JPS6245663B2 - - Google Patents
Info
- Publication number
- JPS6245663B2 JPS6245663B2 JP5675881A JP5675881A JPS6245663B2 JP S6245663 B2 JPS6245663 B2 JP S6245663B2 JP 5675881 A JP5675881 A JP 5675881A JP 5675881 A JP5675881 A JP 5675881A JP S6245663 B2 JPS6245663 B2 JP S6245663B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode elements
- deflection
- electrodes
- potential
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002245 particle Substances 0.000 claims description 4
- 238000009826 distribution Methods 0.000 description 13
- 230000004075 alteration Effects 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/147—Arrangements for directing or deflecting the discharge along a desired path
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
Description
【発明の詳細な説明】
本発明は、荷電粒子ビームの静電偏向装置に関
する。一般に、静電偏向装置は、電子ビーム露光
装置、電子顕微鏡、ブラウン管、撮像管等におい
て、ビームを高速かつ精密に偏向したりあるいは
ビーム断面形状を整えたりするために広く用いら
れている。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for electrostatic deflection of charged particle beams. In general, electrostatic deflection devices are widely used in electron beam exposure devices, electron microscopes, cathode ray tubes, image pickup tubes, and the like to deflect beams at high speed and precision or to adjust the cross-sectional shape of beams.
このような分野に用いられる静電偏向装置で
は、偏向範囲を広くする上で、偏向電界を余弦分
布にして、広い範囲にわたり偏向収差をできるだ
け小さくすることが望ましい。 In an electrostatic deflection device used in such fields, in order to widen the deflection range, it is desirable that the deflection electric field has a cosine distribution to minimize deflection aberration over a wide range.
従来、このような偏向装置としては、第1図に
示すように、12個の電極要素D1〜D12をそれぞれ
絶縁して円周上に順次等間隔に配置した多重極型
の静電偏向装置が知られている(特開昭53−
134369号公報参照)。 Conventionally, such a deflection device is a multipole type electrostatic deflection device in which 12 electrode elements D 1 to D 12 are insulated and sequentially arranged at equal intervals on the circumference, as shown in Fig. 1. The device is known (Japanese Unexamined Patent Application Publication No. 1983-1999)
(Refer to Publication No. 134369).
図示の如く、中心角60゜で相対する4個の電極
要素D2とD12、D6とD8にX方向の偏向電圧+Vx,
−Vxを印加し、90゜位相を異にする4個の電極
要素D3とD5、D9とD11にY方向の偏向電圧+Vy,
−Vyを印加し、残りの4個の電極要素を接地
(零)電位とすることにより、偏向電界は余弦分
布となる。この場合、電位分布の角度座標θに対
する3次のフーリエ成分(3次収差に関与する電
界成分)を除去することができるが、高次のフー
リエ成分は5次以上の項が残ることになつてい
る。この5次の項を消去することにより、より広
範囲にわたつて、収差を小さくすることができ
る。 As shown in the figure , the deflection voltage + Vx in the
−Vx is applied, and a Y - direction deflection voltage +Vy,
By applying -Vy and setting the remaining four electrode elements to ground (zero) potential, the deflection electric field has a cosine distribution. In this case, the third-order Fourier component (electric field component involved in third-order aberration) with respect to the angular coordinate θ of the potential distribution can be removed, but the higher-order Fourier components include terms of fifth order or higher. There is. By eliminating this fifth-order term, aberrations can be reduced over a wider range.
本発明は、電位分布の角度座標θに関する3次
及び5次の電界成分を除去することのできる静電
偏向装置を提供することを目的とする。 An object of the present invention is to provide an electrostatic deflection device that can remove third-order and fifth-order electric field components regarding the angular coordinate θ of potential distribution.
この目的は、円周上に順次等間隔に配置した60
個の電極要素のうち、中心角12゜、24゜、60゜、
96゜、108゜、又は中心角36゜、48゜、60゜、156
゜、168゜に位置する10個の電極要素とこれらの
電極要素と円の中心に対して反対の位置にある10
個の電極要素とをX方向の偏向電極とし、これら
20個の電極要素に対しそれぞれ90゜位相を異にし
た位置にある20個の電極要素をY方向の偏向電極
とし、残りの20個の電極要素を接地電極とするこ
とによつて達成される。 The purpose is to arrange 60
Of the electrode elements, the central angles are 12°, 24°, 60°,
96°, 108°, or central angle 36°, 48°, 60°, 156
10 electrode elements located at 168° and 10 electrode elements located opposite these electrode elements to the center of the circle.
These electrode elements are used as deflection electrodes in the X direction.
This is achieved by using 20 electrode elements that are 90° out of phase with each other as deflection electrodes in the Y direction, and the remaining 20 electrode elements as ground electrodes. .
以下、添付図により本発明を詳しく説明する。
先ず、第2図〜第5図を用いて本発明の原理を説
明する。第2図〜第5図は、円周上に順次等間隔
に60個の電極要素D1〜D60を配置したものであ
る。説明の便宜上、一部の電極要素のみを図示し
た。 Hereinafter, the present invention will be explained in detail with reference to the accompanying drawings.
First, the principle of the present invention will be explained using FIGS. 2 to 5. In FIGS. 2 to 5, 60 electrode elements D 1 to D 60 are sequentially arranged at equal intervals on the circumference. For convenience of explanation, only some electrode elements are illustrated.
第2図において、X軸上にある2個の電極要素
D1,D31にそれぞれ+1V,−1Vの電圧を印加し、
その他の電極要素D2〜D30,D32〜D60を0電位と
する場合の電位分布Φ1は、その対称性から、角
度座標θについて展開して、次のように表わすこ
とができる。 In Figure 2, two electrode elements on the X axis
Apply voltages of +1V and -1V to D 1 and D 31 , respectively,
Due to its symmetry, the potential distribution Φ 1 when the other electrode elements D 2 to D 30 and D 32 to D 60 are set to 0 potential can be expressed as follows by expanding with respect to the angular coordinate θ.
(但し、mは展開の次数、は円筒座標r,zに
依存する係数を表わす。)
(1)式から、図中、点Pと対称な点Q,Rにおけ
る電位分布ΦQ、ΦRは、点Pの電位分布ΦPに対
して次の関係があることが判る。 (However, m is the order of expansion, and represents a coefficient that depends on the cylindrical coordinates r, z.) From equation (1), the potential distributions Φ Q and Φ R at points Q and R, which are symmetrical to point P in the figure, are , it can be seen that the following relationship exists for the potential distribution Φ P at point P.
ΦP=ΦQ ΦP=−ΦR ………(2)
また第3図に示すように、電極要素D2に+
1V、電極要素D32に−1Vを印加し、その他の電極
要素D2〜D31,D33〜D60を0電位とする場合の電
位分布Φ2は、第2図に示す電位分布を+6゜反
時計方向に回転したものであるから、
と表わすことができる。 Φ P = Φ Q Φ P = −Φ R ………(2) Also, as shown in Fig. 3 , +
1V, -1V is applied to the electrode element D 32 , and the other electrode elements D 2 to D 31 and D 33 to D 60 are set to 0 potential. The potential distribution Φ 2 is the potential distribution shown in FIG. 2 by +6゜Since it is rotated counterclockwise, It can be expressed as
同様にして、第4図に示すように中心角12゜、
24゜、60゜、96゜、108゜で相対する位置にある
20個の電極要素のうち、電極要素D2,D3,D6,
D9,D10,D52,D53,D56,D59,D60に+1V、電
極要素D22,D23,D26,D29,D30,D32,D33,
D36,D39,D40、に−1Vを印加し、他の電極要素
を0電位とする場合の電位分布ΦVは、
となる。 Similarly, as shown in Figure 4, the central angle is 12°,
Located at opposite positions at 24°, 60°, 96°, and 108°
Among the 20 electrode elements, electrode elements D 2 , D 3 , D 6 ,
+1V for D 9 , D 10 , D 52 , D 53 , D 56 , D 59 , D 60 , electrode elements D 22 , D 23 , D 26 , D 29 , D 30 , D 32 , D 33 ,
The potential distribution Φ V when applying -1V to D 36 , D 39 , D 40 and setting the other electrode elements to 0 potential is: becomes.
また、第5図に示すように、中心角36゜、48
゜、60゜、156゜、168゜で相対する位置にある20
個の電極要素のうち、電極要素D4,D5,D6,
D14,D15,D47,D48,D56,D57,D58に+1V、電
極要素D17,D18,D26,D27,D28,D34,D35,
D36,D44,D45に−1Vを印加し、他の電極要素を
0電位とする場合の電位分布ΦUは、
となる。 Also, as shown in Figure 5, the central angles are 36° and 48°.
20 in opposite positions at ゜, 60゜, 156゜, 168゜
Among the electrode elements, electrode elements D 4 , D 5 , D 6 ,
+1V to D 14 , D 15 , D 47 , D 48 , D 56 , D 57 , D 58 , electrode elements D 17 , D 18 , D 26 , D 27 , D 28 , D 34 , D 35 ,
The potential distribution Φ U when applying -1V to D 36 , D 44 , and D 45 and setting the other electrode elements to 0 potential is: becomes.
(4)、(5)式において、m=0、1、2、3につい
て、それぞれ中括弧内の値をθ=0の場合につい
て計算すると、
となり、それぞれ3θ、5θの成分が除去されて
いることが判る。 In equations (4) and (5), for m=0, 1, 2, and 3, if the values in the curly brackets are calculated for the case of θ=0, It can be seen that the 3θ and 5θ components are removed, respectively.
なお、Y方向の偏向電界分布については、90゜
位相を異にするだけであり、上記したX方向の場
合と同様に3θ及び5θの成分が除去される。 Note that the deflection electric field distribution in the Y direction is only changed in phase by 90°, and the 3θ and 5θ components are removed as in the case of the X direction described above.
したがつて、第6図又は第7図に示すように、
円周上に順次等間隔に配置した60個の電極要素
D1〜D60(簡略のため数字のみで示す。)のう
ち、中心角12゜、24゜、60゜、96゜、108゜に位
置する電極要素D2,D60;D3,D59;D6,D57;
D9,D53;D10,D52とこれらの電極要素に中心に
対して反対の位置にある電極要素、D32,D30;
D33,D29;D36,D26;D39,D23,D40,D22(第6
図)、又は中心角36゜、48゜、60゜、156゜、168
゜に位置する電極要素、D4,D58;D5,D57;
D6,D56;D14,D48;D15,D47とこれらの電極要
素に中心に対して反対の位置にあるD34,D28;
D35,D27;D36,D26;D44,D18、D45,D17(第7
図)の20個の電極要素に、X方向の偏向電圧+
Vx,−Vx(簡略のためX,−Xで示す。)を印加
し、これら20個の電極要素に対してそれぞれ90゜
位相を異にした位置にある20個の電極要素D17,
D15;D18,D14;D21,D11;D24,D8;D25,D7及
びD47,D45;D48,D44;D51,D41;D54,D38;
D55,D37(第6図)、又はD19,D13;D20,D12;
D21,D11;D29,D3;D30,D2及びD49,D43;
D50,D42;D51,D41;D59,D33;D60,D32(第7
図)にY方向の偏向電圧+Vy,−Vy(簡略のた
めy,−yで示す)を印加し、残りの20個の電極
要素を接地(零)電位(簡略のため「0」で示
す。)とすることにより、3次及び5次の収差に
関与するフーリエ成分である3θ及び5θ成分を
除去した偏向電界分布を形成することができる。 Therefore, as shown in FIG. 6 or 7,
60 electrode elements arranged sequentially and evenly spaced around the circumference
Electrode elements D 2 , D 60 ; D 3 , D 59 located at central angles of 12°, 24°, 60°, 96°, and 108° among D 1 to D 60 (shown only by numbers for simplicity) ; D6 , D57 ;
D 9 , D 53 ; D 10 , D 52 and electrode elements located opposite to these electrode elements with respect to the center, D 32 , D 30 ;
D 33 , D 29 ; D 36 , D 26 ; D 39 , D 23 , D 40 , D 22 (6th
), or center angle 36°, 48°, 60°, 156°, 168
Electrode elements located at °, D 4 , D 58 ; D 5 , D 57 ;
D 6 , D 56 ; D 14 , D 48 ; D 15 , D 47 and D 34 , D 28 located opposite to the center of these electrode elements;
D 35 , D 27 ; D 36 , D 26 ; D 44 , D 18 , D 45 , D 17 (7th
The deflection voltage in the X direction +
Vx, -Vx (indicated by
D 15 ; D 18 , D 14 ; D 21 , D 11 ; D 24 , D 8 ; D 25 , D 7 and D 47 , D 45 ; D 48 , D 44 ; D 51 , D 41 ; D 54 , D 38 ;
D 55 , D 37 (Figure 6), or D 19 , D 13 ; D 20 , D 12 ;
D 21 , D 11 ; D 29 , D 3 ; D 30 , D 2 and D 49 , D 43 ;
D 50 , D 42 ; D 51 , D 41 ; D 59 , D 33 ; D 60 , D 32 (7th
Deflection voltages +Vy, -Vy (indicated by y and -y for simplicity) in the Y direction are applied to the electrodes (Figure), and the remaining 20 electrode elements are at ground (zero) potential (indicated by "0" for simplicity). ), it is possible to form a deflection electric field distribution in which 3θ and 5θ components, which are Fourier components involved in third- and fifth-order aberrations, are removed.
上述したように、本発明の偏向装置は、第1図
に示した従来の静電偏向装置と同様に、分割抵抗
回路を付加しないで電極要素にそのままX,Y両
方向の偏向電圧を印加するので、それだけ荷電粒
子ビームを高精度、高速度で偏向することができ
るという効果は勿論のこと、3次収差だけでなく
5次収差に関与する高次のフーリエ成分5θも除
去することができるので、より広い範囲にわたつ
てビームを偏向できる効果を有する。 As described above, the deflection device of the present invention, like the conventional electrostatic deflection device shown in FIG. 1, directly applies deflection voltages in both the X and Y directions to the electrode elements without adding a dividing resistor circuit. This not only has the effect of deflecting the charged particle beam with high accuracy and high speed, but also removes not only the third-order aberration but also the higher-order Fourier component 5θ involved in the fifth-order aberration. This has the effect of deflecting the beam over a wider range.
なお、本発明に用いる電極要素は、第4図〜第
7図に例示した棒状又は円筒状の電極要素に限定
されるのでなく、平板状のものでもよい。また、
第8図〜第10図の実施態様にみられるように、
円空円筒を等間隔で分割したもの、台形状の中空
円錐を等間隔で分割したもの、中空円筒を等間隔
でらせん状に分割したものなど、種々の同一構成
の電極要素60個を用いても同様な作用効果が得ら
れる。 Note that the electrode elements used in the present invention are not limited to the rod-shaped or cylindrical electrode elements illustrated in FIGS. 4 to 7, but may be plate-shaped electrode elements. Also,
As seen in the embodiments of FIGS. 8-10,
Using 60 electrode elements of various identical configurations, such as a hollow cylinder divided at equal intervals, a trapezoidal hollow cone divided at equal intervals, and a hollow cylinder divided into spirals at equal intervals. Similar effects can be obtained.
第1図は従来の静電偏向装置の平面図、第2図
〜第5図は本発明の原理説明図、第6図と第7図
は本発明の偏向装置の実施態様例を示す平面図、
第8図〜第10図は本発明に用いる電極要素の構
成の態様を部分的に例示する斜視図。
図中の符号:D1〜D60:電極要素、X,−X:
X方向偏向電圧、Y,−Y:Y方向偏向電圧。
FIG. 1 is a plan view of a conventional electrostatic deflection device, FIGS. 2 to 5 are diagrams explaining the principle of the present invention, and FIGS. 6 and 7 are plan views showing embodiments of the deflection device of the present invention. ,
FIGS. 8 to 10 are perspective views partially illustrating configurations of electrode elements used in the present invention. Codes in the figure: D 1 to D 60 : Electrode element, X, -X:
X direction deflection voltage, Y, -Y: Y direction deflection voltage.
Claims (1)
素のうち、中心角12゜、24゜、60゜、96゜、180
゜に位置する10個の電極要素とこれらの電極要素
と中心に対して反対の位置にある10個の電極要素
とをX方向の偏向電極とし、これら20個の電極要
素に対してそれぞれ90゜位相を異にした位置にあ
る20個の電極要素をY方向の偏向電極とし、残り
の20個の電極要素を接地電極とすることを特徴と
する荷電粒子用偏向装置。 2 円周上に順次等間隔に配置した60個の電極要
素のうち、中心角36゜、48゜、60゜、156゜、168
゜に位置する10個の電極要素とこれらの電極要素
と中心に対して反対の位置にある10個の電極要素
をX方向の偏向電極とし、これら20個の電極要素
に対してそれぞれ90゜位相を異にした位置にある
20個の電極要素をY方向の偏向電極とし、残りの
20個の電極要素を接地電極とすることを特徴とす
る荷電粒子用偏向装置。[Claims] 1. Of the 60 electrode elements sequentially arranged at equal intervals on the circumference, the central angles are 12°, 24°, 60°, 96°, and 180°.
The 10 electrode elements located at 90° and the 10 electrode elements located opposite to the center are the deflection electrodes in the X direction. A charged particle deflection device characterized in that 20 electrode elements located at different phases are used as Y-direction deflection electrodes, and the remaining 20 electrode elements are used as ground electrodes. 2 Among the 60 electrode elements arranged at regular intervals on the circumference, the central angles are 36°, 48°, 60°, 156°, and 168°.
The 10 electrode elements located at 0° and the 10 electrode elements located opposite to the center are used as deflection electrodes in the X direction, and each of these 20 electrode elements has a 90° phase. in different positions
20 electrode elements are used as deflection electrodes in the Y direction, and the remaining
A charged particle deflection device characterized by using 20 electrode elements as ground electrodes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5675881A JPS57172642A (en) | 1981-04-15 | 1981-04-15 | Deflector for charged particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5675881A JPS57172642A (en) | 1981-04-15 | 1981-04-15 | Deflector for charged particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57172642A JPS57172642A (en) | 1982-10-23 |
JPS6245663B2 true JPS6245663B2 (en) | 1987-09-28 |
Family
ID=13036398
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5675881A Granted JPS57172642A (en) | 1981-04-15 | 1981-04-15 | Deflector for charged particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57172642A (en) |
-
1981
- 1981-04-15 JP JP5675881A patent/JPS57172642A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57172642A (en) | 1982-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017108146A (en) | Charged particle system including manipulator device for manipulation of one or more charged particle beams | |
JPH11509972A (en) | Correction device for lens aberration correction of particle optics | |
GB2095895A (en) | Multiple sextupole correction of third order abberations in electron beam device | |
US6184975B1 (en) | Electrostatic device for correcting chromatic aberration in a particle-optical apparatus | |
EP0039688A4 (en) | Sextupole system for the correction of spherical aberration. | |
JPS62188153A (en) | Method and structure for creating tetrapole static electric field by closed boundary | |
JPS6245663B2 (en) | ||
US5051593A (en) | Electrostatic multipole lens for charged-particle beam | |
JP3953309B2 (en) | Scanning electron microscope | |
US5357107A (en) | Electrostatic deflector with generally cylindrical configuration | |
JP3400284B2 (en) | Omega energy filter and electron microscope incorporating the filter | |
JPH0353736B2 (en) | ||
JPH0765766A (en) | Electrostatic deflecting system | |
JPH08212970A (en) | Device for removal of ions form electron beam | |
Tsuno | Simulation of a Wien filter as beam separator in a low energy electron microscope | |
JPS58192254A (en) | Electrostatic-type deflector for charged particle rays | |
US3397341A (en) | Biaxial electrostatic deflector | |
Martinez et al. | Four-cylinder electrostatic lens. I. Potential distribution and focal properties | |
JPS6338826B2 (en) | ||
JPH0294346A (en) | Electrostatic deflector for charged particle beam | |
JP2856518B2 (en) | Ex-B type energy filter | |
JPH08329872A (en) | Electrostatic lens and its manufacture | |
JPH028355Y2 (en) | ||
JPH0234426B2 (en) | ||
KR900008617B1 (en) | Image pick-up tube |