JPH08158051A - Rigid carbon film - Google Patents

Rigid carbon film

Info

Publication number
JPH08158051A
JPH08158051A JP29638394A JP29638394A JPH08158051A JP H08158051 A JPH08158051 A JP H08158051A JP 29638394 A JP29638394 A JP 29638394A JP 29638394 A JP29638394 A JP 29638394A JP H08158051 A JPH08158051 A JP H08158051A
Authority
JP
Japan
Prior art keywords
film
diamond
carbon film
peak intensity
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29638394A
Other languages
Japanese (ja)
Inventor
Naoyuki Shino
直行 志野
Shigeo Atsunushi
成生 厚主
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29638394A priority Critical patent/JPH08158051A/en
Publication of JPH08158051A publication Critical patent/JPH08158051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: To obtain a rigid carbon film excellent in hardness, wear resistance, easy in grinding and low in coefficient of friction by consisting it of diamond and amorphous carbon and specifying the peak intensity of Raman spectroscopic spectrum and the crystal size. CONSTITUTION: In the rigid carbon film consisting at least of diamond and amorphous carbon, the intensity ratio H1 /H2 of the peak intensity H1 present in 1160±40cm<-1> by Raman spectroscopic analysis to the highest peak intensity H2 present in 1350±40cm<-1> is controlled to 0.02-1, preferably 0.15-0.5. Further, average crystal diameter is controlled to <=3μm, preferably <=2μm. The surface roughness of the film is preferably <=2μm in Rmax and, as a result, the grinding time is decreased. The rigid carbon film is formed, for example, by electronic cyclotron resonance plasma CVD method and, at this time, the above properties are attained by adequately controlling the temp., pressure, reaction gas concn., etc., of the base material at the time of film forming.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ダイヤモンドを含有す
る硬質炭素膜に関するものであり、例えば、切削工具,
耐摩耗部材,摺動部材等の表面に被覆される摺動性や耐
摩耗性に優れた硬質炭素膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard carbon film containing diamond.
The present invention relates to a hard carbon film which is coated on the surface of a wear resistant member, a sliding member, etc. and has excellent slidability and wear resistance.

【0002】[0002]

【従来技術】近年、ダイヤモンドはその高硬度,高熱伝
導性,耐薬品性等の優れた性質を有することから各種の
分野でその応用が進められている。ダイヤモンドは天然
品では非常に高価であることから、工業用として高温高
圧法により合成されるようになったが、他方、切削工具
や耐摩耗部材への応用などの広範な用途への適用を考慮
し、容易にかつ効率的にダイヤモンドを合成することの
できる方法として化学的気相合成法(CVD)が研究さ
れている。
2. Description of the Related Art In recent years, diamond has been applied to various fields because it has excellent properties such as high hardness, high thermal conductivity and chemical resistance. Since diamond is a very expensive natural product, it has come to be synthesized by the high temperature and high pressure method for industrial use, but on the other hand, it is considered to be applied to a wide range of applications such as cutting tools and wear resistant members. However, chemical vapor deposition (CVD) has been studied as a method for easily and efficiently synthesizing diamond.

【0003】この化学的気相合成法は、一般的には炭化
水素の炭素含有ガスと水素との混合ガスを反応槽内に導
入し、高周波,マイクロ波等によりプラズマを発生させ
るか、または熱フィラメントにより加熱することにより
所望の基体表面にダイヤモンドを生成させる方法であ
る。
In this chemical vapor phase synthesis method, generally, a mixed gas of a carbon-containing gas of hydrocarbon and hydrogen is introduced into a reaction tank to generate plasma by high frequency, microwave, etc., or heat is generated. It is a method of producing diamond on a desired substrate surface by heating with a filament.

【0004】このようにして得られるダイヤモンド膜
は、従来から膜中に非晶質の炭素やグラファイト等が不
純物として含有されないようにいかに高純度のダイヤモ
ンドを生成させるかが1つの課題とされ、各種の方法が
見出されている。
The diamond film thus obtained has hitherto been one of the problems in how to produce high-purity diamond so that amorphous carbon, graphite and the like are not contained as impurities in the film. Has been found.

【0005】[0005]

【発明が解決しようとする問題】このような高純度のダ
イヤモンド膜は結晶性が高く、ダイヤモンド単結晶と近
似した優れた特性を有している。しかし構造的には、膜
を構成するダイヤモンド結晶粒子は大きく、また結晶の
自形面が露出した凹凸形状を持つ粗い表面を有してい
る。そのために、例えばこのような高純度のダイヤモン
ド膜を摺動性の向上を目的として所定の基体の表面に被
覆して利用する場合、被摺動材が削り取られてしまった
り、あるいは凹凸面への衝撃により応力が集中し膜が破
損してしまうという問題があった。
The high-purity diamond film has high crystallinity and has excellent characteristics similar to those of a diamond single crystal. However, structurally, the diamond crystal grains forming the film are large, and the crystal has a rough surface having an uneven shape in which the automorphic plane is exposed. Therefore, for example, when such a high-purity diamond film is used by coating it on the surface of a predetermined substrate for the purpose of improving slidability, the material to be slid is scraped off, or uneven surface is formed. There was a problem that the stress was concentrated due to the impact and the film was damaged.

【0006】このため従来では、ダイヤモンド膜を厚く
被覆し、その後に膜を研摩加工し表面を平滑化する等の
方法が採用されている。しかし、このようなダイヤモン
ドの研摩加工は非常に難しく、表面積が大きい部材にお
いて表面に欠陥のないものを作製することは困難であっ
た。さらに、上記研摩加工は被覆面が平坦なものには適
用できるが、例えば被覆面が球面等の場合には研摩加工
が難しく、複雑面形状では研摩加工が困難であるという
問題があった。このように研摩加工が困難であるため、
研摩工程における労力,コストが問題となっていた。
For this reason, conventionally, a method has been adopted in which a diamond film is thickly coated and then the film is polished to smooth the surface. However, such diamond polishing is extremely difficult, and it has been difficult to manufacture a member having a large surface area and having no surface defects. Further, although the above-mentioned polishing process can be applied to the one having a flat coated surface, there is a problem that the polishing process is difficult when the coated surface is a spherical surface or the like and the polishing process is difficult with a complicated surface shape. As it is difficult to polish,
Labor and cost in the polishing process were problems.

【0007】平滑面を得るために非晶質炭素およびグラ
ファイト成分を増大させるという方法も考えられている
が、この方法によれば膜の硬度が低下し、耐摩耗性が低
下してしまうという問題があった。
A method of increasing amorphous carbon and graphite components in order to obtain a smooth surface has been considered, but this method causes a problem that the hardness of the film is lowered and the wear resistance is lowered. was there.

【0008】本発明は、優れた硬度,耐摩耗性を維持し
つつ、研摩加工が容易であり、しかも、炭素膜を摺動部
材の表面等に被覆した場合に低摩擦係数を実現すること
ができる硬質炭素膜を提供することを目的とする。
According to the present invention, while maintaining excellent hardness and wear resistance, it is easy to carry out polishing, and a low friction coefficient can be realized when the surface of the sliding member is coated with a carbon film. An object of the present invention is to provide a hard carbon film that can be used.

【0009】[0009]

【課題を解決するための手段】本発明者等は、上記問題
に対して検討を重ねた結果、硬質炭素膜を少なくともダ
イヤモンドと非晶質ダイヤモンドと非晶質炭素より構成
するとともに、そのラマン分光スペクトル分析において
1160±40cm-1に存在するピーク強度と、135
0±40cm-1に存在するピークのうち最も強度の高い
ピーク強度との比、ならびに膜を構成する結晶の粒径が
生成される膜の摺動特性に大きく関与し、これらが特定
の範囲に制御されると摺動特性および耐摩耗特性を向上
することができ、さらに表面粗さを小さくすることがで
きることを見出し、本発明に至った。
Means for Solving the Problems The inventors of the present invention have made extensive studies on the above problems, and as a result, the hard carbon film is composed of at least diamond, amorphous diamond and amorphous carbon, and its Raman spectroscopy In the spectral analysis, the peak intensity present at 1160 ± 40 cm −1 and 135
The ratio of the peak intensity at 0 ± 40 cm −1 to the highest intensity, and the grain size of the crystals that make up the film have a great influence on the sliding characteristics of the film, and these are within a specific range. The inventors have found that the sliding characteristics and the wear resistance characteristics can be improved and the surface roughness can be reduced when controlled, and have reached the present invention.

【0010】即ち、本発明の硬質炭素膜は、少なくとも
ダイヤモンドと非晶質炭素から構成され、ラマン分光ス
ペクトル分析において1160±40cm-1に存在する
ピーク強度をH1 、1350±40cm-1に存在するピ
ークのうち最も強度の高いピークの強度をH2 とした
時、H1 /H2 で表される強度比が0.02乃至1であ
り、平均結晶粒径が3μm以下であるものである。表面
粗さが2μm以下であることが望ましい。
That is, the hard carbon film of the present invention is composed of at least diamond and amorphous carbon, and the peak intensity existing at 1160 ± 40 cm −1 in Raman spectroscopic analysis exists at H 1 , 1350 ± 40 cm −1 . when the high peak intensity of the most intense of the peaks was with H 2 to a strength ratio of 0.02 to 1 represented by H 1 / H 2, at an average grain diameter of 3μm or less . The surface roughness is preferably 2 μm or less.

【0011】以下、本発明を詳述する。これまでに炭素
からなる膜としては、ダイヤモンド結晶,グラファイ
ト,非晶質炭素等が知られているが、これらの炭素より
構成される物質の検出は、ラマン分光スペクトル分析に
より行うことができる。ダイヤモンド結晶は通常133
3±10cm-1付近に鋭いピークを有し、一方非晶質炭
素は1500±100cm-1にブロードなピークを示
す。また、グラファイトは1580±10cm-1付近に
ピークが観察される。
The present invention will be described in detail below. Diamond films, graphite, amorphous carbon and the like have been known as films made of carbon so far, but a substance composed of these carbons can be detected by Raman spectroscopic analysis. Diamond crystals are usually 133
It has a sharp peak near 3 ± 10 cm −1 , while amorphous carbon shows a broad peak at 1500 ± 100 cm −1 . In addition, for graphite, a peak is observed near 1580 ± 10 cm −1 .

【0012】本発明の硬質炭素膜は、ラマン分光スペク
トル分析において、上記したダイヤモンド結晶,非晶質
炭素,グラファイトの構造が現れる波数とは異なる、1
160±40cm-1にピークを有することを特徴とす
る。この1160±40cm-1のピークは上記したダイ
ヤモンド結晶,非晶質炭素,グラファイトに起因するの
ではなく、非晶質ダイヤモンドに起因するものと言われ
ている。この非晶質ダイヤモンドとは、100Å以下の
ダイヤモンド微粒子からなるダイヤモンドであり、サイ
ズ効果によって1160±40cm-1のピークを有す
る。
The hard carbon film of the present invention has a different wave number from the above-mentioned structures of diamond crystals, amorphous carbon and graphite in Raman spectroscopic analysis.
It is characterized by having a peak at 160 ± 40 cm −1 . It is said that the peak at 1160 ± 40 cm −1 is not due to the above-mentioned diamond crystals, amorphous carbon, and graphite, but is due to amorphous diamond. The amorphous diamond is a diamond composed of diamond fine particles of 100 liters or less, and has a peak of 1160 ± 40 cm −1 due to the size effect.

【0013】本発明によれば、非晶質ダイヤモンドを含
有する炭素膜の中でも摺動特性および研摩効率の点か
ら、1160±40cm-1に存在するピーク強度を
1 、1350±40cm-1に存在するピークのうち最
も強度の高いピークの強度をH2 とした時、H1 /H2
で表される強度比が0.02乃至1となるような組成で
あることが重要である。このピーク強度比H1 /H
2 は、その値が大きくなるに従い、結晶性が低下し膜中
のダイヤモンド結晶の含有量が減少することを意味し、
逆にピーク強度比が小さくなるに従い、結晶性が向上し
ダイヤモンド以外の相の含有量が減少することを意味す
るものであるが、本発明によれば、上記ピーク強度比が
0.02よりも小さいと結晶性が向上し、ダイヤモンド
結晶粒子が大きく成長し、膜の表面に荒れが生じるため
に膜の摺動特性は大きく低下する。また膜の表面の荒れ
を平滑化するための研摩工程に長時間を費やさなければ
ならない。一方、ピーク強度比H1 /H2 が1よりも大
きくなると非晶質ダイヤモンドの生成量が増加し、結晶
性が悪化して硬度が低下するとともに、摺動時の耐摩耗
性が劣化する。ピーク強度比H1 /H2 は0.15〜
0.5であることが望ましい。
According to the present invention, among the carbon films containing amorphous diamond, the peak intensity existing at 1160 ± 40 cm −1 is H 1 at 1350 ± 40 cm −1 in terms of sliding characteristics and polishing efficiency. When the intensity of the highest intensity peak among the existing peaks is H 2 , H 1 / H 2
It is important that the composition is such that the intensity ratio represented by is 0.02 to 1. This peak intensity ratio H 1 / H
2 means that as the value increases, the crystallinity decreases and the content of diamond crystals in the film decreases.
On the contrary, it means that the crystallinity is improved and the content of phases other than diamond is decreased as the peak intensity ratio becomes smaller. However, according to the present invention, the peak intensity ratio is more than 0.02. When it is small, the crystallinity is improved, the diamond crystal grains grow large, and the surface of the film is roughened, so that the sliding property of the film is significantly deteriorated. In addition, it is necessary to spend a long time in the polishing process for smoothing the roughness of the surface of the film. On the other hand, when the peak intensity ratio H 1 / H 2 is greater than 1, the amount of amorphous diamond produced increases, the crystallinity deteriorates, the hardness decreases, and the abrasion resistance during sliding deteriorates. The peak intensity ratio H 1 / H 2 is 0.15 to
It is preferably 0.5.

【0014】さらに、本発明では、摺動特性の点から膜
を構成する結晶粒子径は小さいことが望ましく、具体的
には3μm以下であることが重要である。特には、2μ
m以下であることが望ましい。この結晶粒子径を小さく
することにより炭素膜自体の表面を平滑化することがで
き、これにより摺動特性を高めることができる。特に炭
素膜の表面粗さは、被覆される基体の表面粗さにも左右
されるが、Rmaxで2μm以下であることが望まし
い。このように表面粗さを2μm以下とすることにより
研摩時間を低減することができる。また、これに基づき
基体の表面粗さもRmaxで2μm以下であることが望
ましい。
Further, in the present invention, from the viewpoint of sliding characteristics, it is desirable that the diameter of crystal grains forming the film is small, and specifically, it is important that the diameter is 3 μm or less. Especially 2μ
It is preferably m or less. By reducing the crystal grain size, the surface of the carbon film itself can be smoothed, and thus the sliding characteristics can be improved. In particular, the surface roughness of the carbon film depends on the surface roughness of the substrate to be coated, but Rmax is preferably 2 μm or less. By setting the surface roughness to 2 μm or less, the polishing time can be reduced. Based on this, it is desirable that the surface roughness of the substrate is 2 μm or less in Rmax.

【0015】尚、本発明の硬質炭素膜を母材に被覆した
ものをX線回折測定した場合には、立方晶ダイヤモンド
のピークと母材のピークが現れ、それ以外のピークは見
られないものである。
When the base material coated with the hard carbon film of the present invention is subjected to X-ray diffraction measurement, a cubic diamond peak and a base material peak appear, and no other peaks are observed. Is.

【0016】次に、本発明の硬質炭素膜を得る方法につ
いて説明すると、炭素膜の生成手段としてマイクロ波や
高周波によりプラズマを発生させて所定の基体表面に炭
素膜を形成する、いわゆるプラズマCVD法あるいは熱
フィラメントCVD法が主流である。しかしながら、プ
ラズマCVD法ではプラズマ発生領域が小さいために成
膜できる面積が小さく、成膜できる面積が一般に直径2
0mm程度であり、摺動部材としての応用が限られ、ま
た圧力が高すぎるか、もしくはプラズマ密度が低すぎる
ために基体が微細な構造を有する場合や曲面構造を有す
る場合、その構造に沿った均一なプラズマが得られず、
膜圧分布が不均一になりやすい。一方、熱フィラメント
CVD法では、フィラメントが切れやすく、また、膜厚
のバラツキを抑制するために基体の形状に合わせてフィ
ラメントを設置する必要があり装置が汎用性に欠けるな
どの欠点を有している。
Next, the method for obtaining the hard carbon film of the present invention will be described. As a carbon film generating means, plasma is generated by microwave or high frequency to form a carbon film on a predetermined substrate surface, that is, a so-called plasma CVD method. Alternatively, the hot filament CVD method is the mainstream. However, in the plasma CVD method, the area where the film can be formed is small because the plasma generation region is small, and the area where the film can be formed is generally 2
It is about 0 mm, its application as a sliding member is limited, and when the substrate has a fine structure or a curved structure because the pressure is too high or the plasma density is too low, it follows the structure. Uniform plasma cannot be obtained,
The membrane pressure distribution tends to be non-uniform. On the other hand, the hot filament CVD method has drawbacks that the filament is easily broken and that the filament needs to be installed according to the shape of the substrate in order to suppress variation in film thickness, and the apparatus lacks versatility. There is.

【0017】これに対して、プラズマCVD法における
プラズマ発生領域に磁界をかけた、いわゆる電子サイク
ロトロン共鳴プラズマCVD法によれば、低圧力下(1
torr以下)で高密度のプラズマを得ることができる
ために、プラズマを広い領域に均一に発生させることが
でき、通常のプラズマCVD法に比較して約10倍程度
の面積に均一に膜の形成を行うことができる。従って、
特に摺動部材等への膜形成に際して有効である。
On the other hand, according to the so-called electron cyclotron resonance plasma CVD method in which a magnetic field is applied to the plasma generation region in the plasma CVD method, under a low pressure (1
Since a high-density plasma can be obtained at (torr or less), plasma can be uniformly generated in a wide area, and a film can be uniformly formed in an area about 10 times larger than that of a normal plasma CVD method. It can be performed. Therefore,
It is particularly effective when forming a film on a sliding member or the like.

【0018】よって、ここでは、電子サイクロトロン共
鳴プラズマCVD法(ECRプラズマCVD法)を例に
とって説明する。この方法では、内部に所定の基体が設
置された反応炉内に反応ガスを導入すると同時に2.4
5GHzのマイクロ波を導入する。それと同時にこの領
域に対して875ガウス以上のレベルの磁界を印加す
る。これにより電子はサイクロトロン周波数f=eB/
2πm(但し、m:電子の質量、e:電子の電荷、B:
磁束密度)に基づき、サイクロトロン運動を起こす。こ
の周波数がマイクロ波の周波数(2.45GHz)と一
致すると共鳴し、電子はマイクロ波のエネルギーを著し
く吸収して加速され、中性分子に衝突、電離を生じせし
めて高密度のプラズマを生成するようになる。このと
き、基体の温度は150〜1000℃、炉内圧力1×1
-2〜1torrに設定される。
Therefore, the electron cyclotron resonance plasma CVD method (ECR plasma CVD method) will be described here as an example. In this method, a reaction gas is introduced into a reaction furnace in which a predetermined substrate is installed and at the same time 2.4
A microwave of 5 GHz is introduced. At the same time, a magnetic field having a level of 875 Gauss or more is applied to this region. This causes the electrons to have a cyclotron frequency f = eB /
2πm (m: electron mass, e: electron charge, B:
Based on the magnetic flux density, it causes cyclotron motion. When this frequency agrees with the microwave frequency (2.45 GHz), it resonates, and the electrons remarkably absorb the microwave energy and are accelerated, causing collisions with neutral molecules and ionization to generate high-density plasma. Like At this time, the substrate temperature is 150 to 1000 ° C., and the furnace pressure is 1 × 1.
It is set to 0 -2 to 1 torr.

【0019】かかる方法によれば、成膜時の基体温度,
炉内圧力および反応ガス濃度を変化させることにより成
膜される膜の成分等が変化する。具体的には、炉内圧力
が高くなるとプラズマの領域が小さくなり、膜の成長速
度が下がるが結晶性は向上する傾向にある。また反応ガ
ス濃度が高くなると、膜を構成する粒子の大きさが小さ
くなり、結晶性が悪くなる傾向にある。これらの条件を
具体的には後述する実施例に示すように適宜制御するこ
とにより、前述した所定の特性を有する硬質炭素膜を生
成することができる。
According to this method, the substrate temperature during film formation,
By changing the pressure in the furnace and the concentration of the reaction gas, the components of the film to be formed change. Specifically, as the furnace pressure increases, the plasma region decreases and the film growth rate decreases, but the crystallinity tends to improve. Further, when the reaction gas concentration is high, the size of the particles forming the film is small, and the crystallinity tends to be poor. A hard carbon film having the above-mentioned predetermined characteristics can be produced by appropriately controlling these conditions as shown in Examples described later.

【0020】[0020]

【作用】本発明によれば、炉内圧力,反応ガス比等の炭
素膜の成膜条件を制御することにより、炭素膜の結晶性
を制御し、ラマン分光スペクトル分析における1160
±40cm-1のピークに反映される非晶質ダイヤモンド
を特定の割合で炭素膜中に生成させることにより、膜自
体の機械的特性、特に優れた硬度を維持し、結晶粒子の
成長が抑制され、しかも膜の緻密化を図ることができ
る。これにより炭素膜の優れた硬度を維持しながら平滑
な表面を得ることができる。このような硬質炭素膜を摺
動部材等の表面に被覆した際、結晶性に優れたダイヤモ
ンド膜と同等の摺動特性を有し、かつ、短時間で表面研
摩を行うことができるなど研摩加工が容易な部材を得る
ことができる。
According to the present invention, the crystallinity of the carbon film is controlled by controlling the conditions for forming the carbon film, such as the pressure in the furnace and the reaction gas ratio, and it is possible to control the crystallinity of the carbon film at 1160
By generating amorphous diamond reflected in the peak of ± 40 cm -1 in the carbon film at a specific ratio, the mechanical properties of the film itself, particularly excellent hardness, are maintained and the growth of crystal grains is suppressed. In addition, the film can be made dense. This makes it possible to obtain a smooth surface while maintaining the excellent hardness of the carbon film. When such a hard carbon film is coated on the surface of a sliding member, etc., it has the same sliding characteristics as a diamond film with excellent crystallinity, and the surface can be polished in a short time. A member that is easy to obtain can be obtained.

【0021】[0021]

【実施例】炉内に直径40mmの表面粗さがRmax
0.1μmのセラミックス製ディスクを設置し、ECR
プラズマCVD法により、最大2KGの強度の磁場を印
加するとともに、マイクロ波出力3.0kWの条件で基
体温度,反応ガス濃度,炉内圧力を表1に示す条件に設
定し、炭素膜が約5μmの膜厚となるように作製した。
尚、反応ガスとしてはメタンガス,二酸化炭素ガスおよ
び水素を表1に示す割合で混合したものを用いた。
Example: Surface roughness of 40 mm in diameter was Rmax in the furnace.
Install a ceramic disk of 0.1 μm and ECR
By the plasma CVD method, a magnetic field with a maximum intensity of 2 KG was applied, and the substrate temperature, the reaction gas concentration, and the furnace pressure were set to the conditions shown in Table 1 under the conditions of the microwave output of 3.0 kW, and the carbon film had a thickness of about 5 μm. It was manufactured to have a film thickness of.
The reaction gas used was a mixture of methane gas, carbon dioxide gas and hydrogen at the ratio shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】得られた炭素膜に対して、膜表面のラマン
分光スペクトル分析を行い、ラマン分光スペクトル分析
において1160±40cm-1に存在するピーク強度を
、1350±40cm−1に存在するピークのうち
最も強度の高いピークの強度をH2 とし、H1 /H2
表される強度比を算出した。具体的には、図1に示すよ
うにラマン分光分析によって得られた曲線において、1
000cm-1と1700cm-1の位置間で斜線を引き、
これをベースラインとしてそれぞれのピークをローレン
ツ関数のカーブとしてカーブフィッティング処理を行
い、各ピークの高さを求めた。尚、表1中、試料No.2
と試料No.8についてチャートを示した。この場合、ラ
マン分光分析における発振源として、レーザーはArレ
ーザー(発振線488.0nm)を用いた。
The obtained carbon film was subjected to Raman spectroscopic analysis of the film surface, and the peak intensity existing at 1160 ± 40 cm −1 in Raman spectroscopic spectral analysis was found to be the peak intensity present at H 1 , 1350 ± 40 cm −1. The intensity of the highest intensity peak was defined as H 2, and the intensity ratio represented by H 1 / H 2 was calculated. Specifically, in the curve obtained by Raman spectroscopy as shown in FIG.
Draw a diagonal line between the positions of 000 cm -1 and 1700 cm -1 ,
Using this as a baseline, curve fitting processing was performed using each peak as a Lorentzian curve, and the height of each peak was determined. In Table 1, sample No. 2
And the chart of Sample No. 8 are shown. In this case, an Ar laser (oscillation line 488.0 nm) was used as a laser as an oscillation source in Raman spectroscopic analysis.

【0024】また、SEM分析により、炭素膜の結晶粒
子の平均結晶粒径を求めるとともに、触針式表面粗さ計
により炭素膜の表面粗さ(Rmax)を測定した。
The average crystal grain size of the crystal grains of the carbon film was determined by SEM analysis, and the surface roughness (Rmax) of the carbon film was measured by a stylus type surface roughness meter.

【0025】さらに、研摩効率を評価するために、炭素
膜を被覆したディスクの外周面から5mmの幅の部分
を、ダイヤモンド微粉末を用いてバフにより表面研摩
し、Rmax=0.1μm以下の状態に研摩されるまで
の時間を測定した。
Further, in order to evaluate the polishing efficiency, a portion having a width of 5 mm from the outer peripheral surface of the disk coated with the carbon film was surface-polished by a buff using fine diamond powder, and Rmax = 0.1 μm or less. The time until polishing was measured.

【0026】摺動性を評価するために、上記のように研
摩した部分を用い、先端部が曲率半径R=4.763m
mの金属製のピンを使用して4.9Nの荷重をかけ、摺
動速度を0.30m/Sに設定し、ボールオンディスク
法により摺動試験を行い、摩擦係数を200時間測定
し、その平均値を求めた。尚、摺動試験中ピンは3時間
おきに交換した。
In order to evaluate the slidability, the portion polished as described above was used, and the radius of curvature of the tip portion was R = 4.763 m.
Using a metal pin of m, a load of 4.9 N is applied, a sliding speed is set to 0.30 m / S, a sliding test is performed by a ball-on-disk method, and a friction coefficient is measured for 200 hours. The average value was calculated. During the sliding test, the pin was replaced every 3 hours.

【0027】試料No.5,12については摺動試験後1
60時間で、No.6については摺動試験後110時間で
膜が磨滅し、部分的に母材であるセラミックスが現れ
た。よって、表には試料No.5,6,12の膜が磨滅す
るまでの摩擦係数を示した。
For samples No. 5 and 12, 1 after sliding test
In 60 hours, the film of No. 6 was worn out 110 hours after the sliding test, and the ceramic as the base material partially appeared. Therefore, the table shows the friction coefficient until the films of Sample Nos. 5, 6, 12 were worn out.

【0028】表1から明らかなように、炭素膜の結晶性
が良好でH1 /H2 が0.02未満、あるいは平均結晶
粒径が3μm以上の試料では、表面研摩に長時間必要と
なり、実用性に欠けることが判る。また、H1 /H2
1より大きい炭素膜では、研摩時間は短いが膜自体の摩
耗が激しく、使用に耐えないものであった。これらの比
較例に対して、本発明の硬質炭素膜を被覆したものは、
いずれも優れた低摩擦係数、耐摩耗性を示し、短い時間
でRmax=0.1μm以下の状態に研摩できることが
判る。
As is clear from Table 1, in the case where the crystallinity of the carbon film is good and H 1 / H 2 is less than 0.02, or the average crystal grain size is 3 μm or more, surface polishing requires a long time, It turns out that it is not practical. Further, in the case of a carbon film having H 1 / H 2 of more than 1, the polishing time was short, but the film itself was severely worn and could not be used. For these comparative examples, those coated with the hard carbon film of the present invention,
It can be seen that all of them have excellent low friction coefficient and wear resistance, and can be polished to a state of Rmax = 0.1 μm or less in a short time.

【0029】[0029]

【発明の効果】以上詳述したように、本発明によれば、
硬質炭素膜の優れた硬度を維持しつつ、成膜後に平滑な
面を得ることができるため所定の表面粗さまで研摩する
時間が短いなど研摩加工が容易であり、しかも、炭素膜
を摺動部材の表面等に被覆した場合に低摩擦係数を実現
することができる。よって、各種の摺動部材等の表面に
形成する炭素膜として非常に有効なものとなる。
As described in detail above, according to the present invention,
Since the smooth surface can be obtained after film formation while maintaining the excellent hardness of the hard carbon film, the polishing process is easy, such as the short polishing time to a predetermined surface roughness, and the carbon film is used as a sliding member. A low coefficient of friction can be realized when the surface or the like is covered. Therefore, it is very effective as a carbon film formed on the surface of various sliding members and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の硬質炭素膜(表1中の試料No.2)の
ラマン分光分析チャート図である。
FIG. 1 is a Raman spectroscopic analysis chart of a hard carbon film (Sample No. 2 in Table 1) of the present invention.

【図2】比較例(表1中の試料No.8)のラマン分光分
析チャート図である。
FIG. 2 is a Raman spectroscopic analysis chart of a comparative example (Sample No. 8 in Table 1).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくともダイヤモンドと非晶質炭素から
構成され、ラマン分光スペクトル分析において1160
±40cm-1に存在するピーク強度をH1 、1350±
40cm-1に存在するピークのうち最も強度の高いピー
クの強度をH2とした時、H1 /H2 で表される強度比
が0.02乃至1であり、平均結晶粒径が3μm以下で
あることを特徴とする硬質炭素膜。
1. Consisting of at least diamond and amorphous carbon, 1160 in Raman spectroscopic analysis.
The peak intensity existing at ± 40 cm −1 is H 1 , 1350 ±
When the intensity of the highest intensity peak of the peak was with H 2 present in 40 cm -1, the intensity ratio is 0.02 to 1 which is represented by H 1 / H 2, the average grain size of 3μm or less Is a hard carbon film.
【請求項2】表面粗さが2μm以下であることを特徴と
する請求項1記載の硬質炭素膜。
2. The hard carbon film according to claim 1, which has a surface roughness of 2 μm or less.
JP29638394A 1994-11-30 1994-11-30 Rigid carbon film Pending JPH08158051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29638394A JPH08158051A (en) 1994-11-30 1994-11-30 Rigid carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29638394A JPH08158051A (en) 1994-11-30 1994-11-30 Rigid carbon film

Publications (1)

Publication Number Publication Date
JPH08158051A true JPH08158051A (en) 1996-06-18

Family

ID=17832841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29638394A Pending JPH08158051A (en) 1994-11-30 1994-11-30 Rigid carbon film

Country Status (1)

Country Link
JP (1) JPH08158051A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422244B1 (en) * 1997-08-13 2004-03-10 나노-프로프리어터리, 인크. A carbon film for field emission devices
JP2008100301A (en) * 2006-10-17 2008-05-01 Ngk Spark Plug Co Ltd Diamond coated cutting insert and cutting tool
CN100387385C (en) * 2003-07-31 2008-05-14 联合材料公司 Diamond film coated tool and process for producing the same
JPWO2015046573A1 (en) * 2013-09-30 2017-03-09 京セラ株式会社 CUTTING TOOL AND PROCESS FOR PRODUCING CUT WORK

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422244B1 (en) * 1997-08-13 2004-03-10 나노-프로프리어터리, 인크. A carbon film for field emission devices
CN100387385C (en) * 2003-07-31 2008-05-14 联合材料公司 Diamond film coated tool and process for producing the same
JP2008100301A (en) * 2006-10-17 2008-05-01 Ngk Spark Plug Co Ltd Diamond coated cutting insert and cutting tool
JPWO2015046573A1 (en) * 2013-09-30 2017-03-09 京セラ株式会社 CUTTING TOOL AND PROCESS FOR PRODUCING CUT WORK

Similar Documents

Publication Publication Date Title
US5776552A (en) Process for the vapor phase synthesis of diamond and highly crystalline diamond
KR940009659B1 (en) Polycrystalline diamond tool and method of producting polycrystalline diamond tool
US4935303A (en) Novel diamond-like carbon film and process for the production thereof
Mitsuda et al. Development of a new microwave plasma torch and its application to diamond synthesis
JPH0477711B2 (en)
Conde et al. Influence of carbon content on the crystallographic structure of boron carbide films
Meyer et al. Radio‐frequency plasma chemical vapor deposition growth of diamond
Wang et al. A periodic magnetic field assisted chemical vapor deposition technique to fabricate diamond film with preferred orientation
JP3605634B2 (en) Vapor phase synthesis of cubic boron nitride
JP2813077B2 (en) Sliding member
JPH08158051A (en) Rigid carbon film
JP3291105B2 (en) Hard carbon film and hard carbon film coated member
EP0371145B1 (en) Process for vapor-phase synthesis of diamond
JPH05146820A (en) Wire drawing die and manufacture thereof
JP2501589B2 (en) Vapor-phase synthetic diamond and its synthesis method
JPH05169162A (en) Metal working jig
JP3245320B2 (en) Hard carbon film and hard carbon film coated member
JP2689269B2 (en) Diamond and its vapor phase synthesis method
JPH0471034B2 (en)
JPH06262525A (en) Grinding wheel and its manufacture
JPH03174397A (en) Method and device for synthesizing rigid substance
KR100280116B1 (en) Method for producing diamond with liquid organic compound as precursor
JPH101332A (en) Chemical resistant member
JPH06280019A (en) Production of thin film of diamond-like carbon
Kundu et al. Optical properties of mixed phase aC/diamond films deposited by dc magnetron sputtering of vitreous carbon target