JP2767897B2 - Method for producing composite diamond abrasive grains for precision polishing - Google Patents
Method for producing composite diamond abrasive grains for precision polishingInfo
- Publication number
- JP2767897B2 JP2767897B2 JP1153888A JP15388889A JP2767897B2 JP 2767897 B2 JP2767897 B2 JP 2767897B2 JP 1153888 A JP1153888 A JP 1153888A JP 15388889 A JP15388889 A JP 15388889A JP 2767897 B2 JP2767897 B2 JP 2767897B2
- Authority
- JP
- Japan
- Prior art keywords
- abrasive grains
- diamond
- base particles
- particles
- precision polishing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、精密機械部品や光学部品等を極めて高い精
度で仕上げ研磨するために用いられる精密研磨用複合ダ
イヤモンド砥粒に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a precision polishing composite diamond abrasive grain used for finish-polishing precision mechanical parts and optical parts with extremely high precision.
従来、研磨用のダイヤモンド砥粒は、ラツピング加工
用の遊離砥粒又は砥石として、精密機械部品や光学部品
等の精密研磨に使用されている。2. Description of the Related Art Conventionally, diamond abrasive grains for polishing have been used as free abrasive grains or whetstones for lapping, for precision polishing of precision machine parts and optical parts.
かかるダイヤモンド砥粒の殆どは超高圧法により合成
されているが、超高圧法で合成したダイヤモンドは数十
〜数百μmの大きさに達してしまうので、これを粉砕し
分級した数十μm以下の微細な粒子が研磨用ダイヤモン
ド砥粒として用いられる。Most of such diamond abrasive grains are synthesized by the ultra-high pressure method, but the diamond synthesized by the ultra-high pressure method reaches a size of several tens to several hundreds μm, and is crushed and classified to several tens μm or less. Are used as diamond abrasive grains for polishing.
ところが最近では、精密機械部品や光学部品の高精度
化に伴ない、ダイヤモンド砥粒にも一層高い加工精度が
要求されるようになつた。However, recently, with the increase in precision of precision machine parts and optical parts, higher processing accuracy has been required for diamond abrasive grains.
ダイヤモンド砥粒による加工精度を高めるためには、
超高圧法で合成したダイヤモンドの粉砕を繰返して更に
微細な砥粒を作れば良いのであるが、ダイヤモンド砥粒
が微細になるほど取扱いの困難さや、砥石とするときの
分散性の悪化等の問題が出てくる。又、粉砕して作つた
ダイヤモンド砥粒はエツジが鋭く尖つた形状をしている
ので、被加工物に引つ掻き傷を与えやすいという問題が
従来からあつたが、砥粒を微細にするほどこの問題も顕
著になる。In order to improve the processing accuracy with diamond abrasive grains,
It is only necessary to repeat the grinding of diamond synthesized by the ultra-high pressure method to make finer abrasive grains, but the finer the diamond abrasive grains, the more difficult it is to handle and the worse the dispersibility when making it as a whetstone Come out. In addition, diamond abrasive grains made by grinding have a sharp pointed edge, so there has been a problem that scratches are easily given to the workpiece, but as the abrasive grains become finer, This problem also becomes significant.
そこで近年では、気相合成法(CVD法)により新しい
タイプのダイヤモンド砥粒を合成する試みが行なわれて
いる。これらの試みは、例えばNEW DIAMOND vol4,No.4,
P.28〜29(1988)及び国際公開WO 88/07599号公報に開
示されるように、基体粒子の表面を多結晶ダイヤモンド
で被覆した複合ダイヤモンド砥粒を提供しようとするも
のである。In recent years, attempts have been made to synthesize a new type of diamond abrasive grains by a vapor phase synthesis method (CVD method). These attempts are, for example, NEW DIAMOND vol4, No.4,
As disclosed in P.28-29 (1988) and International Publication WO88 / 07599, it is an object of the present invention to provide a composite diamond abrasive in which the surface of a base particle is coated with polycrystalline diamond.
しかしながら、上記の各文献によつて複合ダイヤモン
ド砥粒自体は公知であるが、最近要求されているような
精密研磨用として高い加工精度を達成するために複合ダ
イヤモンド砥粒が備えるべき条件については全く知られ
ていない。However, although the composite diamond abrasive grains themselves are known from each of the above-mentioned documents, the conditions that the composite diamond abrasive grains should have in order to achieve high processing accuracy for precision polishing, which is recently required, are completely unknown. unknown.
又、上記各文献に記載された方法によれば、基体粒子
を基板上に静置してダイヤモンドを被覆するので、一回
に得られる量が極めて少なく工業化のための大きな支障
となつている。更に上記方法では、基板と接した基体粒
子表面はダイヤモンドで被覆されずに残ることになるの
で、その複合ダイヤモンド粒子を砥粒として用いるとダ
イヤモンドで被覆された部分と被覆されない部分との境
界からダイヤモンドが剥離しやすく、所望の加工性能が
得られない欠点がある。Further, according to the methods described in each of the above-mentioned documents, since the base particles are allowed to stand on the substrate and coated with diamond, the amount obtained at one time is extremely small, which is a major obstacle to industrialization. Further, in the above method, since the surface of the base particles in contact with the substrate remains without being coated with diamond, if the composite diamond particles are used as abrasive grains, the surface of the base particles is not covered with diamond. However, there is a drawback that desired processing performance cannot be obtained due to easy peeling.
これら上記方法の欠点を解決する複合ダイヤモンドの
合成方法として、特公昭62−57568号公報及び特開昭63
−270394号公報に基体粒子を振動又は流動させながら気
相合成法によりダイヤモンドを析出被覆させる方法が開
示されている。しかし、この方法によれば大量処理及び
連続処理が可能であるものの、基体粒子が微細になるほ
ど凝集しやすくなるので、凝集した二次粒子全体がダイ
ヤモンドで被覆されて粒径10μmを超える大きな複合ダ
イヤモンド粒子が生成し、微細な複合ダイヤモンド砥粒
を得ようとしても大きな粒子が多数混在してくる欠点が
あつた。As a method for synthesizing a composite diamond which solves these disadvantages of the above method, Japanese Patent Publication No. 62-57568 and Japanese Patent Application
No. 270394 discloses a method of depositing and coating diamond by a gas phase synthesis method while vibrating or flowing substrate particles. However, according to this method, although large-scale processing and continuous processing are possible, the finer the base particles are, the easier it is to agglomerate. Particles are generated, and there is a drawback that many large particles are mixed even when obtaining fine composite diamond abrasive grains.
本発明はかかる従来の事情に鑑み、精密研磨用砥粒と
して充分に機能しうる条件を備えた複合ダイヤモンド砥
粒を提供すること、及びかかる複合ダイヤモンド砥粒の
製造方法を提供することを目的とする。The present invention has been made in view of the above circumstances, to provide a composite diamond abrasive having conditions capable of sufficiently functioning as an abrasive for precision polishing, and to provide a method for producing such a composite diamond abrasive. I do.
〔課題を解決するための手段〕 上記目的を達成するため、本発明が提供しようとする
精密研磨用複合ダイヤモンド砥粒は、耐熱性基体粒子の
全表面を多結晶ダイヤモンドで被覆した精密研磨用複合
ダイヤモンド砥粒であつて、当該砥粒の粒径が0.1〜10
μm及びアスペクト比が1〜3であり、当該砥粒を被覆
する多結晶ダイヤモンドの層厚が基体粒子の直径の0.1
〜10倍及びその層厚の最厚部/最薄部の比が1〜2であ
つて、多結晶ダイヤモンドの各結晶粒径が2μm以下の
ものである。[Means for Solving the Problems] In order to achieve the above object, a composite diamond abrasive for precision polishing provided by the present invention is a composite for precision polishing in which the entire surface of heat-resistant base particles is coated with polycrystalline diamond. Diamond abrasive grains having a grain size of 0.1 to 10
μm and the aspect ratio are 1-3, and the layer thickness of the polycrystalline diamond covering the abrasive grains is 0.1 mm of the diameter of the base particles.
The thickness of the polycrystalline diamond is from 1 to 10 times and the ratio of the thickest part to the thinnest part thereof is 1 to 2 and the crystal grain size of the polycrystalline diamond is 2 μm or less.
上記精密研磨用複合ダイヤモンド砥粒を得るため、本
発明による精密研磨用複合ダイヤモンド砥粒の製造方法
は、気相合成法により基体粒子の表面に多結晶ダイヤモ
ンドを被覆させるに際し、セラミツクス又は耐熱性金属
からなる基体粒子に粒径が該基体粒子よりも大きい凝集
防止用粒子を該基体粒子より少量混合し、この基体粒子
を動かしながら、その表面に多結晶ダイヤモンドを被覆
させることを特徴とする。In order to obtain the above-mentioned composite diamond abrasive grains for precision polishing, the method for producing composite diamond abrasive grains for precision polishing according to the present invention uses a ceramics or a heat-resistant metal when coating the surface of the base particles with polycrystalline diamond by a vapor phase synthesis method. The present invention is characterized in that agglomeration preventing particles having a larger particle diameter than the base particles are mixed in a smaller amount with the base particles, and the surface of the base particles is coated with polycrystalline diamond while moving the base particles.
ダイヤモンドの気相合成法については前記の文献等に
より公知であるから詳しく述べない。Since the vapor phase synthesis method of diamond is known from the above-mentioned documents and the like, it will not be described in detail.
精密研磨用の複合ダイヤモンド砥粒としては、前記し
た条件のいずれか一つが欠けても充分な機能を果たし得
ない。As a composite diamond abrasive grain for precision polishing, even if any one of the above conditions is missing, a sufficient function cannot be achieved.
即ち、複合ダイヤモンド砥粒の粒径が0.1μm未満で
は砥粒としての取扱いが極めて困難であり、10μmを超
えると被研磨材に砥粒による引つ掻き傷が付きやすくな
り精密研磨用として不適当である。又、複合ダイヤモン
ド砥粒のアスペクト比(長径/短径比)が3を超える
と、研磨時に応力の集中が起つて多結晶ダイヤモンド層
の破損や剥離がおきやすく、又被研磨材に引つ掻き傷が
付きやすくなる。That is, if the particle diameter of the composite diamond abrasive grains is less than 0.1 μm, it is extremely difficult to handle as abrasive grains, and if it exceeds 10 μm, the material to be polished tends to be scratched by the abrasive grains and is unsuitable for precision polishing. It is. If the composite diamond abrasive has an aspect ratio (major axis / minor axis ratio) of more than 3, stress concentration will occur during polishing, and the polycrystalline diamond layer will be easily damaged or peeled off. It is easy to be scratched.
このように砥粒のアスペクト比を3以下とするために
は、本発明方法を用いて製造するほか、基体粒子のアス
ペクト比を1〜4、好ましくは1〜3とすることが必要
である。In order to reduce the aspect ratio of the abrasive grains to 3 or less as described above, it is necessary that the particles be manufactured using the method of the present invention and that the aspect ratio of the base particles be 1 to 4, preferably 1 to 3.
基体粒子を被覆する多結晶ダイヤモンドの層厚が基体
粒子の直径の0.1倍に満たないとダイヤモンドとしての
性質が発揮できない。層厚の上限は特に無いが、層厚が
あまりに厚いものは製造が困難であるうえ個々の粒子が
大きくなる傾向になるので、基体粒子の直径の10倍以下
とする。又、多結晶ダイヤモンドの層厚の最厚部/最薄
部の比を1〜2とするのは、この比が2を超えると複合
ダイヤモンド砥粒のアスペクト比が3を超える場合と同
様に研磨時に応力の集中が起つて多結晶ダイヤモンド層
の破損や剥離が起きたり、被研磨材に引つ掻き傷が付き
やすくなるからである。If the layer thickness of the polycrystalline diamond covering the base particles is less than 0.1 times the diameter of the base particles, the properties as diamond cannot be exhibited. There is no particular upper limit on the layer thickness, but if the layer thickness is too large, it is difficult to manufacture and individual particles tend to be large. Also, the ratio of the thickest part / thintest part of the layer thickness of the polycrystalline diamond is set to 1 to 2 when the ratio exceeds 2, polishing is performed in the same manner as when the aspect ratio of the composite diamond abrasive exceeds 3. This is because stress concentration sometimes occurs, causing breakage or peeling of the polycrystalline diamond layer and scratching the material to be polished.
多結晶ダイヤモンドの層厚の最厚部/最薄部の比を上
記範囲に制限するためには、本発明方法が特に有効であ
る。The method of the present invention is particularly effective for limiting the ratio of the thickest part / thintest part of the layer thickness of polycrystalline diamond to the above range.
基体粒子を被覆した多結晶ダイヤモンドの個々の結晶
粒径を2μm以下とするのは、結晶粒径が2μmを超え
ると良好な加工面が得られないからである。加工精度は
多結晶ダイヤモンドを構成する個々の単位粒子の径に大
きく依存する。The individual crystal grain size of the polycrystalline diamond coated with the base particles is set to 2 μm or less, because if the crystal grain size exceeds 2 μm, a good processed surface cannot be obtained. The processing accuracy largely depends on the diameter of each unit particle constituting the polycrystalline diamond.
このような結晶粒径の制御は、特願昭63−139143号及
び特願昭63−148631号等に記載の方法によつて行なうこ
とが出来るほか、基体粒子としてダイヤモンドや立方晶
窒化硼素の単結晶を使用しないことが望ましい。これら
の基体粒子上では、エピタキシヤル成長がおこつて一つ
の大きなダイヤモンド単結晶が成長したり、一つの大き
な単結晶にならなくても核発生数が少なく個々のダイヤ
モンド粒子が大きく成長しやすいからである。従つて、
好ましい基体粒子としては、セラミツクス又は耐熱性金
属のうちMo、W、Si、WC、SiC、Si3N4、Al2O3等が挙げ
られる。Such control of the crystal grain size can be performed by the methods described in Japanese Patent Application Nos. 63-139143 and 63-148631, etc. In addition, as a base particle, a single crystal of diamond or cubic boron nitride is used. It is desirable not to use crystals. On these substrate particles, one large diamond single crystal grows due to epitaxial growth, or the number of nuclei generated is small even if it does not become one large single crystal, and individual diamond particles are likely to grow large. It is. Therefore,
Preferred substrate particles include ceramics or heat-resistant metals such as Mo, W, Si, WC, SiC, Si 3 N 4 , and Al 2 O 3 .
又、本発明方法によれば、基体粒子よりも遥かに大き
な粒子と一緒に基体粒子を動かしながらダイヤモンドを
析出被覆させるので、微細な基体粒子が動きながら凝集
しても適時粉砕されて本来の微細な基体粒子に分れるの
で、個々基体粒子が独立したまゝ表面をダイヤモンドで
むらなく被覆することができ、前記した各条件を備えた
複合ダイヤモンド砥粒が生成する。In addition, according to the method of the present invention, diamond is deposited and coated while moving the base particles together with particles much larger than the base particles. Since the individual base particles are separated into individual base particles, the surfaces of the individual base particles can be uniformly coated with diamond, and composite diamond abrasive grains satisfying the above-mentioned conditions are produced.
尚、本方法において、凝集防止粒子と一緒に基体粒子
を動かす方法としては、前記公報記載の粒子容器を振動
させる方法の他、第1図に示す如く反応容器2内の粒子
容器3に入れた基体粒子1を撹拌翼4で撹拌する方法、
第2図の如く基体粒子1を入れた反応容器2自体を回転
させる方法、第3図の如く反応容器2中に吹き込む原料
ガスで基体粒子1を流動させる方法、 等がある。In the present method, as a method of moving the base particles together with the aggregation preventing particles, in addition to the method of vibrating the particle container described in the above-mentioned publication, the substrate particles were put in the particle container 3 in the reaction container 2 as shown in FIG. A method of stirring the base particles 1 with the stirring blade 4,
As shown in FIG. 2, there are a method of rotating the reaction vessel 2 itself containing the base particles 1, and a method of flowing the base particles 1 with a raw material gas blown into the reaction vessel 2 as shown in FIG.
実施例1 第1図に示す製造装置を用い、直径50mmの粒子容器3
に基体粒子1として平均粒径2μmの球状SiCを1g及び
凝集防止用粒子として粒径100μmのSiCを0.2g入れ、撹
拌翼4を回転数12rpmで回転させた。この状態で、H2:CH
4を容積比100:2で混合した原料ガスを200SCCMで流しな
がら反応容器2内の圧力を100torrに保持し、Wフイラ
メント5の温度を2200℃として100時間保持した。Example 1 A particle container 3 having a diameter of 50 mm was prepared using the manufacturing apparatus shown in FIG.
Then, 1 g of spherical SiC having an average particle diameter of 2 μm as base particles 1 and 0.2 g of SiC having a particle diameter of 100 μm as particles for preventing aggregation were added, and the stirring blade 4 was rotated at 12 rpm. In this state, H 2 : CH
The pressure in the reaction vessel 2 was maintained at 100 torr while the raw material gas obtained by mixing 4 in a volume ratio of 100: 2 at 200 SCCM, and the temperature of the W filament 5 was maintained at 2200 ° C. for 100 hours.
その結果、全ての基体粒子1の全表面が多結晶ダイヤ
モンドで被覆された複合ダイヤモンド粒子が得られた。As a result, composite diamond particles were obtained in which all the surfaces of all the base particles 1 were covered with polycrystalline diamond.
この複合ダイヤモンド粒子の粒径は3.0〜3.5μm(平
均3.2μm)であり、アスペクト比は1〜1.4であつた。
又、多結晶ダイヤモンドの層厚は基体粒子径の平均0.3
倍、及び層厚の最厚部/最薄部の比は1.2以下であり、
多結晶ダイヤモンドの結晶粒径は全て約0.5μm以下で
あつた。The particle size of the composite diamond particles was 3.0 to 3.5 μm (3.2 μm on average), and the aspect ratio was 1 to 1.4.
The layer thickness of the polycrystalline diamond is an average of the base particle diameter of 0.3.
Times, and the ratio of the thickest part / thinnest part of the layer thickness is 1.2 or less,
The crystal grain sizes of the polycrystalline diamonds were all about 0.5 μm or less.
得られた複合ダイヤモンド粒子を砥粒とし、被研磨材
のSKD11銅を研磨したところ、0.003μmRmaxの面粗さが
得られた。比較の為に行なつた市販の#5000ダイヤモン
ド砥粒(粒径0〜3μm)による精密研磨では、面粗さ
0.01μmRmaxであつた。尚、上記研磨は遊離砥粒方式で
行なつた。The resulting composite diamond particles were used as abrasive grains, and when SKD11 copper as a material to be polished was polished, a surface roughness of 0.003 μmRmax was obtained. For precision polishing using commercially available # 5000 diamond abrasive grains (particle size 0 to 3 μm) performed for comparison, surface roughness
It was 0.01 μm Rmax. The polishing was performed by a loose abrasive method.
実施例2 第3図に示す製造装置を用い、鉛直に保持した内径40
mmの石英管の反応容器2に、平均粒径0.6μmのW粉末
の基体粒子1を5g及び凝集防止粒子として粒径1mmのW
粒子を0.5g入れた。反応容器2の下部に固定したガス分
散板7を通して下方から、H2:C2H5OH:Arを容積比100:2:
50で混合した原料ガスを200SCCMで流し、反応容器2内
の圧力を50torrに保持し、マイクロ波発生装置6から周
波数2.45Mhzマイクロ波を出力300Wで与えながら100時間
保持した。尚、マイクロ波発生装置6の代りに高周波発
生装置を用いても良い。Example 2 Using the manufacturing apparatus shown in FIG.
5 g of W powder base particles 1 having an average particle diameter of 0.6 μm and W
0.5 g of the particles were placed. From below, H 2 : C 2 H 5 OH: Ar was passed through a gas dispersion plate 7 fixed to the lower part of the reaction vessel 2 to give a volume ratio of 100: 2:
The raw material gas mixed at 50 was flowed at 200 SCCM, the pressure in the reaction vessel 2 was kept at 50 torr, and the microwave generator 6 was kept for 100 hours while giving a microwave of frequency 2.45 MHz at a power of 300 W. Note that a high frequency generator may be used instead of the microwave generator 6.
その結果、全ての基体粒子1の全表面が多結晶ダイヤ
モンドで被覆された複合ダイヤモンド粒子が得られた。
この複合ダイヤモンド粒子の粒径は0.73〜0.77μm(平
均0.74μm)であり、アスペクト比は1〜2であつた。
又、多結晶ダイヤモンドの層厚は基体粒子径の平均0.12
倍、及び層厚の最厚部/最薄部の比は1.2以下であり、
多結晶ダイヤモンドの結晶粒径は全て約0.2μm以下で
あつた。As a result, composite diamond particles were obtained in which all the surfaces of all the base particles 1 were covered with polycrystalline diamond.
The particle diameter of the composite diamond particles was 0.73 to 0.77 μm (average 0.74 μm), and the aspect ratio was 1 to 2.
The layer thickness of the polycrystalline diamond is 0.12 on average of the base particle diameter.
Times, and the ratio of the thickest part / thinnest part of the layer thickness is 1.2 or less,
The crystal grain sizes of the polycrystalline diamonds were all about 0.2 μm or less.
得られた複合ダイヤモンド粒子を砥粒とし、被研磨材
の18Niマルエージ銅を実施例1と同様の方法で研磨した
ところ0.002μmRmaxの面粗さが得られた。Using the obtained composite diamond particles as abrasive grains, 18Ni marage copper as a material to be polished was polished in the same manner as in Example 1 to obtain a surface roughness of 0.002 μmRmax.
本発明によれば、加工精度が益々厳しくなる精密機械
部品や光学部品等の精密研磨用砥粒として充分に機能し
うる条件を備えた複合ダイヤモンド砥粒を提供すること
が出来る。According to the present invention, it is possible to provide a composite diamond abrasive grain having a condition capable of sufficiently functioning as an abrasive grain for precision polishing of a precision machine component, an optical component, or the like, which has increasingly severe processing accuracy.
第1図から第3図は夫々本発明方法を実施するための装
置の具体例を示す概略図である。 1……基体粒子、2……反応容器 3……粒子容器、4……撹拌翼 5……フイラメント 6……マイクロ波又は高周波発生装置 7……ガス分散板1 to 3 are schematic diagrams each showing a specific example of an apparatus for performing the method of the present invention. DESCRIPTION OF SYMBOLS 1 ... Base particle 2 ... Reaction container 3 ... Particle container 4 ... Stirring blade 5 ... Filament 6 ... Microwave or high frequency generator 7 ... Gas dispersion plate
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C09K 3/14 B24D 3/00──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C09K 3/14 B24D 3/00
Claims (2)
多結晶ダイヤモンドを被覆する精密研磨用複合ダイヤモ
ンド砥粒の製造方法において、セラミツクス又は耐熱性
金属からなる基体粒子に、粒径が該基体粒子よりも大き
い凝集防止用粒子を該基体粒子より少量混合し、この基
体粒子を動かしながら、その表面に多結晶ダイヤモンド
を被覆させることを特徴とする上記精密研磨用複合ダイ
ヤモンド砥粒の製造方法。1. A method for producing composite diamond abrasive grains for precision polishing, wherein polycrystalline diamond is coated on the surface of heat-resistant base particles by a vapor phase synthesis method, wherein the base particles made of ceramics or heat-resistant metal have a particle size A method for producing a composite diamond abrasive grain for precision polishing as described above, wherein a small amount of agglomeration preventing particles larger than the base particles is mixed with the base particles, and the surface is coated with polycrystalline diamond while moving the base particles. .
の粒径が0.1〜10μm及びアスペクト比が1〜3であ
り、該砥粒を被覆する多結晶ダイヤモンドの層厚が基体
粒子の直径の0.1〜10倍及びその層厚の最厚部/最薄部
の比が1〜2であって、多結晶ダイヤモンドの各結晶粒
径が2μm以下であることを特徴とする、請求項1に記
載の精密研磨用複合ダイヤモンド砥粒の製造方法。2. The obtained composite diamond abrasive grains for precision polishing have a particle size of 0.1 to 10 μm and an aspect ratio of 1 to 3, and the thickness of the polycrystalline diamond coating the abrasive grains is 0.1% of the diameter of the base particles. 2. The polycrystalline diamond according to claim 1, wherein the ratio of the thickest part / the thinnest part of the layer thickness is from 1 to 10 times and the thickness of each layer of the polycrystalline diamond is 2 μm or less. A method for producing composite diamond abrasive grains for precision polishing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1153888A JP2767897B2 (en) | 1989-06-16 | 1989-06-16 | Method for producing composite diamond abrasive grains for precision polishing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1153888A JP2767897B2 (en) | 1989-06-16 | 1989-06-16 | Method for producing composite diamond abrasive grains for precision polishing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0320387A JPH0320387A (en) | 1991-01-29 |
JP2767897B2 true JP2767897B2 (en) | 1998-06-18 |
Family
ID=15572310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1153888A Expired - Fee Related JP2767897B2 (en) | 1989-06-16 | 1989-06-16 | Method for producing composite diamond abrasive grains for precision polishing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2767897B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5277442B2 (en) * | 2009-08-03 | 2013-08-28 | 株式会社ユーテック | Fine particles |
JP4940289B2 (en) * | 2009-12-11 | 2012-05-30 | 三井金属鉱業株式会社 | Abrasive |
JP6398333B2 (en) * | 2014-06-03 | 2018-10-03 | 株式会社ジェイテクト | Vitrified bond grinding wheel manufacturing method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0788502B2 (en) * | 1987-05-15 | 1995-09-27 | 三菱マテリアル株式会社 | Hard composite powder abrasive for cutting and grinding |
JPH0725033B2 (en) * | 1987-05-15 | 1995-03-22 | 三菱マテリアル株式会社 | Hard composite powder abrasive |
JPH0629401B2 (en) * | 1987-07-21 | 1994-04-20 | 日本プラスチック製砥株式会社 | Abrasive grain coated with super hard material |
-
1989
- 1989-06-16 JP JP1153888A patent/JP2767897B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0320387A (en) | 1991-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5607846B2 (en) | Abrasive grains with unique morphology | |
JP2001503726A (en) | Gemstone made of silicon carbide with diamond coating | |
CN106010439A (en) | Abrasive grains having unique features | |
EP0419087A1 (en) | A process for the production of abrasives | |
US5080975A (en) | Composite diamond granules | |
JP2767897B2 (en) | Method for producing composite diamond abrasive grains for precision polishing | |
JPH04132691A (en) | Production of diamond thin film by gaseous phase method using diamond fine powder as seed crystal | |
JP2998160B2 (en) | Artificial whetstone | |
JPH0788580B2 (en) | Diamond coated cemented carbide and method for producing the same | |
JPS6136112A (en) | Preparation of whetstone granule of poly-crystalline diamond | |
JPH09169971A (en) | Cubic boron nitride abrasive grain and its production | |
JPH01317111A (en) | Polycrystalline diamond abrasive grain and production thereof | |
JPH0323517B2 (en) | ||
JP2601711B2 (en) | Composite diamond particles | |
JP2728477B2 (en) | Synthesis method of vapor phase diamond | |
JPH07276106A (en) | Gaseous phase synthetic diamond film brazed cutting tool | |
JPH06262520A (en) | Grinding wheel and its manufacture | |
JPH0224005A (en) | Diamond coated tool and manufacture thereof | |
JP2625840B2 (en) | Method for producing coarse artificial diamond crystals | |
JP2734134B2 (en) | Diamond coated tool and manufacturing method thereof | |
JPH01103987A (en) | Method for synthesizing diamond by vapor phase method | |
JP3138222B2 (en) | Method for producing free-standing diamond film | |
JPH0622982A (en) | Manufacture of grinding tool for dental treatment | |
JPH01131097A (en) | Synthesis of diamond through vapor-phase method | |
JPH0620645B2 (en) | Diamond coated cemented carbide and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |