JPH0353736B2 - - Google Patents

Info

Publication number
JPH0353736B2
JPH0353736B2 JP8762781A JP8762781A JPH0353736B2 JP H0353736 B2 JPH0353736 B2 JP H0353736B2 JP 8762781 A JP8762781 A JP 8762781A JP 8762781 A JP8762781 A JP 8762781A JP H0353736 B2 JPH0353736 B2 JP H0353736B2
Authority
JP
Japan
Prior art keywords
deflection
strips
electrode
order
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8762781A
Other languages
Japanese (ja)
Other versions
JPS57202630A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8762781A priority Critical patent/JPS57202630A/en
Publication of JPS57202630A publication Critical patent/JPS57202630A/en
Publication of JPH0353736B2 publication Critical patent/JPH0353736B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/72Arrangements for deflecting ray or beam along one straight line or along two perpendicular straight lines
    • H01J29/74Deflecting by electric fields only

Landscapes

  • Electron Tubes For Measurement (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、荷電粒子ビームの静電偏向装置に関
する。一般に、静電偏向装置は、電子ビーム露光
装置、電子顕微鏡、ブラウン管、撮像管等におい
て、ビームを高速かつ精密に偏向したりあるいは
ビーム断面形状を整えたりするために広く用いら
れている。 このような分野に用いられる静電偏向装置で
は、偏向範囲を広くする上で、偏向電界を余弦分
布にして、広い範囲にわたり偏向収差をできるだ
け小さくすることが望ましい。 従来、このような偏向装置としては、第1図に
示すように、12個の電極要素D1〜D12をそれぞれ
絶縁して円周上に順次等間隔に配置した多重極型
の静電偏向装置が知られている(特開昭53−
134369号公報参照)。 図示の如く、中心角60゜で相対する4個の電極
要素D2とD12、D6とD8にX方向の偏向電圧+Vx
−Vxを印刷し、90゜位相を異にする4個の電極要
素D3とD5、D9とD11にY方向の偏向電圧+Vy、−
Vyを印加し、残りの4個の電極要素を接地(零)
電位とすることにより、偏向電界は余弦分布とな
る。この場合、電位分布の角度座標θに対する3
次のフーリエ成分(3次収差に関与する電界成
分)を除去することができる。 しかし、この多重極型静電偏向装置では、4個
の電極要素を接地電極にするため、偏向感度が劣
る傾向がある。また、高次のフーリエ成分は5次
以上の項が残ることになつている。この5次以上
の項を消去することにより、より広範囲にわたつ
て収差を小さくすることができる。 本発明者等は静電偏向装置について鋭意研究を
重ねた結果、接地電極を設けずに、電位分布の角
度座標θに関する3次の電界成分ばかりでなく、
5次、7次、9次など、より高次の電界成分も除
去することのできる静電偏向装置が得られること
を見出した。 すなわち、本発明者等は、中空円筒状電極をそ
の中心軸と平行に4+8m(m=1、2、3、4)
個に分割して得られる条片を、交互にX方向とY
方向の偏向電極とし、このX方向の偏向電極を構
成する条片とY方向の偏向電極を構成する条片と
を、x、y軸から45゜の角度位置にある軸に対し
て互いに対称な位置関係に配置することによつて
達成されることが判つた。 以下、添付図により本発明を詳しく説明する。
第2図Aは中空円筒状電極1の中心軸2に垂直な
x−y断面で示す斜視図である。いま、x軸に±
αで交わる2本の直線で中空円筒状電極を4つの
条片に分割し、それぞれD1、D2、D3、D4とす
る。第2図Bに示すように、D1に+1V、D3に−
1Vを印加し、D2とD4をOVにした場合、円周上に
ある条片に沿つての電位V1θは角度座標θに関す
るフーリエ展開の公式から、次式で表わされる。 V1(θ)=4/π 〓 〓n=0 1/2n+1cos(2n+1)θ・sin(2n+1)α……(
1) また、第3図に示すように、第2図の電極構成
を反時計方向にβだけ回転した場合の電位V2
(θ)は、 V2(θ)=4/π 〓 〓n=0 1/2n+1cos(2n+1)(θ−β)・sin(2n+1
)α……(2) となる。逆に、第4図に示すように、第2図の電
極構成を時計方向にβだけ回転した場合の電位
V3(θ)は、 V3(θ)=4/π 〓 〓n=0 1/2n+1cos(2n+1)(θ+β)・sin(2n+1
)α……(3) となる。更に、第5図に示すように、12個の条片
から成る電極構成の場合の電位V4(θ)は、重ね
合せの原理から、式(1)、(2)、(3)を加え合わすこと
により、 V4(θ)=4/πn=0 1/2n+1{cos(2n+1)θ・sin(2n+1)α0 +cos(2n+1)(θ−β1)・sin(2n+
1)α1+cos(2n+1)(θ+β1)・sin(2n+1)α
1
……(4) と表わされる。(4)式でθ=0の場合は電極とX軸
とが交わる点での電圧を表わすが、円筒の半径を
長さの単位とする場合は、この値は、原点での−
x方向への電界の強さを表わすことになる〔(5)
式〕。 V4(O)=4/πn=0 1/2n+1{sin(2n+1)α0 +2cos(2n+1)β1・sin(2n+1)α1} ……(5) 第5図において、α0=25゜、α1=10゜、β1=55゜

おくと、(5)式からn=0、1、2についてθの各
成分は表4のようになり3θの成分が除去される。
The present invention relates to a device for electrostatic deflection of charged particle beams. In general, electrostatic deflection devices are widely used in electron beam exposure devices, electron microscopes, cathode ray tubes, image pickup tubes, and the like to deflect beams at high speed and precision or to adjust the cross-sectional shape of beams. In an electrostatic deflection device used in such fields, in order to widen the deflection range, it is desirable that the deflection electric field has a cosine distribution to minimize deflection aberration over a wide range. Conventionally, such a deflection device is a multipole type electrostatic deflection device in which 12 electrode elements D 1 to D 12 are insulated and sequentially arranged at equal intervals on the circumference, as shown in Fig. 1. The device is known (Japanese Unexamined Patent Application Publication No. 1983-1999)
(Refer to Publication No. 134369). As shown in the figure, a deflection voltage +V x in the X direction is applied to four electrode elements D 2 and D 12 , D 6 and D 8 facing each other at a central angle of 60°,
−V x is printed , and Y - direction deflection voltage +V y , −
Apply V y and ground the remaining four electrode elements (zero)
By setting it as a potential, the deflection electric field has a cosine distribution. In this case, 3 for the angular coordinate θ of the potential distribution
The following Fourier component (electric field component involved in third-order aberration) can be removed. However, in this multipole electrostatic deflection device, since the four electrode elements are grounded electrodes, the deflection sensitivity tends to be poor. Furthermore, terms of fifth order or higher are supposed to remain in the high-order Fourier components. By eliminating the terms of fifth order or higher, aberrations can be reduced over a wider range. As a result of extensive research into electrostatic deflection devices, the present inventors have found that, without providing a ground electrode, not only the third-order electric field component with respect to the angular coordinate θ of the potential distribution, but also the
It has been found that an electrostatic deflection device can be obtained which can also remove higher-order electric field components such as fifth-order, seventh-order, and ninth-order electric field components. That is, the present inventors installed a hollow cylindrical electrode 4+8 m (m=1, 2, 3, 4) parallel to its central axis.
The strips obtained by dividing into pieces are alternately
The strip forming the deflection electrode in the It has been found that this can be achieved by arranging them in a positional relationship. Hereinafter, the present invention will be explained in detail with reference to the accompanying drawings.
FIG. 2A is a perspective view showing the hollow cylindrical electrode 1 in an xy section perpendicular to the central axis 2. FIG. Now, ± on the x-axis
The hollow cylindrical electrode is divided into four strips by two straight lines that intersect at α, and each strip is called D 1 , D 2 , D 3 , and D 4 . As shown in Figure 2B, +1 V to D 1 and - to D 3 .
When 1 V is applied and D 2 and D 4 are O V , the potential V 1 θ along the strip on the circumference is expressed by the following formula from the Fourier expansion formula regarding the angular coordinate θ. V 1 (θ)=4/π 〓 〓 n=0 1/2n+1cos(2n+1)θ・sin(2n+1)α……(
1) Also, as shown in Figure 3, the potential V 2 when the electrode configuration in Figure 2 is rotated counterclockwise by β
(θ) is V 2 (θ)=4/π 〓 〓 n=0 1/2n+1cos(2n+1)(θ−β)・sin(2n+1
)α...(2). Conversely, as shown in Figure 4, the potential when the electrode configuration in Figure 2 is rotated clockwise by β
V 3 (θ) is V 3 (θ)=4/π 〓 〓 n=0 1/2n+1cos(2n+1)(θ+β)・sin(2n+1
) α...(3). Furthermore, as shown in Figure 5, the potential V 4 (θ) in the case of an electrode configuration consisting of 12 strips can be calculated by adding equations (1), (2), and (3) from the principle of superposition. By combining, V 4 (θ)=4/π n=0 1/2n+1 {cos(2n+1)θ・sin(2n+1)α 0 +cos(2n+1)(θ−β 1 )・sin(2n+
1) α 1 + cos (2n + 1) (θ + β 1 )・sin (2n + 1) α
1 }
...(4) It is expressed as. In equation (4), when θ = 0, it represents the voltage at the point where the electrode and the X-axis intersect, but if the radius of the cylinder is the unit of length, this value is -
It represents the strength of the electric field in the x direction [(5)
formula〕. V 4 (O)=4/π n=0 1/2n+1 {sin (2n+1) α 0 +2cos (2n+1) β 1・sin (2n+1) α 1 } ...(5) In Fig. 5, α 0 = 25°, α 1 = 10°, and β 1 = 55°, each component of θ is as shown in Table 4 for n = 0, 1, and 2 from equation (5), and the 3θ component is removed. .

【表】 また、第6図に示すように、20個の条片D1
D2……D20から成る電極構成において、D1、D3
D5、D19、D17の条片に+XV、D7、D9、D11
D13、D15の条片に−XVの偏向電圧を印加し、他
の条片をOVにした場合、α0=11.67゜、α1=11.83°、
α2=4.84゜、β1=34.17°、β2=73.49゜とすると、
表2
に示すように、θに関する各電界成分の中、3θと
5θの成分が除去される。
[Table] Also, as shown in Figure 6, 20 strips D 1 ,
In the electrode configuration consisting of D 2 ...D 20 , D 1 , D 3 ,
+X V , D 7 , D 9 , D 11 on the strips D 5 , D 19 , D 17 ,
When applying a deflection voltage of -X V to the strips D 13 and D 15 and setting the other strips to O V , α 0 = 11.67°, α 1 = 11.83°,
If α 2 = 4.84°, β 1 = 34.17°, and β 2 = 73.49°, then
Table 2
As shown in , among the electric field components related to θ, 3θ and
The 5θ component is removed.

【表】 また、第7図に示すように、28個の条片D1
D2……D28から成る電極構成において、D1、D3
D5、D7、D23、D25、D27の条片に+XV、D9
D11、D13、D15、D17、D19、D21の条片に−XV
偏向電圧を印加し、他の条片をOVにした場合、 α0=2.38゜ α1=19.39゜ β1=11.63゜ α2=51.99゜ β2=6.99゜ α3=84.93゜ β3=2.69゜ とすると、表3に示すように、θに関する電界成
分の中、3θ、5θ、7θの成分が除去される。
[Table] Also, as shown in Figure 7, 28 strips D 1 ,
In the electrode configuration consisting of D 2 ...D 28 , D 1 , D 3 ,
+X V , D 9 on the strips D 5 , D 7 , D 23 , D 25 , D 27 ;
When a deflection voltage of -X V is applied to the strips D 11 , D 13 , D 15 , D 17 , D 19 , and D 21 and the other strips are set to O V , α 0 = 2.38° α 1 = 19.39゜ β 1 = 11.63゜ α 2 = 51.99゜ β 2 = 6.99゜ α 3 = 84.93゜ β 3 = 2.69゜. components are removed.

【表】 また、第8図に示すように、36個の条片D1
D2……D36から成る電極構成において、D1、D3
D5、D7、D11、D27、D31、D33、D35の条片に+
XV、D9、D13、D15、D17、D19、D21、D23、D27
の条片に−XVの偏向電圧を印加し、他の条片を
OVにした場合、 α0=1.94゜ α1=12.54゜ β1=8.14゜ α2=37.27゜ β2=7.74゜ α3=64.90゜ β3=4.43゜ α4=87.24゜ β4=1.42゜ とすると、表4に示すように、θに関する電界成
分の中、3θ、5θ、7θ、9θの成分が除去される。
[Table] Also, as shown in Figure 8, 36 strips D 1 ,
In the electrode configuration consisting of D 2 ...D 36 , D 1 , D 3 ,
+ on strips D 5 , D 7 , D 11 , D 27 , D 31 , D 33 , D 35
XV , D9 , D13 , D15 , D17 , D19 , D21 , D23 , D27
Apply a deflection voltage of −X V to one strip, and apply a deflection voltage of −X V to the other strip.
When set to O V , α 0 = 1.94° α 1 = 12.54° β 1 = 8.14° α 2 = 37.27° β 2 = 7.74° α 3 = 64.90° β 3 = 4.43° α 4 = 87.24° β 4 = 1.42 As shown in Table 4, 3θ, 5θ, 7θ, and 9θ components are removed from among the electric field components related to θ.

【表】 なお、Y方向の偏向電界分布については、90゜
位相を異にするだけであり、上記したX方向の場
合と同様に3θ、5θ、7θ、9θ、の成分が除去され
る。 また、偏向感度については、第5図の12極の場
合に0.792、第6図の20極の場合に0.755、第7図
の28極の場合に0.738、第8図の36極の場合に
0.729となり、第1図の従来装置が0.571程度であ
るのに比較して、いずれも優れていることが判つ
た。 以上説明したように、本発明の静電偏向装置
は、第1図に示した従来の静電偏向装置と同様
に、分割抵抗回路を付加しないで電極要素にその
まゝX、Y両方向の偏向電圧を印加するので、そ
れだけ荷電粒子ビームを高精度、高速度で偏向す
ることができるという効果は勿論のこと、3次収
差だけでなく、より高次の収差に関与する高次の
フーリエ成分も除去することができるので、より
広い範囲にわたつて収差の少ない偏向ができると
いう効果を有する。更に、接地電極を設けずに全
ての条片を偏向電極として構成するので、それだ
け偏向感度に優れる利点を有する。
[Table] Regarding the deflection electric field distribution in the Y direction, the phase is only changed by 90°, and the 3θ, 5θ, 7θ, and 9θ components are removed as in the case of the X direction described above. The deflection sensitivity is 0.792 for 12 poles in Figure 5, 0.755 for 20 poles in Figure 6, 0.738 for 28 poles in Figure 7, and 0.738 for 36 poles in Figure 8.
The result was 0.729, which was found to be superior to that of the conventional device shown in FIG. 1, which was approximately 0.571. As explained above, the electrostatic deflection device of the present invention, like the conventional electrostatic deflection device shown in FIG. Since a voltage is applied, the charged particle beam can be deflected with high precision and speed, which is not only effective, but also reduces not only third-order aberrations but also higher-order Fourier components that are involved in higher-order aberrations. Since it can be removed, it has the effect of allowing deflection with less aberration over a wider range. Furthermore, since no ground electrode is provided and all the strips are configured as deflection electrodes, there is an advantage of superior deflection sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の静電偏向装置の平面図、第2図
〜第4図は本発明の原理説明図、第5図〜第8図
は本発明の静電偏向装置の実施態様例を示す平面
図。 図中の符号:1……中空円筒状電極、2……中
心軸、D1〜D36……条片。
Fig. 1 is a plan view of a conventional electrostatic deflection device, Figs. 2 to 4 are illustrations explaining the principle of the present invention, and Figs. 5 to 8 show embodiments of the electrostatic deflection device of the present invention. Plan view. Symbols in the figure: 1...Hollow cylindrical electrode, 2...Central axis, D1 to D36 ...Strip.

Claims (1)

【特許請求の範囲】[Claims] 1 4+8m(m=1、2、3、4…)個の条片を
円周上に間隔を置いて配置し、1つ置きの条片が
X方向の偏向電極を構成し、残りの1つ置きの条
片がY方向の偏向電極を構成し、前記のX方向の
偏向電極を構成する条片と前記のY方向の偏向電
極を構成する条片とが、X、Y軸から45゜の角度
位置にある軸に対して互いに対称関係にあること
を特徴とする静電偏向装置。
1 4+8m (m=1, 2, 3, 4...) strips are arranged at intervals on the circumference, every other strip constitutes a deflection electrode in the X direction, and the remaining one The placing strip constitutes a deflection electrode in the Y direction, and the strip constituting the deflection electrode in the X direction and the strip constituting the deflection electrode in the Y direction are arranged at an angle of 45° from the X and Y axes. Electrostatic deflection devices characterized in that they are symmetrically related to each other about an axis of angular position.
JP8762781A 1981-06-08 1981-06-08 Electrostatic deflector Granted JPS57202630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8762781A JPS57202630A (en) 1981-06-08 1981-06-08 Electrostatic deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8762781A JPS57202630A (en) 1981-06-08 1981-06-08 Electrostatic deflector

Publications (2)

Publication Number Publication Date
JPS57202630A JPS57202630A (en) 1982-12-11
JPH0353736B2 true JPH0353736B2 (en) 1991-08-16

Family

ID=13920210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8762781A Granted JPS57202630A (en) 1981-06-08 1981-06-08 Electrostatic deflector

Country Status (1)

Country Link
JP (1) JPS57202630A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067867A (en) * 1983-09-22 1985-04-18 Konishiroku Photo Ind Co Ltd Electric field forming apparatus
CN100565774C (en) * 2002-03-21 2009-12-02 汉民微测科技股份有限公司 The collection method of the focusing of turning gear immerged object lens electron optics, deflection and signal
JP5093831B2 (en) 2005-10-04 2012-12-12 日本電子株式会社 Electrostatic deflection device
EP4303907A1 (en) 2022-07-06 2024-01-10 Universität Hamburg Electrostatic deflector for charged particle optics

Also Published As

Publication number Publication date
JPS57202630A (en) 1982-12-11

Similar Documents

Publication Publication Date Title
EP0208894B1 (en) Time-of-flight mass spectrometer with an ion reflector
DE2601088C2 (en) Position transducer
EP0551066A1 (en) Capacitive rotary transducer
EP0396019A2 (en) Ion cyclotron resonance spectrometer
JPH09139184A (en) Manufacture of electrostatic deflection unit
DE2628422C3 (en) Methods of mass spectroscopy
GB2241821A (en) Quadrupole mass filter for charged particles.
JPH0353736B2 (en)
US4766314A (en) Lens arrangement for the focusing of electrically charged particles, and mass spectrometer with such a lens arrangement
EP0231164B1 (en) Device for ion-projection apparatuses
US5051593A (en) Electrostatic multipole lens for charged-particle beam
DE255981T1 (en) OPTICAL SYSTEM FOR LOADED PARTICLES WITH DEVICE FOR CORRECTING THE ABERRATION.
DE112016007436B4 (en) ABERRATION CORRECTOR AND ELECTRON MICROSCOPE
JPS6245663B2 (en)
US2770748A (en) Deflection system
JPH08212970A (en) Device for removal of ions form electron beam
Boerboom et al. Ion optics of multipole devices. I. Theory of the dodecapole
JP3335798B2 (en) Electrostatic lens and method of manufacturing the same
Hutter The deflection of beams of charged particles
JPH0294346A (en) Electrostatic deflector for charged particle beam
US3673528A (en) Wide frequency response line scan magnetic deflector
DE2221122C3 (en) Electron beam anastigmatic magnetic deflection system, method for its operation and application
JPH028355Y2 (en)
SU632262A1 (en) Electronic optical device with abberation correction
US3967152A (en) Simultaneous electrostatic focusing and deflection system