JPH0354865A - Thin film field effect transistor and manufacture thereof - Google Patents

Thin film field effect transistor and manufacture thereof

Info

Publication number
JPH0354865A
JPH0354865A JP19111389A JP19111389A JPH0354865A JP H0354865 A JPH0354865 A JP H0354865A JP 19111389 A JP19111389 A JP 19111389A JP 19111389 A JP19111389 A JP 19111389A JP H0354865 A JPH0354865 A JP H0354865A
Authority
JP
Japan
Prior art keywords
thin film
gate electrode
semiconductor thin
gate insulating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19111389A
Other languages
Japanese (ja)
Inventor
Koji Fujimoto
藤本 好司
Osukaru Adan Aruberuto
アルベルト オスカル アダン
Shinichi Sato
眞一 里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP19111389A priority Critical patent/JPH0354865A/en
Publication of JPH0354865A publication Critical patent/JPH0354865A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel

Abstract

PURPOSE:To obtain an FET with a higher mu-factor and a less leakage current by surrounding a region where a gate electrode includes a channel region of an active layer semiconductor thin film via a gate insulating to apply an electric field over the whole thin film. CONSTITUTION:A first gate electrode 2 and a second gate electrode 7 surround a channel region 4b of an active layer semiconductor thin film 4 via gate insulating films 3, 5. Additionally, the electrodes 2, 7 are connected with each other via a contact 6 and electric potentials thereof become equal to each other. Accordingly, a channel can be formed with satisfactory controllability in the vicinity of an upper surface S1 and side surfaces S2, S3 in contact with the films 3, 5 of the region 4b. Hereby, the effective width of the channel is increased with a mu-factor increased. Further, since the electrodes 2, 7 apply the electric field over the whole film 4 to control the potential of the whole region 4b, a leakage current flowing through the film 4 is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は薄膜電界効果トランジスタに関し,特に増幅率
が大きくリーク電流の少い薄膜電界効果トランジスタ及
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a thin film field effect transistor, and more particularly to a thin film field effect transistor with a high amplification factor and low leakage current, and a method for manufacturing the same.

(従来の技術) 薄膜電界効果トランジスタ(TFT : Th i n
Film  Transistor)は絶縁層(絶縁性
基板,又はその他の基板上に形成された絶縁層)上に形
成された半導体薄膜内にソース・ドレインとチャネルを
設けた電界効果トランジスタである。従来のTPTは.
(1)半導体薄膜の上面にゲート絶縁膜を設けたものと
(2)半導体薄膜の下面にゲート絶縁膜を設けたものの
2タイプに大別される。
(Prior art) Thin film field effect transistor (TFT)
A film transistor is a field effect transistor in which a source, drain, and channel are provided in a semiconductor thin film formed on an insulating layer (an insulating layer formed on an insulating substrate or other substrate). The conventional TPT is.
There are two types: (1) those in which a gate insulating film is provided on the upper surface of a semiconductor thin film, and (2) those in which a gate insulating film is provided on the lower surface of a semiconductor thin film.

第4図を参照して上記(1)タイプのTPTを説明する
。絶縁層l上に半導体薄膜4を堆積した後,活性領域パ
ターンを有するレジストを形成し半導体薄膜をRIE(
反応性イオンエッチング)等によりパターニングする。
The above type (1) TPT will be explained with reference to FIG. After depositing the semiconductor thin film 4 on the insulating layer l, a resist having an active region pattern is formed and the semiconductor thin film is subjected to RIE (RIE).
Patterning is performed by reactive ion etching (reactive ion etching), etc.

次にレジストを除去した後,半導体薄膜4上にゲート絶
縁膜9を形成しゲート電極10の材料を堆積する。この
後.ゲート電極10のパターンを有するレジストを形成
し,RIEによりゲート電極材料及びゲート絶縁膜9を
バターニングする。続いて,不純物のイオン注入を行い
自己整合的にソース・ドレイン4a,4C及びチャネル
領域4bを形成する。
Next, after removing the resist, a gate insulating film 9 is formed on the semiconductor thin film 4, and a material for a gate electrode 10 is deposited. After this. A resist having a pattern of the gate electrode 10 is formed, and the gate electrode material and gate insulating film 9 are patterned by RIE. Subsequently, impurity ions are implanted to form the source/drain 4a, 4C and channel region 4b in a self-aligned manner.

次に.第5図を参照して前記(2)のタイプのTPTを
説明する。まず,ゲート電極lOの材料を堆積した後,
ゲート電極10のパターンを有するレジストを形成し.
ゲート電極材料をバターニングする.次に,レジストを
除去した後,ゲート電極10上にゲート絶縁膜9を形成
し.半導体薄膜4を堆積する.この後,活性層パターン
を有するレジストを形成し,RIEにより半導体薄膜4
及びゲート絶縁膜9をパターニングする。続いて,レジ
ストパターンを形成した後,不純物のイオン注入を行な
い,ソース・ドレイン4a,4c及びチャネル領域4b
を形成する。
next. The TPT of type (2) will be explained with reference to FIG. First, after depositing the material for the gate electrode lO,
A resist having a pattern of the gate electrode 10 is formed.
Buttering the gate electrode material. Next, after removing the resist, a gate insulating film 9 is formed on the gate electrode 10. Deposit semiconductor thin film 4. After this, a resist having an active layer pattern is formed, and a semiconductor thin film 4 is formed by RIE.
and patterning the gate insulating film 9. Subsequently, after forming a resist pattern, impurity ions are implanted to form the source/drain 4a, 4c and channel region 4b.
form.

(発明が解決しようとする課題) しかしながら上述の従来技術においては以下に述べる問
題があった。
(Problems to be Solved by the Invention) However, the above-mentioned conventional technology has the following problems.

TPTは非品質シリコン膜や多結晶シリコン膜等の半導
体薄膜に形成されたトランジスタであるために単結晶シ
リコンに形或されたトランジスタに比べ,ソース・ドレ
イン間リーク電流が大きいという問題があった。また上
記半導体薄膜中のキャリア移動度が,単結晶中のキャリ
ア移動度に劣るということなどを理由として,TPTの
増幅率は低かった。
Since the TPT is a transistor formed in a semiconductor thin film such as a non-quality silicon film or a polycrystalline silicon film, there is a problem in that the leakage current between the source and drain is larger than that in a transistor formed in single crystal silicon. Furthermore, the amplification factor of TPT was low because the carrier mobility in the semiconductor thin film is inferior to the carrier mobility in a single crystal.

本発明は上記課題を解決するためになされたものであり
,その目的とするところは.リーク電流が少なく増幅率
の高い薄膜電界効果トランジスタを提供することにある
The present invention has been made to solve the above problems, and its purpose is to: It is an object of the present invention to provide a thin film field effect transistor with low leakage current and high amplification factor.

(課題を解決するための手段) 本発明の薄膜電界効果トランジスタは,絶縁層上に形成
された第1のゲート電極と.該第1のゲー1・電極上に
形成された第1のゲート絶縁膜と,該第1のゲート絶縁
膜上に形成された半導体薄膜と.該半導体薄膜中に形成
されたチャネル領域と.該半導体薄膜上に形成され.少
くとも該チャネル領域の上面及び2つの側面のすべてを
覆う第2のゲート絶縁膜と,該第2のゲート絶縁膜上に
形成され,該第2のゲート絶縁膜を介して,該チャネル
領域の上面及び2つの側面のすべてを覆う第2のゲート
電極とを備え,該第2のゲート電極と該第1のゲート電
極が電気的に接続されておち.そのことにより上記目的
が達威される。
(Means for Solving the Problems) A thin film field effect transistor of the present invention includes a first gate electrode formed on an insulating layer; a first gate insulating film formed on the first gate electrode; a semiconductor thin film formed on the first gate insulating film; a channel region formed in the semiconductor thin film; formed on the semiconductor thin film. a second gate insulating film that covers at least all of the upper surface and two side surfaces of the channel region; a second gate electrode covering all of the top surface and two side surfaces, the second gate electrode and the first gate electrode being electrically connected; This achieves the above objective.

本発明の薄膜電界効果トランジスタの製造方法は.請求
項lに記載の薄膜電界効果トランジスタの製造方法であ
って.前記第2のゲート電極を形成した後に,前記半導
体薄膜に対して不純物イオン注入を行うことによってソ
ース・ドレインを自己整合的に形成し.そのことにより
上記目的が達或される。
The method for manufacturing the thin film field effect transistor of the present invention is as follows. A method for manufacturing a thin film field effect transistor according to claim 1. After forming the second gate electrode, impurity ions are implanted into the semiconductor thin film to form a source and drain in a self-aligned manner. Thereby, the above objective is achieved.

(実施例) 以下に本発明を実施例について説明する。第1図に本発
明装置の実施例の平面図,第2A図に第l図のAA線に
沿った断面図,第2B図にBB線に沿った断面図を示す
(Example) The present invention will be described below with reference to Examples. FIG. 1 shows a plan view of an embodiment of the apparatus of the present invention, FIG. 2A shows a sectional view taken along line AA in FIG. 1, and FIG. 2B shows a sectional view taken along line BB.

絶縁層(絶縁基板,又はその他の基板上に形戊された絶
縁層)l上に第1のゲート電極2が形成されており,第
1のゲート電極2上には第1のゲート絶縁膜3が形成さ
れている。ゲート絶縁膜3上にはソース・ドレイン4a
,4c及びチャネル領域4bを有する多結晶シリコン半
導体薄膜(膜厚600人)4がTPTの活性層として設
けられている。
A first gate electrode 2 is formed on an insulating layer (an insulating layer formed on an insulating substrate or other substrate) l, and a first gate insulating film 3 is formed on the first gate electrode 2. is formed. A source/drain 4a is formed on the gate insulating film 3.
, 4c and a channel region 4b, a polycrystalline silicon semiconductor thin film (thickness: 600 mm) 4 is provided as an active layer of the TPT.

第2B図に示すチャネル領域4bの上面S1,及び2つ
の側面S2,S3を含む半導体薄膜4表面には第2のゲ
ート電極5が形成されている。第2のゲート絶縁膜5を
介して,第2のゲート電極7がチャネル領域4bの上面
Sl及び2つの側面S2,S3を覆っている。
A second gate electrode 5 is formed on the surface of the semiconductor thin film 4 including the upper surface S1 and two side surfaces S2 and S3 of the channel region 4b shown in FIG. 2B. A second gate electrode 7 covers the upper surface Sl and two side surfaces S2 and S3 of the channel region 4b via the second gate insulating film 5.

第2のゲート電極7は第1のゲート電極2とコンタクト
6を介して接触している。従って第lのゲート電極2の
電位と第2のゲート電極7の電位は等しい。
The second gate electrode 7 is in contact with the first gate electrode 2 via a contact 6. Therefore, the potential of the l-th gate electrode 2 and the potential of the second gate electrode 7 are equal.

本実施例に於いては,第1図,第2A図及び第2B図に
示すように.第1のゲート電極2及び第2のゲート電極
7がゲート絶縁膜3.5を介してTPT活性層半導体薄
膜4のチャネル領域4bを取り囲んでいる。また,第1
のゲート電極2の電位と第2のゲート電極の電位は等し
い。このため,第1及び第2のゲート電極2,7による
電界は.チャネル領域4bのゲート絶縁膜3,5に接す
る上面Sl,下面及び側面S2,33の近傍に於いて,
制御性良く反転層(チャネル)を形成することができる
。従ってこのチャネルの実効的な幅Wは,活性層の膜厚
t,活性層(チャネル領域)の幅Wを用いて,近似的に
次式で表わされる。
In this embodiment, as shown in FIG. 1, FIG. 2A, and FIG. 2B. The first gate electrode 2 and the second gate electrode 7 surround the channel region 4b of the TPT active layer semiconductor thin film 4 via the gate insulating film 3.5. Also, the first
The potential of the gate electrode 2 and the potential of the second gate electrode are equal. Therefore, the electric field due to the first and second gate electrodes 2 and 7 is . In the vicinity of the upper surface Sl, lower surface and side surfaces S2 and 33 in contact with the gate insulating films 3 and 5 of the channel region 4b,
An inversion layer (channel) can be formed with good controllability. Therefore, the effective width W of this channel is approximately expressed by the following equation using the thickness t of the active layer and the width W of the active layer (channel region).

W=2(t+w) 一般にTPTの増幅率はチャネルの実効的な幅Wに比例
する。
W=2(t+w) Generally, the amplification factor of TPT is proportional to the effective width W of the channel.

上式のように本実施例TPTはそのチャネルの実効的な
幅Wが従来のもの( W = w )に比べて著しく増
加しており,それに応じた大きな増幅率を有している。
As shown in the above equation, the effective width W of the channel of the TPT of this embodiment is significantly increased compared to the conventional one (W=w), and the TPT has a correspondingly large amplification factor.

また,第1のゲート電極2及び第2のゲート電極7が活
性層半導体薄膜4の全体に電界を及ぼしており5 これ
によって活性層半導体薄M4のチャネル領域4b全体の
ポテンシャルを制御するために.従来例にみられた活性
層半導体薄膜4を流れるリーク電流が著しく低減される
In addition, the first gate electrode 2 and the second gate electrode 7 apply an electric field to the entire active layer semiconductor thin film 4, thereby controlling the potential of the entire channel region 4b of the active layer semiconductor thin film M4. The leakage current flowing through the active layer semiconductor thin film 4 observed in the conventional example is significantly reduced.

このように本実施例のT−FTはそのチャネル領域4b
を含む領域がゲート絶縁膜3.5を介してゲート電極2
.7によって囲まれているために,大きな増幅率と低い
リーク電流を実現することができる。
In this way, the T-FT of this embodiment has its channel region 4b.
The region including the gate electrode 2 is connected to the gate electrode 2 via the gate insulating film 3.5
.. 7, it is possible to achieve a large amplification factor and low leakage current.

次に,本実施例の製造方法を第3A図及び第3B図(1
)〜(4)を参照して説明する。第3A図は第1図のA
A線に沿った断面図,第3B図は第1図のBB線に沿っ
た断面図であり,(1)〜(4)のそれぞれの工程に左
右の図が対応している。
Next, the manufacturing method of this example is shown in FIGS. 3A and 3B (1
) to (4). Figure 3A is A of Figure 1.
A sectional view taken along line A and FIG. 3B are sectional views taken along line BB in FIG. 1, and the left and right views correspond to the respective steps (1) to (4).

まず,絶縁Nl上にCVD法によって多結晶シリヨン膜
(膜厚500人)を第1のゲート電極2の材料として堆
積した後,多結晶シリコン膜にリンを拡散する。この後
,CVD法を用いて多結晶シリコン膜の表面に第1のゲ
ート絶縁膜(膜厚500人)3を形或する(第3A図(
1)及び第3B図(1))。
First, a polycrystalline silicon film (500 nm thick) is deposited as a material for the first gate electrode 2 by the CVD method on the insulating Nl, and then phosphorus is diffused into the polycrystalline silicon film. Thereafter, a first gate insulating film (thickness: 500 mm) 3 is formed on the surface of the polycrystalline silicon film using the CVD method (see Fig. 3A).
1) and Figure 3B (1)).

次に活性層4となる多結晶シリコン膜(膜厚600入)
をゲート絶縁膜3上にCVD法によって堆積した後.し
きい値電圧を調整するためのイオン注入を行う。
Next, a polycrystalline silicon film (film thickness: 600), which will become the active layer 4.
is deposited on the gate insulating film 3 by the CVD method. Perform ion implantation to adjust the threshold voltage.

ゲート絶縁膜3上に活性層として所望のパターンを有す
るレジストパターンを形成した後,RIE(リアクティ
ブイオンエッチング)等の方法を用いて多結晶シリコン
膜をバターニングする。
After forming a resist pattern having a desired pattern as an active layer on the gate insulating film 3, the polycrystalline silicon film is patterned using a method such as RIE (reactive ion etching).

レジストパターンを除去し,バターニングされた多結晶
シリコンの表面にCVD法によって第2のゲート絶縁膜
(膜厚500入)を形或する(第3A図(2)及び第3
B図(2))。次に,第1のゲート電極2の表面の一部
所定領域を露出させるために.第3A図(3)及び第3
B図(3)に示すようにコンタクトホール6のパターン
を有するレジストを形成した後.第1のゲート絶縁膜3
をエッチングする.第2のゲート電極7の材料として多
結晶シリコン膜(膜厚3000人)をCVD法を用いて
堆積した後,多結晶シリコン膜にリンを拡散する。次に
,第2のゲート電極7のパターンを有するレジストパタ
ーンを多結晶シリコン膜上に形成した後RIE等の方法
を用いて多結晶シリコンをパターニングする。こうして
形成される第2のゲート電極7は,第2のゲート絶縁膜
5を介してTPTのチャネル領域4bを覆い,次工程の
イオン注入に対するマスクとなる。次に,第3A図(4
)及び第3B図(4)に示すように.ボロン(B)を活
性層半導体薄膜4に対してイオン注入した後,ボロンを
活性化させ,ソース・ドレイン4a,4cを形成する。
The resist pattern is removed, and a second gate insulating film (film thickness: 500 mm) is formed on the surface of the patterned polycrystalline silicon by the CVD method (see Figure 3A (2) and Figure 3).
Figure B (2)). Next, in order to expose a predetermined part of the surface of the first gate electrode 2. Figure 3A (3) and 3rd
After forming a resist having a pattern of contact holes 6 as shown in Figure B (3). First gate insulating film 3
Etch. After depositing a polycrystalline silicon film (thickness: 3000 nm) as a material for the second gate electrode 7 using the CVD method, phosphorus is diffused into the polycrystalline silicon film. Next, a resist pattern having the pattern of the second gate electrode 7 is formed on the polycrystalline silicon film, and then the polycrystalline silicon is patterned using a method such as RIE. The second gate electrode 7 thus formed covers the channel region 4b of the TPT via the second gate insulating film 5, and serves as a mask for ion implantation in the next step. Next, Figure 3A (4
) and as shown in Figure 3B (4). After boron (B) is ion-implanted into the active layer semiconductor thin film 4, the boron is activated to form sources and drains 4a and 4c.

この後,層間絶縁膜及び配線等(不図示)を形成すれば
,本実施例のTPTが作製される。
Thereafter, by forming an interlayer insulating film, wiring, etc. (not shown), the TPT of this example is manufactured.

本実施例の製造方法に於いて,活性層半導体薄膜4のチ
ャネル領域4bとなる領域の上に第2のゲート絶縁膜5
を介して第2のゲート電極7を形成した後にソース・ド
レイン形成のためのイオン注入を行うことによって.自
己整合的にソース・ドレイン4a,4cが形成される。
In the manufacturing method of this embodiment, a second gate insulating film 5 is formed on the region that will become the channel region 4b of the active layer semiconductor thin film 4.
After forming the second gate electrode 7 via the ion implantation method, ion implantation is performed to form the source and drain. Sources and drains 4a and 4c are formed in a self-aligned manner.

これによって,第2のゲート電極7とソース・ドレイン
4a.4C端との位置関係が整合するので,TPTの動
作性能及び製造歩留の向上が得られ,TPTの微細化が
可能となる。
As a result, the second gate electrode 7 and the source/drain 4a. Since the positional relationship with the 4C end is matched, the operational performance and manufacturing yield of the TPT can be improved, and the TPT can be miniaturized.

なお,本実施例では,第1及び第2のゲート電極2.7
の材料として多結晶シリコン膜を用いたが.他の高融点
導電性材料,例えば高融点金属,高融点金属シリサイド
,又はポリサイド等の高融点材料多層膜等を用いても良
い。
Note that in this embodiment, the first and second gate electrodes 2.7
A polycrystalline silicon film was used as the material. Other high melting point conductive materials may be used, such as a multilayer film of high melting point materials such as high melting point metal, high melting point metal silicide, or polycide.

(発明の効果) このように,本発明の薄膜電界効果トランジスタによれ
ば,増幅率が大きく増加し,しかもリーク電流が著しく
低減される。
(Effects of the Invention) As described above, according to the thin film field effect transistor of the present invention, the amplification factor is greatly increased and leakage current is significantly reduced.

また,本発明の薄膜電界効果トランジスタの製造方法に
よれば.ゲート電極とソース・ドレインが制御性良く整
合されるので,素子の微細化,トランジスタ特性の向上
を歩留り良く容易に実現することかできる。
Further, according to the method for manufacturing a thin film field effect transistor of the present invention. Since the gate electrode and the source/drain can be matched with good controllability, it is possible to easily miniaturize elements and improve transistor characteristics with high yield.

4.゛ の ーなi゛日 第1図は本発明の実施例装置を説明するための平面図,
第2A図は第1図のAA線に沿った断面図,第2B図は
第1図のBB線に沿った断面図,第3A図(1)〜(4
)及び第3B図(1)〜(4)はそれぞれ,実施例の製
造方法を説明するための第1図のAA線に沿った断面図
及びBB線に沿った断面図,第4図及び第5図は従来例
を説明するための断面図である。
4. Figure 1 is a plan view for explaining an embodiment of the present invention;
Figure 2A is a sectional view taken along line AA in Figure 1, Figure 2B is a sectional view taken along line BB in Figure 1, and Figures 3A (1) to (4).
) and Figures 3B (1) to (4) are sectional views taken along line AA and line BB in Figure 1, Figure 4, and Figure 3B (1) to (4) respectively. FIG. 5 is a sectional view for explaining a conventional example.

1・・・絶縁層.2・・・第lのゲート電極,3・・・
第■のゲート絶縁膜,4・・・活性層半導体薄膜,4a
,4c・・・ソース・ドレイン,4b・・・チャネル領
域,5・・・第2のゲート絶縁膜,6・・・コンタクト
ホール,7・・・第2のゲート電極,8・・・レジスト
 9・・・ゲート絶縁膜,lO・・・ゲート電極,SL
・・・チャネル領域の上面,S2,S3・・・チャネル
領域の側面。
1...Insulating layer. 2...l-th gate electrode, 3...
No. 2 gate insulating film, 4... active layer semiconductor thin film, 4a
, 4c... Source/drain, 4b... Channel region, 5... Second gate insulating film, 6... Contact hole, 7... Second gate electrode, 8... Resist 9 ...gate insulating film, lO...gate electrode, SL
... Upper surface of the channel region, S2, S3 ... Side surfaces of the channel region.

以上that's all

Claims (1)

【特許請求の範囲】 1、絶縁層上に形成された第1のゲート電極と、該第1
のゲート電極上に形成された第1のゲート絶縁膜と、該
第1のゲート絶縁膜上に形成された半導体薄膜と、 該半導体薄膜中に形成されたチャネル領域と。 該半導体薄膜上に形成され、少くとも該チャネル領域の
上面及び2つの側面のすべてを覆う第2のゲート絶縁膜
と、 該第2のゲート絶縁膜上に形成され、該第2のゲート絶
縁膜を介して、該チャネル領域の上面及び2つの側面の
すべてを覆う第2のゲート電極とを備え、 該第2のゲート電極と該第1のゲート電極が電気的に接
続された、 薄膜電界効果トランジスタ。 2、請求項1に記載の薄膜電界効果トランジスタの製造
方法であって、前記第2のゲート電極を形成した後に、
前記半導体薄膜に対して不純物イオン注入を行うことに
よってソース・ドレインを自己整合的に形成する薄膜電
界効果トランジスタの製造方法。
[Claims] 1. A first gate electrode formed on an insulating layer;
a first gate insulating film formed on the gate electrode; a semiconductor thin film formed on the first gate insulating film; and a channel region formed in the semiconductor thin film. a second gate insulating film formed on the semiconductor thin film and covering at least an upper surface and two side surfaces of the channel region; a second gate insulating film formed on the second gate insulating film; a second gate electrode covering all of the upper surface and two side surfaces of the channel region, the second gate electrode and the first gate electrode being electrically connected, a thin film field effect transistor. 2. The method for manufacturing a thin film field effect transistor according to claim 1, wherein after forming the second gate electrode,
A method for manufacturing a thin film field effect transistor, in which a source and a drain are formed in a self-aligned manner by implanting impurity ions into the semiconductor thin film.
JP19111389A 1989-07-24 1989-07-24 Thin film field effect transistor and manufacture thereof Pending JPH0354865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19111389A JPH0354865A (en) 1989-07-24 1989-07-24 Thin film field effect transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19111389A JPH0354865A (en) 1989-07-24 1989-07-24 Thin film field effect transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0354865A true JPH0354865A (en) 1991-03-08

Family

ID=16269078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19111389A Pending JPH0354865A (en) 1989-07-24 1989-07-24 Thin film field effect transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0354865A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316296B1 (en) 1999-05-28 2001-11-13 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Field-effect transistor and method of manufacturing same
JP2007281188A (en) * 2006-04-06 2007-10-25 Seiko Epson Corp Transistor, pixel electrode substrate, electrooptical device, electronic equipment and process for fabricating semiconductor element
US7491609B2 (en) 2004-08-26 2009-02-17 Seiko Epson Corporation Semiconductor device and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218169A (en) * 1982-06-14 1983-12-19 Seiko Epson Corp Semiconductor integrated circuit device
JPS60107861A (en) * 1983-11-16 1985-06-13 Nippon Precision Saakitsutsu Kk Mos type semiconductor device
JPS63198374A (en) * 1987-02-13 1988-08-17 Fujitsu Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218169A (en) * 1982-06-14 1983-12-19 Seiko Epson Corp Semiconductor integrated circuit device
JPS60107861A (en) * 1983-11-16 1985-06-13 Nippon Precision Saakitsutsu Kk Mos type semiconductor device
JPS63198374A (en) * 1987-02-13 1988-08-17 Fujitsu Ltd Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316296B1 (en) 1999-05-28 2001-11-13 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Field-effect transistor and method of manufacturing same
AU763794B2 (en) * 1999-05-28 2003-07-31 Agency Of Industrial Science And Technology, The Field-effect transistor and method of manufacturing same
US7491609B2 (en) 2004-08-26 2009-02-17 Seiko Epson Corporation Semiconductor device and method for manufacturing the same
JP2007281188A (en) * 2006-04-06 2007-10-25 Seiko Epson Corp Transistor, pixel electrode substrate, electrooptical device, electronic equipment and process for fabricating semiconductor element

Similar Documents

Publication Publication Date Title
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
KR100257079B1 (en) Semiconductor device and method for fabricating the same
JPH0564456B2 (en)
US4471523A (en) Self-aligned field implant for oxide-isolated CMOS FET
JPH02228041A (en) Manufacture of semiconductor device
JPS6089975A (en) Semiconductor device
JPH0354865A (en) Thin film field effect transistor and manufacture thereof
KR100209750B1 (en) Structure of cmos device and method of manufacturing the same
JP2759153B2 (en) Thin film E @ 2 PROM and method of manufacturing the same
JP3431353B2 (en) Semiconductor device and manufacturing method thereof
JP3049255B2 (en) Method for manufacturing CMIS semiconductor device
JPH021942A (en) Semiconductor device and its manufacture
JPH0369168A (en) Thin film field effect transistor
JPH04146627A (en) Field-effect type semiconductor device and manufacture thereof
JP3241914B2 (en) Method for manufacturing semiconductor device
JPH03120835A (en) Manufacture of insulated gate field effect transistor
JPS6154661A (en) Manufacture of semiconductor device
JP2629792B2 (en) Method for manufacturing MOS type semiconductor device
JPH04192472A (en) Manufacture of thin-film transistor
JPS6229168A (en) Manufacture of semiconductor device
JP2003115585A (en) Method for manufacturing semiconductor device
KR100243021B1 (en) Method for manufacturing semiconductor device
KR100250686B1 (en) Manufacturing method of a semiconductor device
JPH04139765A (en) Semiconductor device
JPH0263154A (en) Manufacture of semiconductor device