JP3335798B2 - Electrostatic lens and method of manufacturing the same - Google Patents

Electrostatic lens and method of manufacturing the same

Info

Publication number
JP3335798B2
JP3335798B2 JP13806095A JP13806095A JP3335798B2 JP 3335798 B2 JP3335798 B2 JP 3335798B2 JP 13806095 A JP13806095 A JP 13806095A JP 13806095 A JP13806095 A JP 13806095A JP 3335798 B2 JP3335798 B2 JP 3335798B2
Authority
JP
Japan
Prior art keywords
resistance material
low
electrostatic lens
material column
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13806095A
Other languages
Japanese (ja)
Other versions
JPH08329872A (en
Inventor
井 隆 光 永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13806095A priority Critical patent/JP3335798B2/en
Publication of JPH08329872A publication Critical patent/JPH08329872A/en
Application granted granted Critical
Publication of JP3335798B2 publication Critical patent/JP3335798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電子顕微鏡や電子・イオ
ンビーム応用装置に用いる静電レンズおよびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic lens used for an electron microscope and an electron / ion beam application apparatus, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】静電レンズは従来、電子顕微鏡などの電
子銃レンズやイオンビーム装置の集束レンズとして用い
られてきた。
2. Description of the Related Art An electrostatic lens has conventionally been used as an electron gun lens for an electron microscope or the like and a focusing lens for an ion beam apparatus.

【0003】従来の代表的な電子ビーム用円筒型静電レ
ンズ概略とその光線図を図4に示す。
FIG. 4 schematically shows a typical conventional cylindrical electrostatic lens for an electron beam and its ray diagram.

【0004】図6において、符号100は電子銃の位置
を示し、電子ビーム101はこの電子銃の位置100か
らある開き角をもって出射され、試料102上で結像す
る。第1電極103はアース104に接地され、中央の
第2電極105はレンズ電界を形成する負電位の電源1
06に接続され、また第3電極107はアース104に
接地されている。
In FIG. 6, reference numeral 100 denotes a position of an electron gun, and an electron beam 101 is emitted from the position 100 of the electron gun at a certain opening angle and forms an image on a sample 102. The first electrode 103 is grounded to the earth 104, and the center second electrode 105 is a negative potential power source 1 for forming a lens electric field.
06, and the third electrode 107 is grounded to the earth 104.

【0005】図6に示すような構成の静電レンズ108
は、一般にアインツェルレンズと呼ばれており、3枚の
電極103,105,107から構成されている。この
ように静電レンズ108は円筒形あるいは円盤型などの
電極103,105,107を複数枚組み合わせて作成
される。電源106から第2電極105に電圧が印加さ
れると、試料台102に電子ビームが結像する。この静
電レンズ108の電位分布を図7に示す。図7に示すよ
うに第2電極105に電位のピーク(−VP)が生じ、
第1および第3電極103,107に向かって零電位に
近づいていく。なお、一般的には零電位ではなく加速電
圧相当のオフセットをもつことが多い。
[0005] The electrostatic lens 108 having the structure shown in FIG.
Is generally called an Einzel lens, and includes three electrodes 103, 105, and 107. As described above, the electrostatic lens 108 is formed by combining a plurality of electrodes 103, 105, and 107 having a cylindrical shape or a disk shape. When a voltage is applied from the power supply 106 to the second electrode 105, an electron beam forms an image on the sample stage 102. FIG. 7 shows the potential distribution of the electrostatic lens 108. As shown in FIG. 7, a potential peak (−VP) occurs at the second electrode 105,
The potential approaches zero potential toward the first and third electrodes 103 and 107. In addition, generally, there is often an offset corresponding to an acceleration voltage instead of a zero potential.

【0006】図8に静電レンズ110の具体的な構成例
を示す。図8に示す静電レンズ110は電極を非対称に
すること、すなわち軸上電位分布を非対称にすることで
収差低減が図られたもので、非対称アイツェルレンズと
呼ばれるものである。図6と同じように第1電極111
はアース電位に、中央第2電極112はレンズ電界を形
成する負電位に、第3電極113はアース電位に維持さ
れている。第2電極112に印加する電圧はビームの種
類により異なる。図8において各電極111,112,
113は絶縁のためにセラミックホルダ114に保持さ
れている。
FIG. 8 shows a specific configuration example of the electrostatic lens 110. The electrostatic lens 110 shown in FIG. 8 has an asymmetric electrode, that is, has an asymmetrical potential distribution on the axis to reduce aberration, and is called an asymmetrical Eizel lens. As in FIG. 6, the first electrode 111
Is maintained at a ground potential, the central second electrode 112 is maintained at a negative potential forming a lens electric field, and the third electrode 113 is maintained at a ground potential. The voltage applied to the second electrode 112 differs depending on the type of the beam. In FIG. 8, each of the electrodes 111, 112,
113 is held by a ceramic holder 114 for insulation.

【0007】図6および図8に示す静電レンズ108、
110において、電子銃の位置100から出射された電
子ビーム101は、静電レンズ108、110を経て試
料台102に結像するようになっている。
The electrostatic lens 108 shown in FIGS.
At 110, the electron beam 101 emitted from the position 100 of the electron gun forms an image on the sample stage 102 through the electrostatic lenses 108 and 110.

【0008】また、図8に示すように、静電レンズ11
0の各電極111,112,113は絶縁体であるセラ
ミックホルダ114により保持固定されている。そして
各電極111,112,113間は同軸度、同心度とも
に約10μmという精度でセラミックホルダ114によ
り保たれている。
[0008] Further, as shown in FIG.
The zero electrodes 111, 112, and 113 are held and fixed by a ceramic holder 114 that is an insulator. The electrodes 111, 112, 113 are held by the ceramic holder 114 with an accuracy of about 10 μm in both coaxiality and concentricity.

【0009】また、中心軸上からセラミックホルダ11
4が直接みえないように各電極111,112,113
の形状は決定されており、これによって帯電を防止でき
るようになっている。なお、図6に示す静電レンズ10
8においても、各電極103,105,107は、図示
しないセラミックホルダにより保持固定されている。図
10に、静電レンズの同軸度とレンズ性能を決定するビ
ーム径ぼけ率(ビーム径ぼけ量/ビーム径x100%)
との関係を示す。ビーム径は分解能に相当し、図10か
ら同軸精度が劣化していくとビーム径ぼけ量が増加し分
解能が低下していくことがわかる。
Further, the ceramic holder 11 is located on the center axis.
4 so that each electrode 111, 112, 113 can not be seen directly.
Is determined, and thereby, charging can be prevented. The electrostatic lens 10 shown in FIG.
Also in 8, each of the electrodes 103, 105, and 107 is held and fixed by a ceramic holder (not shown). FIG. 10 shows the beam diameter blur rate (beam diameter blur amount / beam diameter × 100%) that determines the coaxiality of the electrostatic lens and the lens performance.
Shows the relationship with The beam diameter corresponds to the resolution, and it can be seen from FIG. 10 that when the coaxial accuracy deteriorates, the beam diameter blur increases and the resolution decreases.

【0010】[0010]

【発明が解決しようとする課題】従来図6や図8に示す
従来の静電レンズ108、110においては、静電レン
ズを構成する個々の部品自身は高精度に製造されていて
も、以下に述べるように部品を組み合わせることによ
り、同軸度の精度が低くならざるを得なかった。
Conventionally, in the conventional electrostatic lenses 108 and 110 shown in FIGS. 6 and 8, even if the individual components constituting the electrostatic lens are manufactured with high precision, the following will be described. As described above, the accuracy of the coaxiality had to be reduced by combining the components.

【0011】図10に示す静電レンズ110において、
セラミックホルダ114等により複数枚、例えば3枚の
電極111、112、113が保持固定されている。
In the electrostatic lens 110 shown in FIG.
A plurality of, for example, three electrodes 111, 112, 113 are held and fixed by a ceramic holder 114 or the like.

【0012】しかしながら、複数枚の電極111、11
2、113をセラミックホルダ114により保持固定す
る場合、電子ビームの中心軸に対して各々の電極11
1、112、113を精度良く配置する作業は煩雑で、
組み立てが容易でない。
However, a plurality of electrodes 111, 11
When the electrodes 2 and 113 are held and fixed by the ceramic holder 114, each electrode 11
The work of accurately arranging 1, 112 and 113 is complicated,
Not easy to assemble.

【0013】また、図8に示す静電レンズ110の場
合、セラミックホルダ114内の帯電防止とレンズ収差
減少を目的として各々の電極111、112、113は
複雑な形状に形成されている。すなわち、帯電防止する
ためには、電子ビーム軌道上からからセラミックホルダ
114の壁面を見えないようにする必要があり、このた
めに電極111、112、113は互いに重なりあうよ
うな形状にする必要がある。また、帯電防止するととと
もにレンズ収差を減少させる必要もあり、各電極の形状
はさらに複雑になる。各電極111、112、113の
形状を複雑化させると、これに合わせてセラミックホル
ダ114の形状も複雑化し、静電レンズ110の全体形
状が大型化してしまう。このため製作が容易でなくコス
ト高になるという問題があった。
In the case of the electrostatic lens 110 shown in FIG. 8, each of the electrodes 111, 112 and 113 is formed in a complicated shape for the purpose of preventing electrification in the ceramic holder 114 and reducing lens aberration. That is, in order to prevent electrification, it is necessary to make the wall surface of the ceramic holder 114 invisible from above the electron beam trajectory. For this reason, the electrodes 111, 112, and 113 need to be shaped so as to overlap each other. is there. In addition, it is necessary to prevent charging and reduce lens aberrations, and the shape of each electrode is further complicated. When the shape of each of the electrodes 111, 112, and 113 is complicated, the shape of the ceramic holder 114 is also complicated, and the overall shape of the electrostatic lens 110 is increased. For this reason, there was a problem that manufacturing was not easy and the cost was high.

【0014】そこで本発明の目的は、上記従来技術の有
する問題を解消し、加工および組み立てを容易に行うこ
とができレンズ精度を向上させた静電レンズおよびその
製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide an electrostatic lens which can be easily processed and assembled and has improved lens accuracy, and a method of manufacturing the same.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
に、本発明による静電レンズの製造方法は、荷電粒子ビ
ームを発散あるいは収束させるための静電レンズの製造
方法において、絶縁性筒体の挿入貫通孔に高抵抗材柱状
体と低抵抗材柱状体とを互いに隙間なく交互に挿入し、
前記低抵抗材柱状体と前記高抵抗材柱状体とを前記絶縁
性筒体に一体化させた状態で前記低抵抗材柱状体および
前記高抵抗材柱状体に前記荷電粒子ビームが伝播する伝
播貫通孔を形成することを特徴とする。
In order to achieve the above object, a method of manufacturing an electrostatic lens according to the present invention is directed to a method of manufacturing an electrostatic lens for diverging or converging a charged particle beam. The high-resistance material column and the low-resistance material column are alternately inserted without any gaps into the insertion through holes,
Propagation penetration through which the charged particle beam propagates to the low-resistance material column and the high-resistance material column in a state where the low-resistance material column and the high-resistance material column are integrated with the insulating cylinder. It is characterized by forming a hole.

【0016】好適には、前記高抵抗材柱状体と前記低抵
抗材柱状体とは、各々少なくとも1個以上挿入されてい
る。
Preferably, at least one or more of the high-resistance material column and the low-resistance material column are inserted.

【0017】好適には、前記低抵抗材柱状体は金属材か
らなり、前記高抵抗材柱状体はSiC材からなる。
Preferably, the low-resistance material column is made of a metal material, and the high-resistance material column is made of a SiC material.

【0018】好適には、前記低抵抗材柱状体は低抵抗率
の成分比率を有するSiC材からなり、前記高抵抗材柱
状体は高抵抗率の成分比率を有するSiC材からなる。
Preferably, the low resistance material column is made of a SiC material having a low resistivity component ratio, and the high resistance material column is made of a SiC material having a high resistivity component ratio.

【0019】好適には、前記挿入貫通孔に、低抵抗率を
与える成分比率を有する低抵抗柱状部分と高抵抗率を与
える成分比率を有する高抵抗柱状部分とが長手方向に所
定の長さで交互に繰り返されて形成されたSiC材の柱
状体を挿入し、このSiC材の柱状体の長手方向に前記
荷電粒子ビームが伝播する伝播貫通孔を形成する前記伝
播貫通孔を形成する。
Preferably, a low-resistance columnar portion having a component ratio giving a low resistivity and a high-resistance columnar portion having a component ratio giving a high resistivity have a predetermined length in the longitudinal direction in the insertion through hole. The columnar body of the SiC material formed alternately and repeatedly is inserted, and the propagation through-hole for forming the propagation through-hole through which the charged particle beam propagates is formed in the longitudinal direction of the columnar body of the SiC material.

【0020】また、本発明による静電レンズ は、荷電
粒子ビームを発散あるいは収束させるための静電レンズ
であって、絶縁性筒体の挿入貫通孔に高抵抗材柱状体と
低抵抗材柱状体とを互いに隙間なく交互に挿入し、前記
低抵抗材柱状体と前記高抵抗材柱状体とを前記絶縁性筒
体に一体化させた状態で前記低抵抗材柱状体および前記
高抵抗材柱状体に前記荷電粒子ビームが伝播する伝播貫
通孔を形成したことを特徴とする。
The electrostatic lens according to the present invention is an electrostatic lens for diverging or converging a charged particle beam, wherein a high-resistance material column and a low-resistance material column are inserted into an insertion through hole of an insulating cylinder. Are inserted alternately with no gap therebetween, and the low-resistance material column and the high-resistance material column are integrated with the low-resistance material column and the high-resistance material column integrated with the insulating cylinder. A transmission through hole through which the charged particle beam propagates.

【0021】[0021]

【作用】絶縁性筒体の挿入貫通孔に高抵抗材柱状体と低
抵抗材柱状体とを互いに隙間なく交互に挿入し、低抵抗
材柱状体と前記高抵抗材柱状体とを前記絶縁性筒体に一
体化させた状態で低抵抗材柱状体および高抵抗材柱状体
に伝播貫通孔を形成することにより、予め貫通孔の形成
された静電レンズを構成する各レンズを同軸合わせして
組み立てる必要がないので、組立工程において同軸度を
低下させることがなく高い同軸度を有する静電レンズを
提供することができる。
The high-resistance material column and the low-resistance material column are alternately inserted into the insertion through-hole of the insulating cylinder without any gap therebetween, and the low-resistance material column and the high-resistance material column are insulated from each other. By forming a propagation through-hole in the low-resistance material column and the high-resistance material column in a state of being integrated with the cylindrical body, the respective lenses constituting the electrostatic lens in which the through-hole is formed in advance are coaxially aligned. Since there is no need to assemble, it is possible to provide an electrostatic lens having high coaxiality without lowering coaxiality in the assembling process.

【0022】[0022]

【実施例】以下に図面を参照して本発明の実施例につい
て説明する。図1は本発明の静電レンズの第1実施例を
示す。図1において、静電レンズ1は、セラミクスなど
の絶縁性筒体2に形成された挿入貫通孔3に、SiCな
どを含む高抵抗材柱状体4、6に金属材料からなる低抵
抗材柱状体5が挟まれて挿入され固定保持されている。
高抵抗材柱状体4、6と低抵抗材柱状体5の中心部に
は、電子ビームが伝播するための円筒状の伝播貫通孔7
が形成されている。伝播貫通孔7は、挿入貫通孔3に高
抵抗材柱状体4、6と低抵抗材柱状体5とが挿入し絶縁
性筒体2の固定保持した状態で、形成される。高抵抗材
柱状体4、6と低抵抗材柱状体5の絶縁性筒体2への挿
入固定は、焼きばめなどのかたいはめあいや接着などに
より行われ、伝播貫通孔7の加工時に軸ずれが生じなけ
ればよい。絶縁性筒体2の外側面からは高抵抗材柱状体
4、6と低抵抗材柱状体5の側面側に至る貫通孔8、
9、10が形成されている。貫通孔8、9には高抵抗材
柱状体4、6をアース11に接地するための電線12が
配設されており、貫通孔10には低抵抗材柱状体5に負
電圧を印可する電源14へ接続された電線13が配設さ
れている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of the electrostatic lens of the present invention. In FIG. 1, an electrostatic lens 1 has a low resistance material column made of a metal material and a high resistance material column 4, 6 containing SiC or the like inserted into an insertion through hole 3 formed in an insulating cylindrical body 2 such as ceramics. 5 are inserted and fixedly held.
At the center of the high resistance material pillars 4 and 6 and the low resistance material pillar 5, a cylindrical propagation through hole 7 for electron beam propagation is provided.
Are formed. The propagation through-hole 7 is formed in a state where the high-resistance material pillars 4 and 6 and the low-resistance material pillar 5 are inserted into the insertion through-hole 3 and the insulating cylindrical body 2 is fixed and held. Insertion and fixing of the high-resistance material pillars 4 and 6 and the low-resistance material pillars 5 to the insulating cylindrical body 2 are performed by hard fitting such as shrink-fitting or bonding, and the shaft is misaligned when the propagation through hole 7 is processed. Should not occur. Through holes 8 extending from the outer surface of the insulating tubular body 2 to the side surfaces of the high resistance material columnar bodies 4 and 6 and the low resistance material columnar body 5;
9 and 10 are formed. An electric wire 12 for grounding the high-resistance material pillars 4 and 6 to the ground 11 is provided in the through holes 8 and 9, and a power supply for applying a negative voltage to the low-resistance material pillar 5 in the through hole 10. An electric wire 13 connected to 14 is provided.

【0023】電子ビームの出射位置15から出射した電
子ビームは伝播貫通孔7を経て、試料台の試料16へ結
像されるようになっている。
The electron beam emitted from the emission position 15 of the electron beam passes through the propagation through hole 7 and forms an image on the sample 16 on the sample stage.

【0024】なお、挿入貫通孔3は必ずしも円筒形状で
ある必要はなく従って高抵抗材柱状体4、6や低抵抗材
柱状体5の円筒柱状体である必要はなく、挿入貫通孔3
は多角柱形状や非対称の柱形状でもよく従って高抵抗材
柱状体4、6や低抵抗材柱状体5は、例えば図3に示す
ように、挿入貫通孔3の挿入され固定保持される柱状体
であればよい。なお、低抵抗材は、合金であってもA
l、Ti等の純金属でもよく、またTiB入りセラミ
ックス材でもよい。
The insertion through-hole 3 does not necessarily have to have a cylindrical shape, and therefore does not need to be a cylindrical column of the high resistance material columns 4 and 6 and the low resistance material column 5.
May be a polygonal column shape or an asymmetric column shape. Therefore, the high-resistance material column members 4 and 6 and the low-resistance material column member 5 are, for example, as shown in FIG. Should be fine. In addition, even if the low resistance material is an alloy,
It may be a pure metal such as 1 or Ti, or a ceramic material containing TiB 2 .

【0025】次に、本実施例の静電レンズ1の作用効果
について説明する。比較のために、図9に従来の静電レ
ンズ120を示す。図9に示すように、高抵抗材柱状体
121には伝播貫通孔122が形成されており、伝播貫
通孔122の中間部には電気導電膜123がコーティン
グされており、電気導電膜123には電源124によっ
て電圧を印加されるようになっている。しかしながら、
従来の静電レンズ120においては、電気導電膜123
を伝播貫通孔122の奥深い内部にコーティングされる
ようになっているので、コーティングすること自身が容
易でなく、また所定位置に電気導電膜123を高精度に
形成することが容易でなかったのである。
Next, the operation and effect of the electrostatic lens 1 of this embodiment will be described. For comparison, FIG. 9 shows a conventional electrostatic lens 120. As shown in FIG. 9, a propagation through-hole 122 is formed in the high-resistance material columnar body 121, and an electric conductive film 123 is coated in an intermediate portion of the propagation through-hole 122. A voltage is applied by the power supply 124. However,
In the conventional electrostatic lens 120, the electric conductive film 123
Is coated on the deep inside of the propagation through-hole 122, so that the coating itself is not easy, and it is not easy to form the electric conductive film 123 at a predetermined position with high accuracy. .

【0026】これに対して、本実施例の静電レンズ1で
は、低抵抗材柱状体5は挿入貫通孔3へ挿入されて伝播
貫通孔7が形成されるので、伝播貫通孔7の奥深い内部
にはコーティングが不要であり、静電レンズ1は容易に
製造可能な構成を有する。
On the other hand, in the electrostatic lens 1 according to the present embodiment, the low resistance material column 5 is inserted into the insertion through hole 3 to form the propagation through hole 7. Does not require a coating, and the electrostatic lens 1 has a configuration that can be easily manufactured.

【0027】次に、図2を参照して、図1に示した静電
レンズ1の製造方法について説明する。図2において、
セラミクス製の絶縁性筒体2に、長手方向に貫通する挿
入貫通孔3と内側面から外側面へ貫通する貫通孔8、
9、10を形成しておく。次に、挿入貫通孔3に孔形状
に対応して成形された高抵抗材柱状体6、低抵抗材柱状
体5および高抵抗材柱状体4をこの順序で挿入貫通孔3
へ挿入し、焼きばめなどのかたいはめあいや接着などに
より絶縁性筒体2に固定保持する。
Next, a method of manufacturing the electrostatic lens 1 shown in FIG. 1 will be described with reference to FIG. In FIG.
An insertion through-hole 3 penetrating in the longitudinal direction and a through-hole 8 penetrating from the inner surface to the outer surface in the insulating cylindrical body 2 made of ceramics;
9 and 10 are formed in advance. Next, the high resistance material columnar body 6, the low resistance material columnar body 5, and the high resistance material columnar body 4 formed in the insertion through hole 3 corresponding to the hole shape are inserted in this order.
And fixedly held on the insulating cylinder 2 by hard fitting such as shrink fitting or bonding.

【0028】高抵抗材柱状体6、低抵抗材柱状体5およ
び高抵抗材柱状体4は、長手方向に互いに隙間無く接触
するように押しつけられたおり、このために互いの接触
する底平面は互いに隙間無く接触できるような平面度、
例えば3μmの平面度で加工されている。
The high-resistance material column 6, the low-resistance material column 5 and the high-resistance material column 4 are pressed in the longitudinal direction so as to contact each other without any gap. Flatness so that they can contact each other without gaps,
For example, it is processed with a flatness of 3 μm.

【0029】次に、高抵抗材柱状体4、6と低抵抗材柱
状体5とを絶縁性筒体2に固定保持した状態で、これら
の中心部に円筒状の伝播貫通孔7を形成する。
Next, while the high-resistance material pillars 4 and 6 and the low-resistance material pillar 5 are fixed and held on the insulating cylinder 2, a cylindrical propagation through-hole 7 is formed at the center of these. .

【0030】次に、このようにして製造された静電レン
ズの作用について説明する。金属筒体からなる低抵抗材
柱状体5に外部電源14によって負電圧が印加すること
で、図7に示すように伝播貫通孔7内には低抵抗材柱状
体5を中心に負電位のピークが生じ両側の高抵抗材柱状
体4、6に向かって零電位に近づく電位分布が形成され
る。この結果、図6に示したものと同等の3個のレンズ
からなる静電レンズ1が形成され、伝播貫通孔7内を通
過する電子ビームの制御が可能になる。
Next, the operation of the thus manufactured electrostatic lens will be described. By applying a negative voltage to the low-resistance material column 5 made of a metal cylinder by the external power supply 14, a peak of a negative potential is formed around the low-resistance material column 5 in the propagation through hole 7 as shown in FIG. Is generated, and a potential distribution approaching zero potential is formed toward the high resistance material pillars 4 and 6 on both sides. As a result, the electrostatic lens 1 composed of three lenses equivalent to that shown in FIG. 6 is formed, and the control of the electron beam passing through the propagation through hole 7 becomes possible.

【0031】本実施例の構成によれば、伝播貫通孔7
は、高抵抗材柱状体4、6と低抵抗材柱状体5とを絶縁
性筒体2に固定保持した状態で形成されているので、電
子レンズ1を構成する各レンズは高同軸性で互いに位置
合わせされたことと同等に配置されたことになる。
According to the structure of this embodiment, the propagation through hole 7
Is formed in a state in which the high-resistance material columnar bodies 4 and 6 and the low-resistance material columnar body 5 are fixedly held on the insulating cylinder 2, so that the lenses constituting the electron lens 1 have high coaxiality and It is equivalent to the alignment.

【0032】また、この高同軸性は、高抵抗材柱状体
4、6と低抵抗材柱状体5とを絶縁性筒体2に固定保持
した状態で伝播貫通孔7を形成するだけで容易に実現で
き、煩雑の位置合わせを必要としない。従って、複雑な
加工が少なくなり、形状精度の向上および加工コストと
加工時間半減を図ることができ、また組み立て後に伝播
貫通孔7をあけるため中心軸上の同軸度や同心度に関し
ては約1μm以下の組み立て精度で完了することができ
る。
The high coaxiality can be easily achieved only by forming the propagation through-hole 7 in a state where the high resistance material pillars 4 and 6 and the low resistance material pillar 5 are fixedly held to the insulating cylinder 2. It can be realized and does not require complicated positioning. Therefore, complicated processing is reduced, the accuracy of the shape is improved, the processing cost and the processing time are reduced by half, and the coaxiality and concentricity on the central axis are about 1 μm or less because the propagation through hole 7 is formed after assembly. It can be completed with the assembly accuracy.

【0033】また、図8に示す従来の静電レンズ110
のように各電極111、112、113をホルダ114
にねじ止めして精度良く組み立てす必要がない。
A conventional electrostatic lens 110 shown in FIG.
Each of the electrodes 111, 112, 113
It is not necessary to screw it on to assemble with high precision.

【0034】また、図8に示す従来の静電レンズ110
において、帯電防止するためには電極111、112、
113は互いに重なりあうような形状にし電子ビームか
らセラミックホルダ114の壁面を直接見えないように
する必要があり、また同時にレンズ収差減少させる必要
があり、電極111、112、113の形状が複雑にな
っていた。これに伴いセラミックホルダ114の形状も
複雑化し、静電レンズ110の全体形状が大型化してし
まい、製作が容易でなくコスト高になっていた。
A conventional electrostatic lens 110 shown in FIG.
In order to prevent electrification, the electrodes 111, 112,
It is necessary to make the shape of the electrodes 113 so that they overlap each other so that the wall of the ceramic holder 114 is not directly visible from the electron beam, and it is necessary to reduce the lens aberration at the same time. I was As a result, the shape of the ceramic holder 114 has been complicated, and the overall shape of the electrostatic lens 110 has been increased.

【0035】これに対し、本実施例では、伝播貫通孔7
は、高抵抗材柱状体4、6と低抵抗材柱状体5の各々を
貫通して形成されており、伝播貫通孔7を通る電子ビー
ムからは絶縁性筒体2の壁面を見えないので、電子ビー
ムが絶縁性筒体2の壁面に帯電を誘起することはなく帯
電は防止される。また、高抵抗材柱状体4、6と低抵抗
材柱状体5が柱状体という単純な形状にもかかわらず、
帯電防止できるので、高抵抗材柱状体4、6と低抵抗材
柱状体5の各々の長手方向の長さを適当に選択すること
によりレンズ収差を減少させることができる。これらの
結果、絶縁性筒体2の形状も複雑にする必要がなく、静
電レンズ1の全体形状を小型化でき、製作が容易で低コ
スト化できる。例えば、図8に示す静電レンズ110の
外径が約20mmであるのに対し、本実施例では外形を
10mm以下にすることができる。
On the other hand, in the present embodiment, the propagation through holes 7
Is formed through each of the high-resistance material pillars 4 and 6 and the low-resistance material pillar 5 and the wall surface of the insulating cylindrical body 2 cannot be seen from the electron beam passing through the propagation through hole 7. The electron beam does not induce charging on the wall surface of the insulating cylinder 2 and charging is prevented. Also, despite the simple shape of the high-resistance material pillars 4 and 6 and the low-resistance material pillar 5 as pillars,
Since the charge can be prevented, the lens aberration can be reduced by appropriately selecting the length in the longitudinal direction of each of the high-resistance material pillars 4 and 6 and the low-resistance material pillar 5. As a result, the shape of the insulating cylindrical body 2 does not need to be complicated, and the entire shape of the electrostatic lens 1 can be reduced in size. For example, while the outer diameter of the electrostatic lens 110 shown in FIG. 8 is about 20 mm, in this embodiment, the outer diameter can be reduced to 10 mm or less.

【0036】なお、本実施例において、静電レンズは高
抵抗材柱状体4、6と低抵抗材柱状体5の3個の柱状体
で構成されている例を示したが、3個に限らず、高抵抗
材柱状体と低抵抗材柱状体とが交互に配設されたもので
あれば、4個以上でもよい。これにより電子銃などのガ
ンレンズ部と対物レンズ部など複数のレンズを一体型に
組み込むこともできる。
In this embodiment, an example is shown in which the electrostatic lens is constituted by three pillars of the high resistance material pillars 4 and 6 and the low resistance material pillar 5, but the number is not limited to three. Instead, four or more high resistance material pillars and low resistance material pillars may be used as long as they are alternately arranged. Thus, a plurality of lenses such as a gun lens unit such as an electron gun and an objective lens unit can be integrated.

【0037】また、低抵抗材柱状体5は金属材料からな
るとしたが、低抵抗率の成分比率を有するSiC材から
なり、高抵抗材柱状体4、6を高抵抗率の成分比率を有
するSiC材からなるようにしてもよい。低抵抗率の成
分比率を有するSiC材としては、セラミックス材中に
SiCを約50%含み、約10-6Ωcmの抵抗を有する
SiC材を用いることができる。高抵抗率の成分比率を
有するSiC材としては、セラミックス材中にSiCを
約10%含み、約103 〜105 Ωcmの抵抗を有する
SiC材を用いることができる。
Although the low-resistance material column 5 is made of a metal material, it is made of a SiC material having a low-resistivity component ratio, and the high-resistance material pillars 4 and 6 are made of a SiC material having a high-resistivity component ratio. It may be made of a material. As the SiC material having a low resistivity component ratio, a SiC material containing about 50% of SiC in a ceramic material and having a resistance of about 10 −6 Ωcm can be used. As the SiC material having a high resistivity component ratio, a SiC material containing about 10% of SiC in a ceramic material and having a resistance of about 10 3 to 10 5 Ωcm can be used.

【0038】また、上述の実施例では、互いに別体とし
て形成された高抵抗材柱状体と低抵抗材柱状体とを交互
に挿入貫通孔3へ挿入した場合を説明した。しかしなが
ら、御発明は、これに限らず、高抵抗材柱状体と低抵抗
材柱状体とを以下のように一体で形成した場合でもよ
い。すなわち、低抵抗率を与える成分比率を有する低抵
抗柱状部分と高抵抗率を与える成分比率を有する高抵抗
柱状部分とが長手方向に所定の長さで交互に繰り返され
て形成されたSiC材の柱状体を製造し、この柱状体を
挿入貫通孔3に挿入し固定保持し、このSiC材の柱状
体の長手方向に伝播貫通孔7を形成してもよい。
In the above-described embodiment, the case where the high-resistance material pillars and the low-resistance material pillars formed separately from each other are alternately inserted into the insertion through-holes 3 has been described. However, the present invention is not limited to this, and a high resistance material column and a low resistance material column may be integrally formed as follows. That is, a SiC material formed by alternately repeating a low-resistance columnar portion having a component ratio giving a low resistivity and a high-resistance columnar portion having a component ratio giving a high resistivity at a predetermined length in the longitudinal direction. A columnar body may be manufactured, and the columnar body may be inserted into the insertion through hole 3 and fixed and held, and the propagation through hole 7 may be formed in the longitudinal direction of the SiC material columnar body.

【0039】次に、本発明の他の実施例として、図4お
よび図5を参照して、ビームスキャナーや非点補正器あ
るいは偏光器等に利用する多極電極について説明する。
図4は、ビームスキャナー20を示し、ビームスキャナ
ー20はSiCなどを含む高抵抗材柱状体21を有す
る。高抵抗材柱状体21には、長手方向に貫通し半径方
向に8方向に分岐した8個の分岐孔22が形成されてい
る。また、高抵抗材柱状体21の長手方向中間部には各
々の分岐孔22の間に、半径方向に8方向に広がる8個
の電極端子孔23が形成されている。
Next, as another embodiment of the present invention, a multi-pole electrode used for a beam scanner, an astigmatism corrector, a polarizer or the like will be described with reference to FIGS.
FIG. 4 shows a beam scanner 20, which has a high resistance material column 21 containing SiC or the like. The high resistance material column 21 has eight branch holes 22 penetrating in the longitudinal direction and branching in eight directions in the radial direction. Eight electrode terminal holes 23 extending in eight directions in the radial direction are formed between the branch holes 22 at a longitudinally intermediate portion of the high resistance material columnar body 21.

【0040】図5に示すように、各々の電極端子孔23
には対応する電源24によって任意の電圧を任意のタイ
ミングで印加できるようになっている。各々の電極端子
孔23に電圧を印加するタイミングを組み合わせ、例え
ばビームスキャン用の電圧を印加することにより、図4
で矢印で示すように、電子ビームを試料台25上にスキ
ャンすることができる。
As shown in FIG. 5, each electrode terminal hole 23
, An arbitrary voltage can be applied at an arbitrary timing by a corresponding power supply 24. By combining the timing of applying a voltage to each of the electrode terminal holes 23, for example, by applying a voltage for beam scanning, FIG.
As shown by the arrow, the electron beam can be scanned on the sample stage 25.

【0041】本実施例によれば、複数の分岐孔22と複
数の電極端子孔23を高抵抗材柱状体21に形成したの
で、複数の分岐孔や複数の電極端子孔を別個個別に製造
して筒体に組み込むことと異なり互いに煩雑な位置合わ
せをする必要がなく、NC加工機械等を用いて、高抵抗
材柱状体21の所定位置に高位置決めで複数の分岐孔2
2および電極端子孔23を一体的に形成することができ
る。
According to this embodiment, since the plurality of branch holes 22 and the plurality of electrode terminal holes 23 are formed in the high resistance material column 21, the plurality of branch holes and the plurality of electrode terminal holes are separately manufactured. It is not necessary to perform complicated alignment with each other unlike incorporation into a cylindrical body, and a plurality of branch holes 2 are positioned at a predetermined position of the high-resistance material columnar body 21 by using an NC processing machine or the like.
2 and the electrode terminal hole 23 can be integrally formed.

【0042】また、本実施例のビームスキャナー20と
複数レンズとを組み合わせて、ビーム検査装置を一体の
システムとして構成することも可能であり、一体型とし
て構成できるので、各レンズおよびビームスキャナー2
0の電極間のアライメント精度も向上させることができ
る。
The beam scanner 20 of the present embodiment can be combined with a plurality of lenses to form a beam inspection apparatus as an integrated system. Since the beam inspection apparatus can be formed as an integrated system, each lens and beam scanner 2 can be integrated.
The alignment accuracy between the zero electrodes can also be improved.

【0043】なお、上述の説明において、荷電粒子ビー
ムとして電子ビームを例にして説明したが、本発明は電
子ビームの代わりにイオンビーム等の他の荷電粒子ビー
ムでも適用できる。
In the above description, an electron beam has been described as an example of a charged particle beam. However, the present invention can be applied to another charged particle beam such as an ion beam instead of an electron beam.

【0044】[0044]

【発明の効果】以上説明したように、本発明の構成によ
れば、高抵抗材柱状体と低抵抗材柱状体とを交互に絶縁
性筒体挿入し固定保持した状態で伝播貫通孔を形成する
だけで、煩雑の位置合わせを必要とせずに静電レンズを
容易に製造できる。この結果、複雑な加工が少なくな
り、形状精度の向上および加工コストと加工時間の短縮
を図ることができ、また組み立て後に伝播貫通孔をあけ
るため中心軸上の同軸度や同心度に関して高精度の組み
立て精度を実現することができる。
As described above, according to the structure of the present invention, the propagation through-hole is formed in a state where the high resistance material pillars and the low resistance material pillars are alternately inserted and fixedly held. The electrostatic lens can be easily manufactured without the need for complicated positioning. As a result, complicated machining is reduced, shape accuracy is improved, machining cost and machining time can be shortened, and a transmission through hole is drilled after assembly. Assembly accuracy can be realized.

【0045】また、高抵抗材柱状体と低抵抗材柱状体と
を一体化した後、伝播貫通孔を形成するので、高抵抗材
柱状体によるレンズと低抵抗材柱状体によるレンズ間の
同軸度、同心度を、高精度例えば約1μm以下にするこ
とができ、この結果、低収差の静電レンズを得ることが
できる。
After the high resistance material column and the low resistance material column are integrated, the propagation through hole is formed, so that the coaxiality between the lens made of the high resistance material column and the lens made of the low resistance material column is formed. , The concentricity can be made highly accurate, for example, about 1 μm or less, and as a result, an electrostatic lens with low aberration can be obtained.

【0046】また、従来の静電レンズのように複数の金
属電極をセラミックホルダにより機械的に組み立てる必
要がないので、レンズ径および全体の形状の小形化と構
造の単純化を図ることができる。
Further, since it is not necessary to mechanically assemble a plurality of metal electrodes using a ceramic holder as in a conventional electrostatic lens, the lens diameter and the overall shape can be reduced and the structure can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による静電レンズの一実施例を示す側面
図。
FIG. 1 is a side view showing an embodiment of an electrostatic lens according to the present invention.

【図2】本発明による静電レンズの組み立て順序を示す
工程図。
FIG. 2 is a process chart showing the order of assembling the electrostatic lens according to the present invention.

【図3】本発明による静電レンズを角筒体を用いて構成
した例を示す斜視図。
FIG. 3 is a perspective view showing an example in which the electrostatic lens according to the present invention is configured using a rectangular cylinder.

【図4】本発明によるビームスキャナーを示す斜視図。FIG. 4 is a perspective view showing a beam scanner according to the present invention.

【図5】図4におけるA−Aからみた断面図。FIG. 5 is a sectional view taken along line AA in FIG. 4;

【図6】従来の静電レンズを示す概略断面図。FIG. 6 is a schematic sectional view showing a conventional electrostatic lens.

【図7】図6に示す静電レンズの中心軸上の電位分布を
示す図。
FIG. 7 is a view showing a potential distribution on a central axis of the electrostatic lens shown in FIG. 6;

【図8】従来の静電レンズを示す概略断面図。FIG. 8 is a schematic sectional view showing a conventional electrostatic lens.

【図9】従来の他の静電レンズを示す概略断面図。FIG. 9 is a schematic sectional view showing another conventional electrostatic lens.

【図10】静電レンズの同軸度とビーム径ぼけ率の関係
を示す図。
FIG. 10 is a diagram showing the relationship between the coaxiality of the electrostatic lens and the beam diameter blur rate.

【符号の説明】[Explanation of symbols]

1 静電レンズ 2 絶縁性筒体 3 挿入貫通孔 4、6 高抵抗材柱状体 5 低抵抗材柱状体 7 伝播貫通孔 8、9 10 貫通孔 12 電源 15 電子ビーム 16 試料台 20 ビームスキャナー DESCRIPTION OF SYMBOLS 1 Electrostatic lens 2 Insulating cylinder 3 Insertion through hole 4, 6 High resistance material column 5 Low resistance material column 7 Propagation through hole 8, 9 10 Through hole 12 Power supply 15 Electron beam 16 Sample stand 20 Beam scanner

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−81151(JP,A) 特開 平6−187901(JP,A) 特開 平2−152140(JP,A) 特開 平6−124650(JP,A) 特開 昭59−31546(JP,A) 特開 平8−31336(JP,A) 特開 平8−321273(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01J 37/12 H01J 9/14 H01J 9/18 H01J 23/08 - 23/087 H01J 37/04 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-64-81151 (JP, A) JP-A-6-187901 (JP, A) JP-A-2-152140 (JP, A) JP-A-6-187140 124650 (JP, A) JP-A-59-31546 (JP, A) JP-A-8-31336 (JP, A) JP-A-8-321273 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01J 37/12 H01J 9/14 H01J 9/18 H01J 23/08-23/087 H01J 37/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】荷電粒子ビームを発散あるいは収束させる
ための静電レンズの製造方法において、 絶縁性筒体の挿入貫通孔に高抵抗材柱状体と低抵抗材柱
状体とを互いに隙間なく交互に挿入し、前記低抵抗材柱
状体と前記高抵抗材柱状体とを前記絶縁性筒体に一体化
させた状態で前記低抵抗材柱状体および前記高抵抗材柱
状体に前記荷電粒子ビームが伝播する伝播貫通孔を形成
することを特徴とする静電レンズの製造方法。
1. A method of manufacturing an electrostatic lens for diverging or converging a charged particle beam, wherein a high-resistance material column and a low-resistance material column are alternately inserted into an insertion through hole of an insulating cylinder without gaps therebetween. The charged particle beam propagates to the low-resistance material column and the high-resistance material column in a state where the low-resistance material column and the high-resistance material column are integrated with the insulating cylinder. A method for manufacturing an electrostatic lens, characterized by forming a propagation through-hole which is formed.
【請求項2】前記低抵抗材柱状体は金属材からなり、前
記高抵抗材柱状体はSiC材からなることを特徴とする
請求項1に記載の静電レンズの製造方法。
2. The method according to claim 1, wherein the low resistance material column is made of a metal material, and the high resistance material column is made of a SiC material.
【請求項3】前記低抵抗材柱状体は低抵抗率の成分比率
を有するSiC材からなり、前記高抵抗材柱状体は高抵
抗率の成分比率を有するSiC材からなることを特徴と
する請求項1に記載の静電レンズの製造方法。
3. The low resistance material columnar body is made of a SiC material having a low resistivity component ratio, and the high resistance material columnar body is made of a SiC material having a high resistivity component ratio. Item 2. The method for manufacturing an electrostatic lens according to Item 1.
【請求項4】荷電粒子ビームを発散あるいは収束させる
ための静電レンズであって、絶縁性筒体の挿入貫通孔に
高抵抗材柱状体と低抵抗材柱状体とを互いに隙間なく交
互に挿入し、前記低抵抗材柱状体と前記高抵抗材柱状体
とを前記絶縁性筒体に一体化させた状態で前記低抵抗材
柱状体および前記高抵抗材柱状体に前記荷電粒子ビーム
が伝播する伝播貫通孔を形成したことを特徴とする静電
レンズ。
4. An electrostatic lens for diverging or converging a charged particle beam, wherein a high-resistance material column and a low-resistance material column are alternately inserted into an insertion through hole of an insulating cylinder without gaps therebetween. Then, the charged particle beam propagates to the low-resistance material column and the high-resistance material column in a state where the low-resistance material column and the high-resistance material column are integrated with the insulating cylinder. An electrostatic lens having a propagation through hole formed therein.
JP13806095A 1995-06-05 1995-06-05 Electrostatic lens and method of manufacturing the same Expired - Fee Related JP3335798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13806095A JP3335798B2 (en) 1995-06-05 1995-06-05 Electrostatic lens and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13806095A JP3335798B2 (en) 1995-06-05 1995-06-05 Electrostatic lens and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08329872A JPH08329872A (en) 1996-12-13
JP3335798B2 true JP3335798B2 (en) 2002-10-21

Family

ID=15213046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13806095A Expired - Fee Related JP3335798B2 (en) 1995-06-05 1995-06-05 Electrostatic lens and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3335798B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100304978B1 (en) * 1998-07-06 2001-10-19 김영환 Subminiature electrostatic lens and method for manufacturing the same
JP2005191204A (en) * 2003-12-25 2005-07-14 Kyocera Corp Optical element assembling body, assembling method, and electron beam apparatus using the same
EP1605492B1 (en) 2004-06-11 2015-11-18 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam device with retarding field analyzer
JP2010034075A (en) * 2009-11-09 2010-02-12 Kyocera Corp Method of assembling optical element assembly

Also Published As

Publication number Publication date
JPH08329872A (en) 1996-12-13

Similar Documents

Publication Publication Date Title
US6218664B1 (en) SEM provided with an electrostatic objective and an electrical scanning device
JPH09139184A (en) Manufacture of electrostatic deflection unit
JPH0213418B2 (en)
TW201209877A (en) Charged particle apparatus
US6956219B2 (en) MEMS based charged particle deflector design
JPS5871545A (en) Variable forming beam electron optical system
JP2001185066A (en) Electron beam device
JP3335798B2 (en) Electrostatic lens and method of manufacturing the same
JP3069849B2 (en) Optical device
JPH06187901A (en) Electrostatic lens and manufacture thereof
JP2009076474A (en) Electron-optical lens barrel and its manufacturing method
JP2001118536A5 (en) Charged particle beam control element, charged particle beam device, and electrostatic polarizing device
EP0379690A1 (en) Multi-pole element
US3544836A (en) Slot stigmator
JPH05334979A (en) Lens structure for charged beam
JP3504856B2 (en) Electrostatic deflection device and method of manufacturing electrostatic deflection device
JPH02192117A (en) Electron beam exposing device
JP2856518B2 (en) Ex-B type energy filter
KR900008617B1 (en) Image pick-up tube
JPS58917Y2 (en) Structure of multipole electrostatic electrode
JPS60218743A (en) Electron gun electrode structure
JP3738010B2 (en) Color picture tube device
JPH09180665A (en) Charged particle device
JP3409951B2 (en) Color picture tube equipment
JP3403746B2 (en) Color picture tube equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070802

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees