EP0208894B1 - Time-of-flight mass spectrometer with an ion reflector - Google Patents

Time-of-flight mass spectrometer with an ion reflector Download PDF

Info

Publication number
EP0208894B1
EP0208894B1 EP86107585A EP86107585A EP0208894B1 EP 0208894 B1 EP0208894 B1 EP 0208894B1 EP 86107585 A EP86107585 A EP 86107585A EP 86107585 A EP86107585 A EP 86107585A EP 0208894 B1 EP0208894 B1 EP 0208894B1
Authority
EP
European Patent Office
Prior art keywords
electrode
time
flight mass
mass spectrometer
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86107585A
Other languages
German (de)
French (fr)
Other versions
EP0208894A2 (en
EP0208894A3 (en
Inventor
Rüdiger Dr. Frey
Edward William Prof. Dr. Schlag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Biospin GmbH
Original Assignee
Bruker Analytische Messtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6275348&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0208894(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bruker Analytische Messtechnik GmbH filed Critical Bruker Analytische Messtechnik GmbH
Publication of EP0208894A2 publication Critical patent/EP0208894A2/en
Publication of EP0208894A3 publication Critical patent/EP0208894A3/en
Application granted granted Critical
Publication of EP0208894B1 publication Critical patent/EP0208894B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/405Time-of-flight spectrometers characterised by the reflectron, e.g. curved field, electrode shapes

Definitions

  • the invention relates to a time-of-flight mass spectrometer with an ion reflector which has a reflector electrode and two parallel brake electrodes which are arranged at a distance from it and define a braking field.
  • time-of-flight mass spectrometer is known from US-A-37 27 047.
  • a similar time-of-flight mass spectrometer is also described in DE-A-34 28 944.
  • the ion reflector of these known time-of-flight mass spectrometers formed by grid electrodes has the purpose of time-of-flight differences compensate, which are due to different initial energies of the accelerated ions, thereby improving the mass resolving power of the spectrometer.
  • time-of-flight mass spectrometers provided with such an ion reflector do not yet meet the requirements with regard to sensitivity and resolving power, such as are to be placed on a device which is suitable as a general laboratory device and is also intended to allow mass spectrometric examinations for the not particularly specialized expert.
  • the invention is therefore based on the object of improving the known time-of-flight mass spectrometers so that they have improved resolution and sensitivity with a simple structure.
  • the brake electrodes In the previously known time-of-flight mass spectrometers, it was considered necessary to design the brake electrodes as a grid, because a very homogeneous electric field was regarded as necessary in order to ensure the same time focusing over the entire beam cross section. In fact, however, it has been found that the inhomogeneity caused by the focusing electrode can be set in such a way that both optimal temporal and optimal geometric focusing can be achieved. Such optimal conditions can also be achieved if the brake electrodes as well as the focusing electrode are designed as gridless ring diaphragms.
  • the design of the brake electrodes as grating-free ring diaphragms is not only possible, but rather also extremely advantageous, because it avoids expensive and highly sensitive components such as the grating and also avoids the transmission losses caused by such grating. Even if such grid electrodes have a transmittance as high as 80% for the ion beam, the ion beam suffers attenuation to 40% of the original intensity when passing through such grids four times, which leads to a corresponding loss of sensitivity.
  • the design of the brake electrodes as gridless ring diaphragms consequently achieves both a simplification and an increase in the sensitivity of the time-of-flight mass spectrometer.
  • the conscious generation of an inhomogeneous electric field in the area of the brake electrodes also offers the possibility of influencing the inhomogeneity of the electric field through the geometry of the brake electrodes. It has proven to be particularly advantageous if the front brake electrode has a larger hole diameter than the rear one.
  • the electrode potentials can be established in a known manner by the resistors of a voltage divider, by means of which the electrodes of the ion reflector which are adjacent to one another are electrically connected to one another.
  • the time-of-flight mass spectrometer shown schematically in FIG. 1 comprises an ion source 1 and a detector 2, which are connected to one another by flight paths 3, 4 forming an acute angle. In the area of the intersection of the two flight paths 3, 4 there is an ion reflector 5. All components are located within an evacuable housing 6.
  • the ion reflector 5 comprises two brake electrodes 7, 8, which are located at the entrance of the ion reflector 5 and of which the front brake electrode 7 delimits the flight routes 3, 4 in which the electric field has no gradient.
  • a focusing electrode 10 is arranged between the rear brake electrode 8 and the reflector electrode 9, which results in the formation of an inhomogeneous electric field that forms an electrostatic lens for geometrically focusing the ion beam onto the detector 2.
  • the two brake electrodes 17, 18 are designed as grid electrodes. Between the rear brake electrode 18 and the reflector electrode 19 formed by a flat plate there is the focusing electrode 20. The focusing electrode 20 is located between the focusing electrode 20 and the reflector electrode 19. There are two linearizing electrodes 21 and 22. The outer diameter of all electrodes is 200 mm.
  • the structure of the ion reflector is characterized by the following values:
  • the ion reflector shown in FIG. 3 has brake electrodes 27, 28 instead of the brake electrodes 17, 18, which are also designed as ring diaphragms. Furthermore, three linearizing electrodes 31, 32, 33 designed as ring diaphragms are arranged between the focusing electrode 30 and the reflector electrode, which is again designed as a closed plate. The following values apply to the electrodes of the ion reflector according to FIG. 3:
  • Both ion reflectors result in a perfect temporal and spatial focusing for an ion energy of 680 V, an angle of incidence of the ion trajectory of 4 ° and a length of the drift distance of 165 cm.
  • the course of the equipotential surfaces leading to focusing, which result in a lens effect, and the focusing effect on the ion beam are shown in FIGS. 2 and 3 by the potential lines 34 and the path lines 35, respectively.
  • This ion reflector comprises electrodes 41 to 46 in the form of ring diaphragms which are mounted on a carrier plate 48 by means of short ceramic tubes 49.
  • the carrier plate 48 with the electrode system is arranged within a vacuum vessel 52 which has a pipe socket 53 for connecting a vacuum pump and a flange 54 for connecting the housing to the other components of the time-of-flight mass spectrometer.
  • the vacuum vessel 52 has, at the end opposite the flange 54, a carrier flange 51 to which the carrier plate 48 is fastened with the electrode system and which has vacuum feedthroughs 50 which allow defined potentials to be applied to the electrodes.
  • the vacuum bushings 50 serve to apply a voltage to a voltage divider, that of resistors 47 is formed, each of which connects two of the adjacent electrodes 41 to 46 to one another.
  • the values of the resistors 47 are selected so that the potential distribution shown in the table below results.
  • This table also shows the internal diameter and the axis position of the electrodes. With an inner diameter of the vacuum vessel 52 of 200 mm, the outer diameter of the orifices here is 170 mm.
  • the desired temporal and spatial focus is again achieved for an ion energy of 680 eV, an ion beam incidence angle of 4 ° and a length of the drift distance of 165 cm.

Description

Die Erfindung betrifft ein Flugzeit-Massenspektrometer mit einem Ionenreflektor, der eine Reflektorelektrode und zwei mit Abstand davor angeordnete, ein Bremsfeld definierende, parallele Bremselektroden aufweist.The invention relates to a time-of-flight mass spectrometer with an ion reflector which has a reflector electrode and two parallel brake electrodes which are arranged at a distance from it and define a braking field.

Ein solches Flugzeit-Massenspektrometer ist aus der US-A-37 27 047 bekannt. Ein ähnliches Flugzeit-Massenspektrometer ist auch in der DE-A-34 28 944 beschrieben. Der von Gitterelektroden gebildete Ionenreflektor dieser bekannten Flugzeit-Massenspektrometer hat den Zweck, Flugzeitdifferenzen auszugleichen, die auf unterschiedliche Anfangsenergien der beschleunigten Ionen zurückzuführen sind, um dadurch das Massen-Auflösungsvermögen des Spektrometers zu verbessern.Such a time-of-flight mass spectrometer is known from US-A-37 27 047. A similar time-of-flight mass spectrometer is also described in DE-A-34 28 944. The ion reflector of these known time-of-flight mass spectrometers formed by grid electrodes has the purpose of time-of-flight differences compensate, which are due to different initial energies of the accelerated ions, thereby improving the mass resolving power of the spectrometer.

Auch mit einem solchen Ionenreflektor versehene Flugzeit-Massenspektrometer erfüllen jedoch noch nicht die Forderungen bezüglich Empfindlichkeit und Auflösungsvermögen, wie sie an ein Gerät zu stellen sind, das als allgemeines Laborgerät geeignet sein und auch dem nicht besonders spezialisierten Fachmann massenspektrometrischen Untersuchungen erlauben soll. Der Erfindung liegt daher die Aufgabe zugrunde, die bekannten Flugzeit-Massenspektrometer so zu verbessern, daß sie bei einfachem Aufbau eine verbesserte Auflösung und Empfindlichkeit besitzen.However, even time-of-flight mass spectrometers provided with such an ion reflector do not yet meet the requirements with regard to sensitivity and resolving power, such as are to be placed on a device which is suitable as a general laboratory device and is also intended to allow mass spectrometric examinations for the not particularly specialized expert. The invention is therefore based on the object of improving the known time-of-flight mass spectrometers so that they have improved resolution and sensitivity with a simple structure.

Die Druckschrift "Soviet Physics Technical Physics 28 (10), October 1983, S 1250-3, beschreibt einen TOF-Spektrometer mit Blendenringe (13) (vgl. Fig 1.) zur Vermeidung von Feldverformungen und zur Zeitfokussierung der Ionenpaketen.The publication "Soviet Physics Technical Physics 28 (10), October 1983, S 1250-3, describes a TOF spectrometer with aperture rings (13) (see FIG. 1) to avoid field deformations and to focus the time of the ion packets.

Die oben erwähnte Aufgabe wird nach der Erfindung durch den Flugzeit-Massenspektrometer gemäß Anspruch 1 gelöst.The above-mentioned object is achieved according to the invention by the time-of-flight mass spectrometer according to claim 1.

Der Einbau der gitterlosen Ringblende und das Anlegen eines erhöhten Potentials an diese Ringblende hat die Ausbildung eines inhomogenen elektrischen Feldes im Bereich der Fokussierelektrode zur Folge, das durch richtige Bemessung von Innendurchmesser der Ringblende und Potentialen zusätzlich zu der Zeitfokussierung auch eine massenunabhängige geometrische Fokussierung des Ionenstrahles bewirkt, die es gestattet, die Detektoroberfläche zu vermindern. Dadurch werden die durch eine mangelnde räumliche Fokussierung bedingten Wegunterschiede für die einzelnen Ionen vermindert, die sonst ebenfalls zu einer Unschärfe der Massenauflösung beitragen, und es wird gleichzeitig das Signal/Rausch-Verhältnis und damit die Empfindlichkeit des Flugzeit-Massenspektrometers verbessert.The installation of the grating-free ring diaphragm and the application of an increased potential to this ring diaphragm results in the formation of an inhomogeneous electric field in the area of the focusing electrode, which through correct measurement of the inner diameter of the ring diaphragm and potentials also results in a mass-independent geometric focusing of the ion beam in addition to the time focusing , which allows the detector surface to be reduced. This reduces the path differences for the individual ions caused by a lack of spatial focusing, which would otherwise also result in a blurring of the mass resolution contribute, and it simultaneously improves the signal-to-noise ratio and thus the sensitivity of the time-of-flight mass spectrometer.

Bei den bisher bekannten Flugzeit-Massenspektrometern wurde es als erforderlich angesehen, die Bremselektroden als Gitter auszubilden, weil ein sehr homogenes elektrisches Feld als notwendig angesehen wurde, um eine über den gesamten Strahlquerschnitt gleiche Zeitfokussierung zu gewährleisten. Tatsächlich hat sich jedoch herausgestellt, daß die durch die Fokussierelektrode bedingte Inhomogenität so eingestellt werden kann, daß sowohl eine optimale zeitliche als auch optimale geometrische Fokussierung erzielt werden kann. Solche optimalen Verhältnisse lassen sich auch dann erzielen, wenn die Bremselektroden ebenso wie die Fokussierelektrode als gitterlose Ringblenden ausgebildet sind. Die Ausbildung der Bremselektroden als gitterlose Ringblenden ist nicht nur möglich, sondern vielmehr auch höchst vorteilhaft, weil dadurch kostspieliege und hochempfindliche Bauelemente, wie sie Gitter darstellen, vermieden werden und darüber hinaus die durch solche Gitter bedingten Transmissionverluste vermieden werden. Selbst wenn solche Gitterelektroden ein so hohes Transmissionsvermögen wie 80 % für den Ionenstrahl aufweisen, erleidet der Ionenstrahl bei viermaligem Passieren solcher Gitter eine Schwächung auf 40 % der ursprünglichen Intensität, was zu einem entsprechenden Empfindlichkeitsverlust führt. Durch die Ausbildung der Bremselektroden als gitterlose Ringblenden wird infolgedessen sowohl eine Vereinfachung als auch eine Erhöhung der Empfindlichkeit des Flugzeit-Massenspektrometers erzielt.In the previously known time-of-flight mass spectrometers, it was considered necessary to design the brake electrodes as a grid, because a very homogeneous electric field was regarded as necessary in order to ensure the same time focusing over the entire beam cross section. In fact, however, it has been found that the inhomogeneity caused by the focusing electrode can be set in such a way that both optimal temporal and optimal geometric focusing can be achieved. Such optimal conditions can also be achieved if the brake electrodes as well as the focusing electrode are designed as gridless ring diaphragms. The design of the brake electrodes as grating-free ring diaphragms is not only possible, but rather also extremely advantageous, because it avoids expensive and highly sensitive components such as the grating and also avoids the transmission losses caused by such grating. Even if such grid electrodes have a transmittance as high as 80% for the ion beam, the ion beam suffers attenuation to 40% of the original intensity when passing through such grids four times, which leads to a corresponding loss of sensitivity. The design of the brake electrodes as gridless ring diaphragms consequently achieves both a simplification and an increase in the sensitivity of the time-of-flight mass spectrometer.

Die bewußte Erzeugung eines inhomogenen elektrischen Feldes im Bereich der Bremselektroden bietet auch die Möglichkeit, durch die Geometrie der Bremselektroden Einfluß auf die Inhomogenität des elektrischen Feldes zu nehmen. Dabei hat es sich als besonders vorteilhaft erwiesen, wenn die vordere Bremselektrode einen größeren Lochdurchmesser aufweist als die hintere.The conscious generation of an inhomogeneous electric field in the area of the brake electrodes also offers the possibility of influencing the inhomogeneity of the electric field through the geometry of the brake electrodes. It has proven to be particularly advantageous if the front brake electrode has a larger hole diameter than the rear one.

Im Hinblick darauf, daß die zur geometrischen Fokussierung notwendige Inhomogenität des elektrischen Feldes nach Größe und Form genau definiert sein muß und weiterhin die Zeitfokussierung wie bei den bekannten Flugzeit-Massenspektrometern eine Flugstrecke mit homogenem Feldverlauf umfassen muß, kann auch bei dem erfindungsgemäßen Flugzeit-Massenspektrometer eine Anzahl Linearisierungselektroden vorhanden sein, die sinngemäß nicht zwischen der hinteren Bremselektrode und der Reflektorelektrode, sondern zwischen der Fokussierelektrode und der Reflektorelektrode angeordnet ist.In view of the fact that the inhomogeneity of the electric field required for geometric focusing must be precisely defined in terms of size and shape, and that the time focusing, as in the known time-of-flight mass spectrometers, must also include a flight path with a homogeneous field profile, one can also apply to the time-of-flight mass spectrometer according to the invention Number of linearization electrodes are present, which is not arranged between the rear brake electrode and the reflector electrode, but rather between the focusing electrode and the reflector electrode.

Die Festlegung der Elektrodenpotentiale kann in bekannter Weise durch die Widerstände eines Spannungsteilers erfolgen, durch welche die jeweils einander benachbarten Elektroden des Ionenreflektors elektrisch miteinander verbunden sind.The electrode potentials can be established in a known manner by the resistors of a voltage divider, by means of which the electrodes of the ion reflector which are adjacent to one another are electrically connected to one another.

Die Erfindung wird im folgenden anhand der in der Zeichnung dargestellten Ausführungsbeispiele näher beschrieben und erläutert. Die der Beschreibung und der Zeichnung zu entnehmenden Merkmale können bei anderen Ausführungsformen der Erfindung einzeln für sich oder zu mehreren in beliebiger Kombination Anwendung finden. Es zeigen

Fig. 1
die schematische Darstellung eines Flugzeit-Spektrometers nach der Erfindung,
Fig. 2
die Elektrodenanordnung des Ionenreflektors einer ersten Ausführungsform der Erfindung,
Fig. 3
die Elektrodenanordnung des Ionenreflektors einer zweiten Ausführungsform der Erfindung und
Fig. 4
eine schematische perspektivische Darstellung einer weiteren Ausführungsform eines Ionenreflektors.
The invention is described and explained in more detail below with reference to the exemplary embodiments shown in the drawing. The features to be gathered from the description and the drawing can be used in other embodiments of the invention individually or in combination in any combination. Show it
Fig. 1
the schematic representation of a time-of-flight spectrometer according to the invention,
Fig. 2
the electrode arrangement of the ion reflector of a first embodiment of the invention,
Fig. 3
the electrode arrangement of the ion reflector of a second embodiment of the invention and
Fig. 4
is a schematic perspective view of another embodiment of an ion reflector.

Das in Fig. 1 schematisch dargestellte Flugzeit-Massenspektrometer umfaßt eine Ionenquelle 1 und einen Detektor 2, die durch einen spitzen Winkel miteinander bildende Flugstrecken 3, 4 miteinander verbunden sind. Im Bereich des Schnittpunktes der beiden Flugstrecken 3, 4 befindet sich ein Ionenreflektor 5. Alle Bauelemente befinden sich innerhalb eines evakuierbaren Gehäuses 6. Der Ionenreflektor 5 umfaßt zwei Bremselektroden 7, 8, die sich am Eingang des Ionenreflektors 5 befinden und von denen die vordere Bremselektrode 7 die Flugstrecken 3, 4 begrenzt, in denen das elektrische Feld keinen Gradienten aufweist. Zwischen den Bremselektroden 7, 8 befindet sich ein elektrisches Feld, durch das die Ionen stark abgebremst werden, bevor sie in die eigentliche Reflexionsstrecke eintreten, die sich zwischen der hinteren Bremselektrode 8 und der Reflektorelektrode 9 befindet. Erfindungsgemäß ist zwischen der hinteren Bremselektrode 8 und der Reflektorelektrode 9 eine Fokussierelektrode 10 angeordnet, welche die Ausbildung eines inhomogenen elektrischen Feldes zur Folge hat, das eine elektrostatische Linse zur geometrischen Fokussierung des Ionenstrahles auf den Detektor 2 bildet.The time-of-flight mass spectrometer shown schematically in FIG. 1 comprises an ion source 1 and a detector 2, which are connected to one another by flight paths 3, 4 forming an acute angle. In the area of the intersection of the two flight paths 3, 4 there is an ion reflector 5. All components are located within an evacuable housing 6. The ion reflector 5 comprises two brake electrodes 7, 8, which are located at the entrance of the ion reflector 5 and of which the front brake electrode 7 delimits the flight routes 3, 4 in which the electric field has no gradient. There is an electrical field between the brake electrodes 7, 8, by means of which the ions are braked strongly before they enter the actual reflection path, which is located between the rear brake electrode 8 and the reflector electrode 9. According to the invention, a focusing electrode 10 is arranged between the rear brake electrode 8 and the reflector electrode 9, which results in the formation of an inhomogeneous electric field that forms an electrostatic lens for geometrically focusing the ion beam onto the detector 2.

Bei der in Fig. 2 dargestellten Elektrodenanordnung sind die beiden Bremselektroden 17, 18 als Gitterelektroden ausgebildet. Zwischen der hinteren Bremselektrode 18 und der von einer ebenen Platte gebildeten Reflektorelektrode 19 befindet sich die als Ringblende ausgebildete Fokussierelektrode 20. Zwischen der Fokussierelektrode 20 und der Reflektorelektrode 19 befinden sich zwei Linearisierungselektroden 21 und 22. Der Außendurchmesser aller Elektroden beträgt 200 mm. Im übrigen ist der Aufbau des Ionenreflektors durch die folgenden Werte gekennzeichnet:

Figure imgb0001
In the electrode arrangement shown in FIG. 2, the two brake electrodes 17, 18 are designed as grid electrodes. Between the rear brake electrode 18 and the reflector electrode 19 formed by a flat plate there is the focusing electrode 20. The focusing electrode 20 is located between the focusing electrode 20 and the reflector electrode 19. There are two linearizing electrodes 21 and 22. The outer diameter of all electrodes is 200 mm. The structure of the ion reflector is characterized by the following values:
Figure imgb0001

Der in Fig. 3 dargestellte Ionenreflektor weist anstelle der als Gitter ausgebildeten Bremselektroden 17, 18 Bremselektroden 27, 28 auf, die ebenfalls als Ringblenden ausgebildet sind. Ferner sind zwischen der Fokussierelektrode 30 und der Reflektorelektrode, die wieder als geschlossene Platte ausgebildet ist, drei als Ringblenden ausgebildete Linearisierungselektroden 31, 32, 33 angeordnet. Für die Elektroden des Ionenreflektors nach Fig. 3 gelten die folgenden Werte:

Figure imgb0002
The ion reflector shown in FIG. 3 has brake electrodes 27, 28 instead of the brake electrodes 17, 18, which are also designed as ring diaphragms. Furthermore, three linearizing electrodes 31, 32, 33 designed as ring diaphragms are arranged between the focusing electrode 30 and the reflector electrode, which is again designed as a closed plate. The following values apply to the electrodes of the ion reflector according to FIG. 3:
Figure imgb0002

Beide Ionenreflektoren ergeben eine einwandfreie zeitliche und räumliche Fokussierung für eine Ionenenergie von 680 V, einen Einfallswinkel der Ionenbahn von 4° und eine Länge der Driftstrecke von 165 cm. Der zur Fokussierung führende Verlauf der Äquipotentialflächen, welche eine Linsenwirkung ergeben, und die fokussierende Wirkung auf den Ionenstrahl sind in den Fig. 2 und 3 durch die Potentiallinien 34 bzw. die Bahnlinien 35 wiedergegeben.Both ion reflectors result in a perfect temporal and spatial focusing for an ion energy of 680 V, an angle of incidence of the ion trajectory of 4 ° and a length of the drift distance of 165 cm. The course of the equipotential surfaces leading to focusing, which result in a lens effect, and the focusing effect on the ion beam are shown in FIGS. 2 and 3 by the potential lines 34 and the path lines 35, respectively.

Fig. 4 veranschaulicht endlich den mechanischen Aufbau eines nach der Erfindung ausgebildeten Ionenreflektors. Dieser Ionenreflektor umfaßt Elektroden 41 bis 46 in Form von Ringblenden, die mittels kurzer Keramikröhrchen 49 auf einer Trägerplatte 48 montiert sind. Die Trägerplatte 48 mit dem Elektrodensystem ist innerhalb eines Vakuumgefäßes 52 angeordnet, das einen Rohrstutzen 53 zum Anschluß einer Vakuumpumpe und einen Flansch 54 zum Anschluß des Gehäuses mit den übrigen Komponenten des Flugzeit-Massenspektrometers aufweist. Das Vakuumgefäß 52 weist an dem dem Flansch 54 entgegengesetzten Ende einen Trägerflansch 51 auf, an dem die Trägerplatte 48 mit dem Elektrodensystem befestigt ist und der Vakuumdurchführungen 50 aufweist, die es gestatten, definierte Potentiale an die Elektroden anzulegen. Genauer gesagt, dienen die Vakuumdurchführungen 50 dazu, eine Spannung an einen Spannungsteiler anzulegen, der von Widerständen 47 gebildet wird, von denen jeder zwei der benachbarten Elektroden 41 bis 46 miteinander verbindet. Die Werte der Widerstände 47 sind so gewählt, daß sich die der nachfolgenden Tabelle zu entnehmende Potentialverteilung ergibt. Dieser Tabelle sind auch die Innendurchmesser und die Achsenposition der Elektroden zu entnehmen. Bei einem Innendurchmesser des Vakuumgefäßes 52 von 200 mm beträgt hier der Außendurchmesser der Blenden 170 mm. Die angestrebte zeitliche und räumliche Fokussierung wird wieder für eine Ionenenergie von 680 eV, einen Ionenstrahl-Einfallswinkel von 4° und eine Länge der Driftstrecke von 165 cm erzielt.

Figure imgb0003
4 finally illustrates the mechanical structure of an ion reflector designed according to the invention. This ion reflector comprises electrodes 41 to 46 in the form of ring diaphragms which are mounted on a carrier plate 48 by means of short ceramic tubes 49. The carrier plate 48 with the electrode system is arranged within a vacuum vessel 52 which has a pipe socket 53 for connecting a vacuum pump and a flange 54 for connecting the housing to the other components of the time-of-flight mass spectrometer. The vacuum vessel 52 has, at the end opposite the flange 54, a carrier flange 51 to which the carrier plate 48 is fastened with the electrode system and which has vacuum feedthroughs 50 which allow defined potentials to be applied to the electrodes. More specifically, the vacuum bushings 50 serve to apply a voltage to a voltage divider, that of resistors 47 is formed, each of which connects two of the adjacent electrodes 41 to 46 to one another. The values of the resistors 47 are selected so that the potential distribution shown in the table below results. This table also shows the internal diameter and the axis position of the electrodes. With an inner diameter of the vacuum vessel 52 of 200 mm, the outer diameter of the orifices here is 170 mm. The desired temporal and spatial focus is again achieved for an ion energy of 680 eV, an ion beam incidence angle of 4 ° and a length of the drift distance of 165 cm.
Figure imgb0003

Die in den oben wiedergegebenen Tabellen enthaltenen Werte wurden mittels eines Computers berechnet. Es versteht sich, daß mittels üblicher Algorithmen auch die optimalen Werte für Blendendurchmesser und -abstände sowie für die Potentialverteilung für andere Randbedingungen ermittelt werden können, die in der Ionenenergie, dem Ionenstrahl-Einfallswinkel und der Länge der Driftstrecke bestehen.The values contained in the tables given above were calculated using a computer. It is understood that the usual values for aperture diameters and distances and for the potential distribution for other boundary conditions can be determined using conventional algorithms, which consist of the ion energy, the ion beam incidence angle and the length of the drift distance.

Claims (5)

  1. Time-of-flight mass spectrometer with an ion reflector, which has a repeller or reflector electrode (29) and two parallel decelerating electrodes (27,28), which define a decelerating field and which are positioned in spaced manner in front of the electrode (29), characterized in that between the rear decelerating electrode (28) adjacent to the reflector electrode (29) and the latter is positioned at least one focussing electrode (30), which is constructed as a grid or grating-free annular diaphragm and which, during operation, is at a higher potential than that corresponding to the linear potential rise from the rear decelerating electrode (28) to the reflector electrode (29), the potential and internal diameter being selected in such a way that, in addition to a time focussing, a mass-independent geometrical focussing is also obtained.
  2. Time-of-flight mass spectrometer according to claim 1, characterized in that the decelerating electrodes (27,28) are constructed as grid-free annular diaphragms.
  3. Time-of-flight mass spectrometer according to claim 2, characterized in that the front decelerating electrode (27) has a larger aperture diameter than the rear decelerating electrode.
  4. Time-of-flight mass spectrometer according to one of the preceding claims, characterized in that a plurality of linearization electrodes (31,32,33) is located between the focussing electrode (30) and the reflector electrode (29).
  5. Time-of-flight mass spectrometer according to one of the preceding claims, characterized in that its in each case adjacent electrodes (41 to 46) are electrically interconnected by the resistors (47) of a voltage divider determining the electrode potentials.
EP86107585A 1985-07-10 1986-06-04 Time-of-flight mass spectrometer with an ion reflector Expired - Lifetime EP0208894B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853524536 DE3524536A1 (en) 1985-07-10 1985-07-10 FLIGHT TIME MASS SPECTROMETER WITH AN ION REFLECTOR
DE3524536 1985-07-10

Publications (3)

Publication Number Publication Date
EP0208894A2 EP0208894A2 (en) 1987-01-21
EP0208894A3 EP0208894A3 (en) 1988-09-21
EP0208894B1 true EP0208894B1 (en) 1991-10-23

Family

ID=6275348

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86107585A Expired - Lifetime EP0208894B1 (en) 1985-07-10 1986-06-04 Time-of-flight mass spectrometer with an ion reflector

Country Status (3)

Country Link
US (1) US4731532A (en)
EP (1) EP0208894B1 (en)
DE (2) DE3524536A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201821A (en) * 2010-09-08 2013-07-10 株式会社岛津制作所 Time-of-flight mass spectrometer

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810883A (en) * 1985-05-31 1989-03-07 Turner David W Device for providing an energy filtered charge particle image
US4742224A (en) * 1986-12-22 1988-05-03 American Telephone And Telegraph Company At&T Bell Laboratories Charged particle energy filter
DE3726952A1 (en) * 1987-08-13 1989-02-23 Kutscher Roland Dipl Phys Ion reflectors having novel electrode geometries for temporal and spatial focusing of ion beams
DE3842044A1 (en) * 1988-12-14 1990-06-21 Forschungszentrum Juelich Gmbh FLIGHT TIME (MASS) SPECTROMETER WITH HIGH RESOLUTION AND TRANSMISSION
DE3920566A1 (en) * 1989-06-23 1991-01-10 Bruker Franzen Analytik Gmbh MS-MS FLIGHT TIME MASS SPECTROMETER
GB8915972D0 (en) * 1989-07-12 1989-08-31 Kratos Analytical Ltd An ion mirror for a time-of-flight mass spectrometer
US5026988A (en) * 1989-09-19 1991-06-25 Vanderbilt University Method and apparatus for time of flight medium energy particle scattering
US5017780A (en) * 1989-09-20 1991-05-21 Roland Kutscher Ion reflector
US5070240B1 (en) * 1990-08-29 1996-09-10 Univ Brigham Young Apparatus and methods for trace component analysis
US5210412A (en) * 1991-01-31 1993-05-11 Wayne State University Method for analyzing an organic sample
US5168158A (en) * 1991-03-29 1992-12-01 The United States Of America As Represented By The United States Department Of Energy Linear electric field mass spectrometry
US5202563A (en) * 1991-05-16 1993-04-13 The Johns Hopkins University Tandem time-of-flight mass spectrometer
US5144127A (en) * 1991-08-02 1992-09-01 Williams Evan R Surface induced dissociation with reflectron time-of-flight mass spectrometry
US5160840A (en) * 1991-10-25 1992-11-03 Vestal Marvin L Time-of-flight analyzer and method
DE4442348C2 (en) * 1994-11-29 1998-08-27 Bruker Franzen Analytik Gmbh Method and device for improved mass resolution of a time-of-flight mass spectrometer with ion reflector
US6002127A (en) * 1995-05-19 1999-12-14 Perseptive Biosystems, Inc. Time-of-flight mass spectrometry analysis of biomolecules
US5742049A (en) * 1995-12-21 1998-04-21 Bruker-Franzen Analytik Gmbh Method of improving mass resolution in time-of-flight mass spectrometry
US5814813A (en) * 1996-07-08 1998-09-29 The Johns Hopkins University End cap reflection for a time-of-flight mass spectrometer and method of using the same
US5955730A (en) * 1997-06-26 1999-09-21 Comstock, Inc. Reflection time-of-flight mass spectrometer
US6008491A (en) * 1997-10-15 1999-12-28 The United States Of America As Represented By The United States Department Of Energy Time-of-flight SIMS/MSRI reflectron mass analyzer and method
GB9802115D0 (en) 1998-01-30 1998-04-01 Shimadzu Res Lab Europe Ltd Time-of-flight mass spectrometer
US5969350A (en) * 1998-03-17 1999-10-19 Comstock, Inc. Maldi/LDI time-of-flight mass spectrometer
US5994695A (en) * 1998-05-29 1999-11-30 Hewlett-Packard Company Optical path devices for mass spectrometry
AU750860B2 (en) * 1998-09-23 2002-08-01 Agilent Technologies Australia (M) Pty Ltd Ion Optical system for a mass spectrometer
CA2344446C (en) 1998-09-23 2008-07-08 Varian Australia Pty. Ltd. Ion optical system for a mass spectrometer
US6518569B1 (en) 1999-06-11 2003-02-11 Science & Technology Corporation @ Unm Ion mirror
DE19940932A1 (en) * 1999-08-27 2001-03-01 Alban Kellerbauer Transforming device for converting higher energy primary ion beam into lower energy ion beam has opening with radius that decreases with distance from entry point
DE10005698B4 (en) * 2000-02-09 2007-03-01 Bruker Daltonik Gmbh Gridless reflector time-of-flight mass spectrometer for orthogonal ion injection
US6744040B2 (en) 2001-06-13 2004-06-01 Bruker Daltonics, Inc. Means and method for a quadrupole surface induced dissociation quadrupole time-of-flight mass spectrometer
JP3797200B2 (en) * 2001-11-09 2006-07-12 株式会社島津製作所 Time-of-flight mass spectrometer
DE10156604A1 (en) * 2001-11-17 2003-05-28 Bruker Daltonik Gmbh Spatial angle focusing reflector for flight time mass spectrometer has field between last annular aperture and terminating aperture made weaker than between preceding reflector apertures
US6888130B1 (en) 2002-05-30 2005-05-03 Marc Gonin Electrostatic ion trap mass spectrometers
US6818887B2 (en) * 2002-11-25 2004-11-16 DRäGERWERK AKTIENGESELLSCHAFT Reflector for a time-of-flight mass spectrometer
US7157701B2 (en) * 2004-05-20 2007-01-02 Mississippi State University Research And Technology Corporation Compact time-of-flight mass spectrometer
GB2426120A (en) * 2005-05-11 2006-11-15 Polaron Plc A reflectron for use in a three-dimensional atom probe
DE102008058144B4 (en) * 2008-11-20 2011-07-14 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Electrostatic energy analyzer for charged particles, spectrometer and monochromator with such an analyzer
GB2476964A (en) 2010-01-15 2011-07-20 Anatoly Verenchikov Electrostatic trap mass spectrometer
EP2355129B1 (en) 2010-01-29 2013-01-09 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Reflector for a time of flight mass spectrometer
US9396922B2 (en) 2011-10-28 2016-07-19 Leco Corporation Electrostatic ion mirrors
CN104704604B (en) * 2012-10-10 2016-12-28 株式会社岛津制作所 Time of-flight mass spectrometer
WO2014142897A1 (en) 2013-03-14 2014-09-18 Leco Corporation Multi-reflecting mass spectrometer
GB201408392D0 (en) * 2014-05-12 2014-06-25 Shimadzu Corp Mass Analyser
GB201507363D0 (en) 2015-04-30 2015-06-17 Micromass Uk Ltd And Leco Corp Multi-reflecting TOF mass spectrometer
GB201520134D0 (en) 2015-11-16 2015-12-30 Micromass Uk Ltd And Leco Corp Imaging mass spectrometer
GB201520130D0 (en) 2015-11-16 2015-12-30 Micromass Uk Ltd And Leco Corp Imaging mass spectrometer
GB201520540D0 (en) 2015-11-23 2016-01-06 Micromass Uk Ltd And Leco Corp Improved ion mirror and ion-optical lens for imaging
GB201613988D0 (en) 2016-08-16 2016-09-28 Micromass Uk Ltd And Leco Corp Mass analyser having extended flight path
GB2567794B (en) 2017-05-05 2023-03-08 Micromass Ltd Multi-reflecting time-of-flight mass spectrometers
GB2563571B (en) 2017-05-26 2023-05-24 Micromass Ltd Time of flight mass analyser with spatial focussing
EP3662502A1 (en) 2017-08-06 2020-06-10 Micromass UK Limited Printed circuit ion mirror with compensation
WO2019030471A1 (en) 2017-08-06 2019-02-14 Anatoly Verenchikov Ion guide within pulsed converters
WO2019030473A1 (en) 2017-08-06 2019-02-14 Anatoly Verenchikov Fields for multi-reflecting tof ms
US11211238B2 (en) 2017-08-06 2021-12-28 Micromass Uk Limited Multi-pass mass spectrometer
CN111164731B (en) 2017-08-06 2022-11-18 英国质谱公司 Ion implantation into a multichannel mass spectrometer
EP3662501A1 (en) 2017-08-06 2020-06-10 Micromass UK Limited Ion mirror for multi-reflecting mass spectrometers
US11817303B2 (en) 2017-08-06 2023-11-14 Micromass Uk Limited Accelerator for multi-pass mass spectrometers
GB2568354B (en) 2017-09-28 2022-08-10 Bruker Daltonics Gmbh & Co Kg Wide-range high mass resolution in reflector time-of-flight mass spectrometers
GB201806507D0 (en) 2018-04-20 2018-06-06 Verenchikov Anatoly Gridless ion mirrors with smooth fields
GB201807626D0 (en) 2018-05-10 2018-06-27 Micromass Ltd Multi-reflecting time of flight mass analyser
GB201807605D0 (en) 2018-05-10 2018-06-27 Micromass Ltd Multi-reflecting time of flight mass analyser
GB201808530D0 (en) 2018-05-24 2018-07-11 Verenchikov Anatoly TOF MS detection system with improved dynamic range
GB201810573D0 (en) 2018-06-28 2018-08-15 Verenchikov Anatoly Multi-pass mass spectrometer with improved duty cycle
GB201901411D0 (en) 2019-02-01 2019-03-20 Micromass Ltd Electrode assembly for mass spectrometer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE956450C (en) * 1953-11-25 1957-01-17 Tno mass spectrometry
US3727047A (en) * 1971-07-22 1973-04-10 Avco Corp Time of flight mass spectrometer comprising a reflecting means which equalizes time of flight of ions having same mass to charge ratio
US4072862A (en) * 1975-07-22 1978-02-07 Mamyrin Boris Alexandrovich Time-of-flight mass spectrometer
DE2540505A1 (en) * 1975-09-11 1977-03-24 Leybold Heraeus Gmbh & Co Kg FLIGHT TIME MASS SPECTROMETERS FOR IONS WITH DIFFERENT ENERGIES
DE3025764C2 (en) * 1980-07-08 1984-04-19 Hermann Prof. Dr. 6301 Fernwald Wollnik Time of flight mass spectrometer
US4611118A (en) * 1983-08-16 1986-09-09 Institut Kosmicheskish Issledovany Akademi Nauk Sss Time-of-flight ion mass analyzer
JPS60119067A (en) * 1983-11-30 1985-06-26 Shimadzu Corp Mass spectrograph of flight time type

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201821A (en) * 2010-09-08 2013-07-10 株式会社岛津制作所 Time-of-flight mass spectrometer
CN103201821B (en) * 2010-09-08 2015-08-26 株式会社岛津制作所 Time-of-flight type quality analysis apparatus

Also Published As

Publication number Publication date
DE3682127D1 (en) 1991-11-28
US4731532A (en) 1988-03-15
EP0208894A2 (en) 1987-01-21
EP0208894A3 (en) 1988-09-21
DE3524536A1 (en) 1987-01-22

Similar Documents

Publication Publication Date Title
EP0208894B1 (en) Time-of-flight mass spectrometer with an ion reflector
EP0396019B1 (en) Ion cyclotron resonance spectrometer
DE3590146C2 (en)
DE1539659B2 (en) STIGMATIC IMAGING SYSTEM FOR A DOUBLE FOCUSING MASS SPECTROMETER
DE4442348C2 (en) Method and device for improved mass resolution of a time-of-flight mass spectrometer with ion reflector
DE3517667A1 (en) LASER MASS SPECTROMETER
DE1937482A1 (en) Microbeam probe
DE2628422C3 (en) Methods of mass spectroscopy
DE3522340C2 (en)
DE19635645C2 (en) Method for the high-resolution spectral recording of analyte ions in a linear time-of-flight mass spectrometer
DE4041297A1 (en) METHOD AND DEVICE FOR SELECTING THE RESOLUTION OF A CHARGED PARTICLE BEAM ANALYZER
DE2705430A1 (en) ELECTROSTATIC ANALYZER FOR CHARGED PARTICLES
DE3204897A1 (en) BODY RADIATOR GENERATING SYSTEM AND METHOD FOR ITS OPERATION
DE3990613C2 (en) Mass spectrometer with variable dispersion
EP0633601A2 (en) Large aperture, low flight-time distortion detector for a time-of-flight mass spectrometer
DE2623207C2 (en) Deflector unit for ion beam devices
DE2659385A1 (en) ANALYZER WITH ION MICRO PROBE
DE102020133974B3 (en) Energy analyzer for electrically charged particles
DE2752933A1 (en) ELECTRON MICROSCOPE
EP0087152A2 (en) Secondary electron spectrometer and method of using the same
DE2539161C2 (en) mass spectrometry
DE2329190A1 (en) X-RAY SPECTROMETERS
DE102018113331B4 (en) Ion-mobility spectrometer
DE2322203C2 (en) mass spectrometry
DE1614268C3 (en) Electron-optical system for correcting orthogonality errors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19881105

17Q First examination report despatched

Effective date: 19900405

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3682127

Country of ref document: DE

Date of ref document: 19911128

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: WOLLNIK, HERMANN, DR., PROFESSOR

Effective date: 19920708

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19940203

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040623

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040628

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050629

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050604

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060228