い研磨材としたもので、産業上その利用価
値は極めて高いものである。(Effects of the Invention) The present invention provides excellent polishing, grinding power, and durability by coating the surface of the abrasive grain with a diamond film and/or a diamond-like carbon film by plasma vapor deposition method.
This abrasive material is difficult to clog and has extremely high industrial value.
Claims (2)
膜および/またはダイヤモンド状炭素膜で被覆されてな
る研磨材。1. An abrasive material in which the surface of abrasive grains is coated with an acicular and/or columnar diamond film and/or a diamond-like carbon film.
GHzを印加するプラズマ気相沈積法により針状および
/または柱状のダイヤモンド膜および/またはダイヤモ
ンド状炭素膜を形成させることを特徴とする請求項1に
記載の研磨材の製造方法。2. 1 to 10 on the abrasive grain surface in a hydrocarbon and hydrogen atmosphere.
2. The method of manufacturing an abrasive material according to claim 1, wherein the acicular and/or columnar diamond film and/or diamond-like carbon film is formed by plasma vapor deposition method applying GHz.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19016689A JPH0355163A (en) | 1989-07-21 | 1989-07-21 | Grinding material and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19016689A JPH0355163A (en) | 1989-07-21 | 1989-07-21 | Grinding material and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0355163A true JPH0355163A (en) | 1991-03-08 |
Family
ID=16253531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19016689A Pending JPH0355163A (en) | 1989-07-21 | 1989-07-21 | Grinding material and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0355163A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5643343A (en) * | 1993-11-23 | 1997-07-01 | Selifanov; Oleg Vladimirovich | Abrasive material for precision surface treatment and a method for the manufacturing thereof |
US5711773A (en) * | 1994-11-17 | 1998-01-27 | Plasmoteg Engineering Center | Abrasive material for precision surface treatment and a method for the manufacturing thereof |
US6660342B1 (en) | 1990-09-25 | 2003-12-09 | Semiconductor Energy Laboratory Co., Ltd. | Pulsed electromagnetic energy method for forming a film |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63237870A (en) * | 1987-03-26 | 1988-10-04 | Goei Seisakusho:Kk | Diamond coated grinding wheel |
-
1989
- 1989-07-21 JP JP19016689A patent/JPH0355163A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63237870A (en) * | 1987-03-26 | 1988-10-04 | Goei Seisakusho:Kk | Diamond coated grinding wheel |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6660342B1 (en) | 1990-09-25 | 2003-12-09 | Semiconductor Energy Laboratory Co., Ltd. | Pulsed electromagnetic energy method for forming a film |
US7125588B2 (en) | 1990-09-25 | 2006-10-24 | Semiconductor Energy Laboratory Co., Ltd. | Pulsed plasma CVD method for forming a film |
US5643343A (en) * | 1993-11-23 | 1997-07-01 | Selifanov; Oleg Vladimirovich | Abrasive material for precision surface treatment and a method for the manufacturing thereof |
US5711773A (en) * | 1994-11-17 | 1998-01-27 | Plasmoteg Engineering Center | Abrasive material for precision surface treatment and a method for the manufacturing thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100528678B1 (en) | Cvd diamond coated substrate for polishing pad conditioning head and method for making same | |
RU2092514C1 (en) | Grained abrasive, abrasive article, and method of manufacturing grained abrasive | |
US6860803B2 (en) | Polishing plate | |
US10214835B2 (en) | Post-synthesis processing of diamond and related super-hard materials | |
JPH0355163A (en) | Grinding material and its manufacture | |
WO1988007599A1 (en) | Composite diamond particles | |
Haubner et al. | Diamond nucleation and growth on refractory metals using microwave plasma deposition | |
JPH0355164A (en) | Grinding disc and its manufacture | |
US5783335A (en) | Fluidized bed deposition of diamond | |
JPH04132691A (en) | Production of diamond thin film by gaseous phase method using diamond fine powder as seed crystal | |
JPH0238304A (en) | Improved abrasive grain of fine diamond and production thereof | |
JP3713738B2 (en) | Diamond polishing method and apparatus | |
JPS63237870A (en) | Diamond coated grinding wheel | |
JPH06262525A (en) | Grinding wheel and its manufacture | |
JPS63262468A (en) | Production of abrasive material | |
JP3199127B2 (en) | Diamond-containing composite coated member and method for producing the same | |
JPH0665466B2 (en) | Soot mixed diamond polishing wheel | |
JP2767897B2 (en) | Method for producing composite diamond abrasive grains for precision polishing | |
Farabaugh et al. | Growth of diamond films by hot filament chemical vapor deposition | |
JPH0197570A (en) | Diamond grinding material for metal bond grinding stone | |
JPH0326247A (en) | Microdrill for dental purpose and production thereof | |
JP3696807B2 (en) | Sliding member and manufacturing method thereof | |
JPH0788580B2 (en) | Diamond coated cemented carbide and method for producing the same | |
JPH0224005A (en) | Diamond coated tool and manufacture thereof | |
JPS61270372A (en) | Formation of artificial diamond film by deposition |