JPH035339A - Quartz glass for transmitting ultraviolet ray - Google Patents

Quartz glass for transmitting ultraviolet ray

Info

Publication number
JPH035339A
JPH035339A JP13583489A JP13583489A JPH035339A JP H035339 A JPH035339 A JP H035339A JP 13583489 A JP13583489 A JP 13583489A JP 13583489 A JP13583489 A JP 13583489A JP H035339 A JPH035339 A JP H035339A
Authority
JP
Japan
Prior art keywords
quartz glass
impurities
ultraviolet rays
ultraviolet
solarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13583489A
Other languages
Japanese (ja)
Other versions
JP2699107B2 (en
Inventor
Masaru Shinpo
新保 優
Yoshiko Tsuji
佳子 辻
Kunihiko Sakikubo
崎久保 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15160864&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH035339(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP13583489A priority Critical patent/JP2699107B2/en
Publication of JPH035339A publication Critical patent/JPH035339A/en
Application granted granted Critical
Publication of JP2699107B2 publication Critical patent/JP2699107B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To inhibit the solarization and devitrification of quartz glass due to repeated irradiation with UV over a long time by limiting the concn. of each of impurities such as Na, K, Al and Fe contained in the quartz glass to a prescribed value or below. CONSTITUTION:The concn. of each of Na, K, Al, Fe, Tl, Ni and Cu as impurities contained in the subject quartz glass is limited to <=0.1ppm and the total concn. of the impurities is limited to <=0.2ppm. This quartz glass is not solarized or devitrified even when repeatedly irradiated with UV over a long time and a change of the transmissivity with the lapse of time is negligible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、変電なる紫外線の長時間反復照射によっても
着色(ソーラリゼーション)、失透を抑制する、紫外線
透過用石英ガラスに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a quartz glass for transmitting ultraviolet rays that suppresses coloration (solarization) and devitrification even when subjected to long-term repeated irradiation with ultraviolet rays during electrical transformation.

〔従来の技術〕[Conventional technology]

半導体産業において、素子の微細化、高集積化は時代の
趨勢である。
In the semiconductor industry, the trend of the times is miniaturization and higher integration of elements.

それに対処するために、例えば波長の短い紫外線を光源
とする露光機や、紫外線を照射しながら蒸着することに
より低温で高品位の被膜を得る光CVD法等が開発され
つつある。
To deal with this, for example, exposure machines that use short-wavelength ultraviolet rays as a light source and photo-CVD methods that obtain high-quality films at low temperatures by vapor deposition while irradiating ultraviolet rays are being developed.

これらの紫外線応用機器の光学系や光透過用の窓材、光
源用ランプ等には一般に、石英ガラスが使用される。
Quartz glass is generally used for the optical systems, window materials for light transmission, lamps for light sources, etc. of these ultraviolet ray application devices.

当該石英ガラスの材料は、紫外線透過率が良いことが必
須の条件となるので、例えば四塩化珪素の加水分解等で
合成される合成石英ガラスが使用される。
Since it is essential that the quartz glass material has good ultraviolet transmittance, synthetic quartz glass synthesized by, for example, hydrolysis of silicon tetrachloride is used.

しかしながら、・使用当初は紫外線透過率が高い石英ガ
ラスでも紫外線照射を長時間反復して行うと次第に着色
し透過率が減少する、いわゆるソーラリゼーションが起
こり、装置の再現性等に大きな影響を及ぼす問題点が存
する。
However, even though quartz glass has high ultraviolet transmittance when first used, repeated exposure to ultraviolet rays over a long period of time causes it to gradually become colored and its transmittance decreases, a phenomenon known as solarization, which has a major impact on the reproducibility of the device. There are problems.

そのため、ソーラリゼーションの低減した石英ガラスの
開発が強く望まれている。
Therefore, the development of quartz glass with reduced solarization is strongly desired.

上記、従来の紫外′41A透過用石英ガラスは不純物と
してAl5V% Ti 、、Ni 、、Na 、、Cu
 、H。
The above-mentioned conventional quartz glass for transmitting ultraviolet '41A contains Al5V% Ti, Ni, Na, Cu as impurities.
,H.

C7!、K % F e等を含み、その各濃度を0.1
 ppm以下に抑えた紫外線透過用石英ガラスは存在し
なかった。
C7! , K % Fe, etc., each concentration of which is 0.1
There was no quartz glass for transmitting ultraviolet rays that suppressed the amount to ppm or less.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記、不純物を高濃度に含む紫外線透過用石英ガラスは
不純物に起因する性能的な劣化現象が派生する。
The above-mentioned quartz glass for transmitting ultraviolet rays containing a high concentration of impurities suffers from performance deterioration caused by the impurities.

即ち、Na、に、A1、Fe 、、Ti 、Niおよび
Cuの濃度の総和が0.2 ppm以上である石英ガラ
スにおいては上記不純物が、石英ガラスの紫外線エネル
ギー吸収に係わり、紫外線エネルギーの吸収とともに、
着色中心あるいは着色物質成長核の形成過程に何らかの
関与をし、石英ガラスが変電なる紫外線の長時間反復照
射によって着色し、透過率を下げるという性能的な劣化
現象が起こることを究明した。
That is, in silica glass in which the total concentration of Na, Al, Fe, Ti, Ni, and Cu is 0.2 ppm or more, the above impurities are involved in the absorption of ultraviolet energy by the quartz glass, and together with the absorption of ultraviolet energy. ,
We have discovered that there is some involvement in the formation process of colored centers or colored substance growth nuclei, and that quartz glass becomes colored by repeated long-term irradiation with ultraviolet light (transformation), resulting in a performance deterioration phenomenon in which the transmittance decreases.

また、上記不純物に起因する劣化現象以外にも、石英ガ
ラスの主成分であるシリカに固有に含まれる酸素欠陥に
電子が捕獲されて着色中心を形成し石英ガラスが着色す
る現象も問題視される。
In addition to the deterioration phenomena caused by the impurities mentioned above, the phenomenon in which electrons are captured by the oxygen defects inherent in silica, the main component of silica glass, and forms colored centers, causing the silica glass to become colored, is also seen as a problem. .

上記、ソーラリゼーションの発生機構は解明されていな
い点も多々あるが、石英ガラス中に含まれるA1、Fe
 、Na等の不純物に起因するものと酸素欠乏点等の石
英ガラス自体の構造欠陥に起因するものとに大別して本
発明が推進された。
Although there are many aspects of the solarization generation mechanism described above that have not been elucidated,
The present invention has been developed based on two types: those caused by impurities such as , Na, etc., and those caused by structural defects of the quartz glass itself, such as oxygen deficiency points.

紫外線照射により発生した電子またはホールがこれらの
不純物または欠陥に捕獲されたり、または直接紫外線を
吸収して、励起されたりして着色中心を形成するのがソ
ーラリゼーションの原因の一つであることが明らかにな
っている。
One of the causes of solarization is that electrons or holes generated by ultraviolet irradiation are captured by these impurities or defects, or are excited by directly absorbing ultraviolet rays, forming colored centers. has become clear.

上記着色中心は、吸収スペクトルの形等から同定するこ
とができる。
The colored center can be identified from the shape of the absorption spectrum.

即ち、石英ガラス中のAl不純物にホールが捕獲された
着色中心はAeV付近に極大を持つ幅広い吸収ピークを
生じ、酸素欠陥に電子が捕獲された着色中心は5eV、
および5.7eVの位置に吸収スペクトルを示す。
That is, colored centers where holes are captured by Al impurities in quartz glass produce a broad absorption peak with a maximum around AeV, and colored centers where electrons are captured by oxygen defects produce a broad absorption peak of 5 eV,
It shows an absorption spectrum at a position of 5.7 eV and 5.7 eV.

不純物に起因するソーラリゼーションは各不純物濃度を
1111pII+以下に抑えれば低減可能で、構造欠陥
によるソーラリゼーションに対しては石英ガラスの製造
方法の改良等が試みられてきたが欠陥の低減が困難で、
有効なソーラリゼーションに対する対策は無かった。
Solarization caused by impurities can be reduced by keeping the concentration of each impurity below 1111pII+. Attempts have been made to improve the manufacturing method of silica glass to combat solarization caused by structural defects, but it has been difficult to reduce defects. difficult,
There were no effective measures against solarization.

C問題点を解決するための手段〕 本発明では上記問題点を解決するために、精製した高純
度の石英ガラス原料を使用し、厳密に不純物を排除した
雰囲気で石英ガラスを製造することにより、極小量に不
純物濃度を抑制した紫外線透過用石英ガラスを開発した
Means for Solving Problem C] In the present invention, in order to solve the above problems, quartz glass is manufactured using purified high-purity quartz glass raw materials in an atmosphere strictly excluding impurities. We have developed quartz glass for transmitting ultraviolet rays with an extremely low impurity concentration.

上記本発明の紫外線透過用石英ガラスは、不純物を極小
に抑えたことにより、従来の石英ガラスが紫外線の長時
間反復照射とともに、不可避的に経時変化し、着色劣化
した透過率を補正するために、正確な光量確認を常時モ
ニターし、石英ガラスを新品と定期的に交換しなければ
ならなかった煩雑さを解消することができる。
The above-mentioned quartz glass for transmitting ultraviolet rays of the present invention has impurities kept to a minimum, thereby correcting the transmittance of conventional quartz glass, which inevitably changes over time and deteriorates in color due to long-term repeated irradiation with ultraviolet rays. , it is possible to constantly monitor the accurate amount of light and eliminate the hassle of having to periodically replace the quartz glass with a new one.

また本発明の紫外線透過用石英ガラスは、Al、■、F
e % Na % K% Ti s Ni sCuの各
濃度を0.1 ppm以下とすることにより、これら不
純物に起因するソーラリゼーシッンは勿論のこと、構造
欠陥に起因するソーラリゼーションも、不純物濃度制限
の製造過程をもってその構造欠陥の発生を抑制し、これ
を因子とする透過率の低下を抑制し得る。
Further, the quartz glass for transmitting ultraviolet rays of the present invention includes Al, ■, F
By setting each concentration of e % Na % K % Ti s Ni s Cu to 0.1 ppm or less, not only solarization caused by these impurities but also solarization caused by structural defects can be reduced by impurities. By using a concentration-limited manufacturing process, it is possible to suppress the occurrence of structural defects and to suppress the decrease in transmittance caused by these defects.

更に、N a s K SA l 1F e s T 
1% N iおよびCuの濃度の総和を0.2 ppm
以下にすることにより、より以上に本発明の効果を確実
なものとすることができる。
Furthermore, N a s K S A l 1 F e s T
The total concentration of 1% Ni and Cu is 0.2 ppm
By doing the following, the effects of the present invention can be further ensured.

〔作用および実施例〕[Function and Examples]

5iCA、を酸水素炎中に導き、火炎法で加水分解させ
て得られるS iO2を、回転するターゲット上に積載
する通常の合成石英ガラスの製造法において、原料とし
ての5i(J!、およびS i02を、充分に精製した
高純度のものを用い、石英ガラス溶融中の雰囲気を厳密
に清浄化して、表記の不純物濃度の石英ガラスを得る。
5iCA, is introduced into an oxyhydrogen flame and hydrolyzed by a flame method, and the resulting SiO2 is loaded onto a rotating target. Using sufficiently refined i02 of high purity, the atmosphere during quartz glass melting is strictly cleaned to obtain quartz glass having the impurity concentration indicated.

上記方法で得られた、水酸基濃度1300ppm程度、
塩素濃度200ppm程度の石英ガラス(3)を30φ
×3In厚の形状に研磨し、第1図に示す弗化マグネシ
ウムの窓を持つ30Wの重水素ランプ(1)を用いて真
空中(2)で5eVの紫外線を500時間に渡って照射
し、照射前後の吸収スペクトルの差により透過率の変化
を分光光度計で測定した。
A hydroxyl group concentration of about 1300 ppm obtained by the above method,
30φ quartz glass (3) with a chlorine concentration of about 200 ppm
It was polished into a shape with a thickness of 3 In and irradiated with 5 eV ultraviolet rays for 500 hours in a vacuum (2) using a 30 W deuterium lamp (1) with a magnesium fluoride window shown in Figure 1. Changes in transmittance were measured using a spectrophotometer based on the difference in absorption spectra before and after irradiation.

尚、5eVの紫外線は、石英ガラス(3)中の酸素欠陥
に起因する着色中心を派生する波長に相当するので、前
記不純物による透過率の変化とともに、酸素欠陥に起因
する透過率の変化も同時に測定し得る。
Note that 5 eV of ultraviolet rays corresponds to the wavelength at which coloring centers due to oxygen defects in the quartz glass (3) are derived, so that the change in transmittance due to the impurities and the change in transmittance due to oxygen defects occur at the same time. Can be measured.

第2図は不純物濃度の異なる石英ガラスに、紫外線エネ
ルギーを変化させて照射した場合の吸光係数の変化を示
す。
FIG. 2 shows changes in extinction coefficient when quartz glass with different impurity concentrations is irradiated with varying amounts of ultraviolet energy.

図中の曲線11は、/lとNaの各々が1 ppmを越
える濃度で含まれる試料、12は同じ不純物をそれぞれ
0.2ppff+含む試料である。
Curve 11 in the figure is a sample containing /l and Na at a concentration exceeding 1 ppm, and curve 12 is a sample containing 0.2 ppff+ of each of the same impurities.

13はNaとAIとがそれぞれ0.05およびO0Q3
ppm、上述の他の不純物が9.01 ppm以下であ
る本発明の紫外yc透過用石英ガラスである。
13 has Na and AI of 0.05 and O0Q3, respectively.
The quartz glass for ultraviolet yc transmission of the present invention has a content of 9.01 ppm or less of the above-mentioned other impurities.

200時間の紫外線照射によって試料11は、/lとN
aが共存する場合に特有な吸収スペクトルを示し、試料
12は酸素欠陥に特有の吸収スペクトルを示す。
After 200 hours of ultraviolet irradiation, sample 11 changed to /l and N
When a coexists, sample 12 exhibits a characteristic absorption spectrum, and sample 12 exhibits an absorption spectrum characteristic of oxygen vacancies.

これに対し、試料13は200時間の紫外線照射程度で
は吸収を生じない。
On the other hand, sample 13 does not exhibit absorption even after being irradiated with ultraviolet light for about 200 hours.

不純物濃度を変化させた場合の透過率への影響を調べる
ため、実施例としての表1、および比較例としての表2
のような各種石英ガラスを作製し、1000時間にわた
って紫外線を照射した後、5eVにおける吸光係数の変
化を調査した。
In order to investigate the effect on transmittance when changing the impurity concentration, Table 1 as an example and Table 2 as a comparative example
Various types of quartz glass were prepared, and after irradiating them with ultraviolet rays for 1000 hours, changes in extinction coefficient at 5 eV were investigated.

表1に示されるようにA l % F e 、Na %
 K −。
Al % Fe, Na % as shown in Table 1
K-.

Ti 、Ni 、Cuの濃度が0.1 ppmになると
効果が顕著になる。
The effect becomes significant when the concentration of Ti, Ni, and Cu reaches 0.1 ppm.

上記試験結果の紫外線照射時間の条件は、1000時間
照射してもソーラリゼーションが起こらない試料は、更
に照射をつづけた場合でも、かなりの間、その効果が持
続するであろうとの意味合いを持つ。        
  (以下余白)表1 表2 上記表1において*欄はNa=Cuの不純物の総和(p
pm )を示す。
The UV irradiation time conditions in the above test results imply that for samples that do not undergo solarization even after 1000 hours of irradiation, the effect will continue for a considerable period of time even if irradiation is continued. .
(Margins below) Table 1 Table 2 In Table 1 above, the * column is the sum of Na=Cu impurities (p
pm).

また、−印は、その元素が検出できなかったことを示す
Moreover, a - mark indicates that the element could not be detected.

上記表2において市本欄はNa −、K 、AI、Fe
以外のTis NisおよびCuの不純物濃度の和(p
pm )を示す。
In Table 2 above, the Ichimoto column is Na −, K, AI, Fe.
The sum of impurity concentrations of Nis and Cu other than Tis (p
pm).

また、*宰*欄は全不純物濃度の総和(ppm )を示
す。
In addition, the column ** indicates the sum total (ppm) of all impurity concentrations.

更に、−印は、その元素が検出できなかったことを示す
Furthermore, a minus sign indicates that the element could not be detected.

〔発明の効果〕〔Effect of the invention〕

高品位被膜を得るために使用するCVD装置の場合、そ
の反応容器内に紫外線を導入する光CVD法はシリコン
等の高品位の膜を低温で形成し得るので極めて有用な手
法であるが、その紫外線導入用の窓材として本発明の紫
外線透過用石英ガラスを用いれば、透過率の経時変化が
極めて少ないので、同一品質の膜が再現性良く生産でき
る。
In the case of CVD equipment used to obtain high-quality films, the photo-CVD method that introduces ultraviolet rays into the reaction vessel is an extremely useful method because it can form high-quality films of silicon and other materials at low temperatures. If the quartz glass for transmitting ultraviolet rays of the present invention is used as a window material for introducing ultraviolet rays, the change in transmittance over time is extremely small, so that films of the same quality can be produced with good reproducibility.

また、半導体産業で使用されるエキシマレーザ露光機、
および塩素等を含む雰囲気中に半導体ウェハー等を静置
し、その表面に紫外線を照射してその受光部を活性化し
てエツチング等を行う光エツチング法の紫外線導入用窓
材として、本発明の紫外線透過用石英ガラスを用いれば
、条件の設定が容易で安定するので高精度の大量加工が
可能となる。
Also, excimer laser exposure machines used in the semiconductor industry,
The ultraviolet rays of the present invention can be used as a window material for introducing ultraviolet rays in a photo-etching method, in which a semiconductor wafer, etc. is left standing in an atmosphere containing chlorine, etc., and its surface is irradiated with ultraviolet rays to activate its light-receiving area and perform etching. If transparent quartz glass is used, conditions can be easily set and stabilized, making it possible to perform high-precision mass processing.

更に、水銀ランプ、キセノンランプ、水素ランプ等、紫
外線光源用ランプの管や窓材として本発明の紫外線透過
用石英ガラスを用いれば、着色による光量の経時変化と
いう光源用ランプに致命的な現象を回避し得る。
Furthermore, if the ultraviolet ray transmitting quartz glass of the present invention is used as tube or window material for ultraviolet light source lamps such as mercury lamps, xenon lamps, hydrogen lamps, etc., the phenomenon of light intensity change over time due to coloring, which is fatal to light source lamps, can be avoided. It can be avoided.

また、半導体パタニング用露光機のレンズ、フォトマス
ク、および紫外線を利用する化学産業分野、例えば紫外
線吸収スペクトル分析器の機材等に使用しても、光量の
経時変化を殆ど無視し得るので優れた性能の製品を量産
できる。
In addition, even when used in the lenses of exposure machines for semiconductor patterning, photomasks, and in the chemical industry that uses ultraviolet rays, such as equipment for ultraviolet absorption spectrum analyzers, it has excellent performance because changes in the amount of light over time can be almost ignored. products can be mass produced.

更に、医学分野においても同様の貢献が期待できる。Furthermore, similar contributions can be expected in the medical field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の紫外線透過用石英ガラスのソーラリゼ
ーション評価に用いた装置の概略図であり、第2図は各
不純物濃度における紫外線照射後の石英ガラスの吸収ス
ペクトルを示す。 (1)重水素ランプ (11) A7!とNaの各々が1 pI)Illを越
える濃度で含まれている試料 (12)Ai!とNaの各々を0.2 ppm含む試料
(1,3)NaとAIとがそれぞれ0.05および0、
O3ppm、上述の他の不純物が0.01 ppm以下
である試料 (2)真空容器 (3)石英ガラス試料 第1図
FIG. 1 is a schematic diagram of an apparatus used for solarization evaluation of the ultraviolet-transmitting quartz glass of the present invention, and FIG. 2 shows the absorption spectrum of the quartz glass after ultraviolet irradiation at various impurity concentrations. (1) Deuterium lamp (11) A7! and Na at concentrations exceeding 1 pI) Ill (12) Ai! Sample (1, 3) containing 0.2 ppm of Na and 0.05 and 0 of Na and AI, respectively.
Sample with O3ppm and other impurities mentioned above below 0.01ppm (2) Vacuum container (3) Quartz glass sample Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、Na、K、Al、Fe、Ti、NiおよびCuの各
濃度が0.1ppm以下であり、前記7元素の濃度の総
和が0.2ppm以下である高純度シリカよりなること
を特徴とする紫外線透過用石英ガラス。
1. It is characterized by being made of high-purity silica in which each concentration of Na, K, Al, Fe, Ti, Ni, and Cu is 0.1 ppm or less, and the total concentration of the seven elements is 0.2 ppm or less. Quartz glass for transmitting ultraviolet rays.
JP13583489A 1989-05-31 1989-05-31 Quartz glass for UV transmission Expired - Lifetime JP2699107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13583489A JP2699107B2 (en) 1989-05-31 1989-05-31 Quartz glass for UV transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13583489A JP2699107B2 (en) 1989-05-31 1989-05-31 Quartz glass for UV transmission

Publications (2)

Publication Number Publication Date
JPH035339A true JPH035339A (en) 1991-01-11
JP2699107B2 JP2699107B2 (en) 1998-01-19

Family

ID=15160864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13583489A Expired - Lifetime JP2699107B2 (en) 1989-05-31 1989-05-31 Quartz glass for UV transmission

Country Status (1)

Country Link
JP (1) JP2699107B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166159A (en) * 1994-12-13 1996-06-25 Seiki Suyama Ventilation fan control system
JP2001328807A (en) * 2000-03-17 2001-11-27 Mitsubishi Materials Corp Method of purifying quartz powder and product made of quartz powder
DE112020001744T5 (en) 2019-04-05 2021-12-23 Heraeus Quarzglas Gmbh & Co. Kg Titanium-containing quartz glass with excellent UV absorption and process for its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166159A (en) * 1994-12-13 1996-06-25 Seiki Suyama Ventilation fan control system
JP2001328807A (en) * 2000-03-17 2001-11-27 Mitsubishi Materials Corp Method of purifying quartz powder and product made of quartz powder
JP4557441B2 (en) * 2000-03-17 2010-10-06 ジャパンスーパークォーツ株式会社 Method and apparatus for refining quartz powder and quartz glass product
DE112020001744T5 (en) 2019-04-05 2021-12-23 Heraeus Quarzglas Gmbh & Co. Kg Titanium-containing quartz glass with excellent UV absorption and process for its manufacture

Also Published As

Publication number Publication date
JP2699107B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
US5086352A (en) Optical members and blanks or synthetic silica glass and method for their production
KR100359947B1 (en) Excimer laser and silica glass optical material for the same and its manufacturing method
KR100392127B1 (en) Quartz glass for optical lithography, optical member containing the same, exposure apparatus using the same, and manufacturing method thereof
KR100330305B1 (en) silica glass optical materials for projection lens using to vacuum ultraviolet ray lithography and manufacturing method therefor, and projection lens
JPH04195101A (en) Ultraviolet ray transmitting optical glass and molded article thereof
KR19980080264A (en) Image forming optical system for ultraviolet laser
TWI541211B (en) A manufacturing method for an optical member for a mask and an optical member for a mask
US20020037797A1 (en) Fluorine-containing glass
JP2971686B2 (en) Manufacturing method of optical member for UV resistant laser
EP1050754B1 (en) Method of measuring the transmittance of optical members for ultraviolet use
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JPH035339A (en) Quartz glass for transmitting ultraviolet ray
JP2000239040A (en) Quartz glass material for optical member for f2 excimer laser, and optical member
EP1456142B1 (en) Fused silica containing aluminum
JP3336761B2 (en) Method for producing synthetic quartz glass for light transmission
US6630418B2 (en) Fused silica containing aluminum
JP2000290026A (en) Optical quartz glass member for excimer laser
JPH01212247A (en) Production of base material for laser optical system
JP4228493B2 (en) Synthetic quartz glass
JP3259460B2 (en) Method for producing quartz glass having ultraviolet light resistance and quartz glass optical member
JP4085633B2 (en) Synthetic quartz glass for optical components
JPH0624997B2 (en) Optical components for laser light
JPH0558667A (en) Optical member
JPH03101282A (en) Optical system member for laser light
JP2002012441A (en) Synthetic quartz glass and its manufacturing method