JPH0558667A - Optical member - Google Patents

Optical member

Info

Publication number
JPH0558667A
JPH0558667A JP24424891A JP24424891A JPH0558667A JP H0558667 A JPH0558667 A JP H0558667A JP 24424891 A JP24424891 A JP 24424891A JP 24424891 A JP24424891 A JP 24424891A JP H0558667 A JPH0558667 A JP H0558667A
Authority
JP
Japan
Prior art keywords
optical member
laser
silica glass
ppm
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24424891A
Other languages
Japanese (ja)
Other versions
JP2530954B2 (en
Inventor
Kyoichi Inagi
恭一 稲木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP3244248A priority Critical patent/JP2530954B2/en
Publication of JPH0558667A publication Critical patent/JPH0558667A/en
Application granted granted Critical
Publication of JP2530954B2 publication Critical patent/JP2530954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To provide an optical member which does not cause the irregularity of its refractive index even on a large optical member especially having a thickness of >=30mm and which is thereby free from the lowering of the image- forming performance and laser resistance caused by the irregularity of the refractive index. CONSTITUTION:This invention is characterized in that the virtual temperature and the homogeneity are set to 800-1000 deg.C and a DELTAn of 1X10-5, respectively, even on a synthetic silica glass optical member having a thickness of >=30mm, thereby permitting to reduce both the deterioration and the spherical aberration of the optical member by the irradiation of laser. In order that the virtual temperature is set to 800-1000 deg.C, it is premised that the content of OH groups is >=100 (wt.ppm).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として紫外線レーザ
を利用した各種装置に組込まれる光学部材に係り、特に
レンズ、プリズム、エタロン板若しくはこれらの部材の
最終仕上げ加工前の半製品として機能し得る光学部材に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical member mainly incorporated in various devices using an ultraviolet laser, and can function as a lens, a prism, an etalon plate, or a semi-finished product of these members before final finishing. It relates to an optical member.

【0002】[0002]

【従来の技術】近年、紫外線レーザ、特にKrFエキシ
マレーザその他の短紫外線レーザはLSI製造のための
リソグラフィー技術、光化学反応を利用する技術、切断
研削のための加工技術、レーザ核融合技術に利用される
ものと注目を集めている。
2. Description of the Related Art In recent years, ultraviolet lasers, particularly KrF excimer lasers and other short ultraviolet lasers, have been used in lithography technology for manufacturing LSI, technology utilizing photochemical reaction, processing technology for cutting and grinding, laser fusion technology. It is attracting attention as something.

【0003】また紫外線レーザを透過、伝送、屈折、反
射、吸収、干渉させることにより制御するレンズ、プリ
ズム、フィルター、ウインドウ、ミラー、エタロン板、
ファイバーの材料としては、フッ化マグネシウム、フッ
化カルシウム、フッ化バリウム等のフッ化物もしくはシ
リカガラスが利用できるが、加工性、寸法、脈理や屈折
率の均質性からシリカガラスが最もふさわしく、そして
かかるシリカガラスのうち合成シリカガラスは高純度で
高均質のガラス体が得られる事から、近年高出力紫外線
用の光学部材として種々用いられてきた。
Lenses, prisms, filters, windows, mirrors, etalon plates, which control ultraviolet lasers by transmitting, transmitting, refracting, reflecting, absorbing, and interfering with them,
Fluoride such as magnesium fluoride, calcium fluoride, barium fluoride or silica glass can be used as the material of the fiber, but silica glass is most suitable from the viewpoint of workability, size, striae and homogeneity of refractive index, and Among such silica glasses, synthetic silica glass has been widely used in recent years as an optical member for high-power ultraviolet light because a glass body of high purity and high homogeneity can be obtained.

【0004】そして本出願人は特に、略360nm以下の高
出力紫外光を作用させた場合に所望の耐レーザ性を得る
為には前記光学部材を高純度合成シリカガラス材で形成
するとともに、該シリカガラスをOH基を少なくとも5
0、好ましくは100(wt・ppm)以上含有させた
光学部材を提供してきた。(特開平3ー5338号他)
In order to obtain a desired laser resistance when a high-power ultraviolet light having a wavelength of about 360 nm or less is applied, the applicant of the present invention forms the optical member with a high-purity synthetic silica glass material. Silica glass with at least 5 OH groups
An optical member containing 0, preferably 100 (wt.ppm) or more has been provided. (JP-A-3-5338, etc.)

【0005】尚、OH基含有量が何故前述した光学特性
に影響するのかはさだかではないが、以下のように考え
られる。シリカガラスに強力なレーザ光が長時間照射さ
れると、ガラス網目構造を構成する元素間の結合が徐々
に切断され、その結果透過率が低下し、吸収バンドが現
われ最悪にはクラック等が発生してしまう。しかし、こ
れら元素間の切断も、シリカガラス中に存在するOH基
自体若しくは、該OH基中の水素原子の存在や移動によ
り大部分が修復され、そして更にクラックの発生におい
てもOH基が多量に含まれると上記理由により吸収バン
ドの発生が小さくなり、その結果として光吸収が少なく
なり、クラックが少なくなると考えている。
The reason why the OH group content affects the above-mentioned optical characteristics is not critical, but it is considered as follows. When silica glass is irradiated with strong laser light for a long time, the bonds between the elements that make up the glass network structure are gradually broken, and as a result the transmittance decreases, absorption bands appear, and in the worst case cracks occur. Resulting in. However, the cleavage between these elements is also largely repaired by the presence or movement of the OH groups present in the silica glass or the hydrogen atoms in the OH groups, and even when cracks occur, a large amount of OH groups is generated. It is considered that if included, the generation of absorption bands is reduced for the above reason, resulting in less light absorption and fewer cracks.

【0006】従って前記OH基含有量はエキシマレーザ
のように使用光が短波長化してエネルギー密度が増大す
るに比例して増加させる必要があり、例えば250nm以下
のレーザビームにおいてはOH基濃度を100(wt・p
pm)以上含有させる必要がある。さて、かかるシリカ
ガラスの光学的特性、特に均質性を評価するに当って
は、円板状に形成した光学部材の円板表面からHe−N
eレーザを均一に照射して、その反対側の鏡面より反射
して前記表面に戻ってきた光と、参照光とを干渉させて
面内の光の透過する速度の違いから面内の屈折率のバラ
ツキを算出していた。
Therefore, it is necessary to increase the OH group content in proportion to the increase in energy density due to the shortened wavelength of the used light as in the excimer laser. For example, in the laser beam of 250 nm or less, the OH group concentration is 100. (Wt / p
pm) or more. Now, in evaluating the optical characteristics, particularly homogeneity, of such silica glass, He-N is measured from the disc surface of the disc-shaped optical member.
The in-plane refractive index is caused by the difference in the transmission speed of the in-plane light that interferes with the light that is reflected by the mirror surface on the opposite side and returns to the surface after being irradiated with the e-laser. Was calculated.

【0007】[0007]

【発明が解決しようとする課題】しかしながら前記測定
方法では肉厚方向(長さ)が平均化されてしまうため
に、平均化された値しか得る事が出来ず、特に肉厚が3
0mm以上に形成した合成シリカガラスにおいてはその
一部に屈折率の不均一部分が生じていてもこれを検知す
る事が出来ない。
However, in the above-mentioned measuring method, since the thickness direction (length) is averaged, only an averaged value can be obtained.
In the synthetic silica glass formed to have a thickness of 0 mm or more, even if a portion having a non-uniform refractive index is generated, it cannot be detected.

【0008】この為かかる合成シリカガラスを用いてレ
ンズ、その他の光学部品を加工/製造すると部分的に球
面収差が大きくなり、その結像性能が低下する現象がみ
られた。 又前記の光学部品に、エキシマレーザのよう
に非常にエネルギーの高いレーザ光を照射した場合に前
記不均一部分より部分的に劣化が生じる事も知見し、こ
の為この様な光学部品の高出力レーザ装置への適用が実
用的に困難である事も把握した。
For this reason, when a lens and other optical parts are processed / manufactured by using such synthetic silica glass, a phenomenon in which spherical aberration is partially increased and the imaging performance thereof is deteriorated has been observed. It was also found that when the above-mentioned optical components were irradiated with a laser beam having a very high energy such as an excimer laser, the deterioration was partially caused from the non-uniform portion. We also found that it is practically difficult to apply it to a laser device.

【0009】本発明はかかる従来技術の欠点に鑑み、特
に肉厚を30mm以上に設定する大型の光学部材におい
ても屈折率のバラツキが生じる事なく、これにより該バ
ラツキ等に起因する結像性能や耐レーザ性が低下する事
のない光学部材を提供することを目的とする。
In view of the above-mentioned drawbacks of the prior art, the present invention does not cause a variation in the refractive index even in a large-sized optical member having a thickness of 30 mm or more. An object of the present invention is to provide an optical member whose laser resistance does not deteriorate.

【0010】[0010]

【課題を解決する為の手段】本発明は、前記球面収差が
大きくなる光学部品やレーザ照射による劣化する部品を
レーザラマン分光光度計によって調べた所、いずれも仮
想温度分布が異常に高い部分から劣化する事を知見し、
該知見に基づいて発明に至ったものである。即ち、本発
明は前記知見より、肉厚が30mm以上の合成シリカガ
ラスからなる光学部材においても、仮想温度を800〜
1000℃で均質性をΔnを1×10ー5以下に設定した
点を特徴とし、これによりレーザ照射による劣化及び球
面収差のいずれもが低減し得る。そして前記仮想温度を
800〜1000℃に設定するには後記実施例に示すよ
うにアニール条件を選択する事により容易に実現し得
る。しかしながら、仮想温度を800℃以下に設定する
ことは、実際には長時間(2ヵ月程度)の加熱が必要で
あり工業的には不利である。
According to the present invention, the optical components having a large spherical aberration and the components deteriorated by laser irradiation are examined by a laser Raman spectrophotometer. Knowing that
The invention was achieved based on the findings. That is, the present invention has the fictive temperature of 800 to 800 even from an optical member made of synthetic silica glass having a thickness of 30 mm or more from the above knowledge.
The feature is that the homogeneity at 1000 ° C. is set to Δn of 1 × 10 −5 or less, which can reduce both deterioration due to laser irradiation and spherical aberration. The setting of the fictive temperature to 800 to 1000 ° C. can be easily realized by selecting the annealing condition as shown in the examples below. However, setting the fictive temperature at 800 ° C. or lower actually requires heating for a long time (about two months), which is industrially disadvantageous.

【0011】尚、仮想温度が800〜1000℃に設定
すると、何故レーザ照射による劣化が発生しにくいかに
ついては不明であるが、以下の様に考えられる。第1に
仮想温度が800〜1000℃になると、シリカガラス
中のプレカーサが少なくなる。第2に仮想温度が800
〜1000℃になると密度が低下して構造が緩和してレ
ーザ照射によって欠陥が発生しにくくなるものと思慮さ
れる。
Although it is not clear why the deterioration due to laser irradiation does not easily occur when the fictive temperature is set to 800 to 1000 ° C., the following is considered. First, when the fictive temperature reaches 800 to 1000 ° C, the amount of precursor in the silica glass decreases. Second, the fictive temperature is 800
It is considered that when the temperature rises to about 1000 ° C., the density decreases, the structure relaxes, and it becomes difficult for defects to be generated by laser irradiation.

【0012】次に前記仮想温度が800〜1000℃に
設定するにはOH基含有量が100(wt・ppm)以
上存在する事が前提となる。けだしOH基含有量を10
0(wt・ppm)以上に設定する事は、前記したよう
に耐レーザ性の面でも好ましいのみならず、OH基含有
量が100(wt・ppm)以下では仮想温度を100
0℃以下に設定するのが困難になる。又OH基含有量を
1000(wt・ppm)以上含有させる事は製造上問
題となりやすい。
Next, in order to set the fictive temperature to 800 to 1000 ° C., it is premised that the OH group content is 100 (wt.ppm) or more. Bare OH group content 10
Setting it to 0 (wt.ppm) or more is not only preferable in terms of laser resistance as described above, but also when the OH group content is 100 (wt.ppm) or less, the fictive temperature is 100.
It becomes difficult to set the temperature below 0 ° C. In addition, the inclusion of an OH group content of 1000 (wt.ppm) or more tends to cause problems in manufacturing.

【0013】そこで本発明の第2の特徴とする所は、O
H基を100〜1000(wt・ppm)含有させた点
にある。更に、前記ガラス体においても耐レーザ性を得
るためには略250nm以下の短紫外域における高出力
レーザ特にKrFエキシマレーザの照射における耐レー
ザ性を得るには特開平3ー88742号に示すようにH
2ガス分子の含有量を1×1016molecules/cm3以上に設
定する必要がある。
Therefore, the second feature of the present invention is that O
The point is that H group is contained in an amount of 100 to 1000 (wt.ppm). Further, in order to obtain laser resistance even in the above glass body, in order to obtain laser resistance upon irradiation with a high power laser in the short ultraviolet region of about 250 nm or less, particularly KrF excimer laser, as disclosed in JP-A-3-88742. H
It is necessary to set the content of 2 gas molecules to 1 × 10 16 molecules / cm 3 or more.

【0014】[0014]

【実施例】先ず高純度の合成石英ガラスを製造するため
に、原料四塩化ケイ素を蒸留処理して不純物を除去させ
た後テフロンランニグ付ステンレス製容器に貯溜した高
純度四塩化珪素を用意し、該高純度の四塩化ケイ素原料
を用いて、火炎加水分解法(ダイレクト法)で、OH基
を500(wt・ppm)含有した。高純度合成シリカ
ガラスインゴットと、CVDスート法でOH基を150
(wt・ppm)含有した高純度合成シリカガラスイン
ゴットとCVDスート法+Cl2処理によりOH基の含
有量が5(wt・ppm)以下の高純度合成シリカガラ
スインゴットを各々複数個合成した。
EXAMPLE First, in order to produce a high-purity synthetic quartz glass, a high-purity silicon tetrachloride stored in a Teflon lannig stainless steel container was prepared by distilling a raw material silicon tetrachloride to remove impurities. Using the high-purity silicon tetrachloride raw material, 500 (wt · ppm) of OH groups was contained by a flame hydrolysis method (direct method). High purity synthetic silica glass ingot and OH group of 150 by CVD soot method
A plurality of high-purity synthetic silica glass ingots containing (wt.ppm) and a plurality of high-purity synthetic silica glass ingots each having an OH group content of 5 (wt.ppm) or less were synthesized by the CVD soot method + Cl 2 treatment.

【0015】そして前記各インゴットを軟化点以上に加
熱/冷却操作を繰返し行ない、且つ加熱毎に自重による
軟化の方向を変えて内部の脈理を除去する。すなわちこ
の操作の繰返しによって3方向脈理フリーでありかつ屈
折率変動幅(△n)を2×10ー6 以下に抑えたインゴットを
製造する。
Then, each of the ingots above the softening point is added.
Repeated heating / cooling operation, and due to the weight of each heating
Change the direction of softening to remove internal striae. I.e.
By repeating the operation of 3
Folding rate fluctuation range (△ n) is 2 × 10-6 Ingots suppressed below
To manufacture.

【0016】そして前記各インゴットをステンレスジャ
ケット内にタングステンヒータを配置した電気炉内に設
置した後、大気圧雰囲気下にて図1(A)に示す温度カ
ーブで加熱/徐冷し所定のアニール処理を行った。そし
て前記アニール処理を行なった各円筒インゴットについ
て外周を10mm削り、更に上下面をカットして外周1
00φ、肉厚30mmの円筒試験片を作成した。尚ダイ
レクト法の試験片を実施例1、スート法で製造した試験
片を実施例2〔OH基含有量 150(wt・pp
m)〕と比較例1〔(OH基含有量 5(wt・ppm
以下)〕とする。
After placing each of the ingots in an electric furnace in which a tungsten heater is placed in a stainless jacket, the ingots are heated / slowly cooled in a temperature curve shown in FIG. I went. The outer periphery of each of the annealed cylindrical ingots was ground by 10 mm, and the upper and lower surfaces were further cut to form the outer periphery 1.
A cylindrical test piece having a diameter of 00φ and a thickness of 30 mm was prepared. The test piece of the direct method was used in Example 1 and the test piece manufactured by the soot method was used in Example 2 [OH group content 150 (wt.pp.
m)] and Comparative Example 1 [(OH group content 5 (wt · ppm
Below)].

【0017】次にダイレクト法で 製造したインゴット
についてアニール条件を変えて、図1(B)に示す温度
カーブ2で加熱/徐冷しアニール処理を行い、該アニー
ル処理を行なった円筒インゴットについて外周を10m
m削り、更に上下面をカットして外周100φ、肉厚3
0mmの円筒試験片を作成した。(比較例2)
Next, the annealing conditions of the ingot manufactured by the direct method are changed, and the annealing / annealing is performed by heating / slow cooling according to the temperature curve 2 shown in FIG. 1 (B). 10m
m shaving and further cutting the upper and lower surfaces to give a circumference of 100φ and a wall thickness of 3
A 0 mm cylindrical test piece was prepared. (Comparative example 2)

【0018】次に前記各試験片についてKrFエキシマ
レーザを100mJ/cm2のエネルギー密度,100H
zの周波数で3×107p照射した後のH2の含有量と測
定しH2の消費量を計算した。
Next, a KrF excimer laser was applied to each of the above test pieces at an energy density of 100 mJ / cm 2 and 100 H.
The content of H 2 after irradiation with 3 × 10 7 p at the frequency of z was measured, and the consumption of H 2 was calculated.

【0019】その結果実施例1では、レーザ照射前後で
2含有量が1×1017から5×1016(molecules/cm3)
へと低減したが、耐レーザ性の欠陥発生限界である1×
1016(molecules/cm3)を満足している。
As a result, in Example 1, the H 2 content was 1 × 10 17 to 5 × 10 16 (molecules / cm 3 ) before and after laser irradiation.
Although it has been reduced to 1 ×, it is the limit of the defect occurrence of laser resistance.
It satisfies 10 16 (molecules / cm 3 ).

【0020】また、実施例2でも、レーザ照射前後でH
2含有量が1×1017から2×101 6(molecules/cm3)へ
と低減したが、耐レーザ性の欠陥発生限界である1×1
16 (molecules/cm3)を満足している。一方比較例1で
は、レーザ照射前のH2含有量は1×1016(molecules/
cm3)以下であり、耐レーザ性の欠陥発生限界以下であっ
た。また比較例2ではレーザ照射前のH2含有量は実施
例1と同様であるが、使用後において1×1016(molec
ules/cm3)以下と大きく低減し、耐レーザ性の欠陥発生
以下に落ちていることが確認された。
Also in Example 2, H before and after laser irradiation
2Content is 1 x 1017From 2 × 101 6 (molecules / cm3)What
Although it was reduced to 1 × 1 which is the limit of the defect occurrence of laser resistance.
016 (molecules / cm3) Is satisfied. On the other hand, in Comparative Example 1
Is H before laser irradiation2Content is 1 x 1016(molecules /
cm3) Or less, and below the laser-resistant defect generation limit.
It was In Comparative Example 2, H before laser irradiation2Content is implemented
Same as Example 1, but 1 × 10 after use16(molec
ules / cm3) Significantly reduced to less than the following, and laser resistant defect occurrence
It was confirmed that it fell below.

【0021】次に前記各試験片より凸レンズを製造/加
工してこのレンズの球面収差を測定した所、比較例1及
び2は実施例1に比較して球面収差が2倍程度悪くなっ
ている事が確認された。次に前記各試験片の仮想温度の
設定は、TheAmerican Physical Society, Vol.28, No.
6, pp3266〜3271, September,1983 に記載されている
ようにレーザラマン分光法を用いる。先ずその測定方法
を簡単に説明するに、先ず比較サンプルとしてOH基5
00(wt・ppm)程度の合成シリカガラスの小片
(5cm角、長さ20mm)を用意し、この小片を例え
ば1200℃で2時間加熱した後水中急冷したサンプル
1、1000℃で20時間加熱した後水中急冷したサン
プル2、900℃で120時間加熱した後水中急冷した
サンプル3を生成し、800℃で1200時間加熱した
後水中急冷したサンプル4を生成しこれらのサンプルを
夫々ラマン分光光度計で150〜650cmー1の範囲を
測定し、下記の3つのピーク面積を測定する。
Next, when a convex lens was manufactured / processed from each of the test pieces and the spherical aberration of this lens was measured, the spherical aberrations of Comparative Examples 1 and 2 were about twice as bad as those of Example 1. Things were confirmed. Next, the setting of the virtual temperature of each of the test pieces is performed by The American Physical Society, Vol.28, No.
Laser Raman spectroscopy is used as described in 6, pp 3266-3721, September, 1983. First, to briefly explain the measurement method, first, as a comparative sample, an OH group of 5
A small piece (5 cm square, length 20 mm) of synthetic silica glass of about 00 (wt · ppm) was prepared, and this small piece was heated at 1200 ° C. for 2 hours and then rapidly cooled in water. Sample 1, and heated at 1000 ° C. for 20 hours. Post-quenched sample 2 produced at 900 ° C. for 120 hours and then sub-quenched sample 3 produced at 800 ° C. for 1200 hours then sub-quenched sample 4 produced by Raman spectrophotometer A range of 150 to 650 cm -1 is measured, and the following three peak areas are measured.

【0022】 150〜650cmー1(W1、ピーク面積AW1)、 470〜520cmー1(D1、ピーク面積AD1) 580〜640cmー1(D2、ピーク面積AD2) 次にこれらの3つのピーク面積からD2のピーク面積の
比(I)を求める。 I={AD2/(AW1ーAD1ーAD2)}
150-650 cm -1 (W1, peak area AW1), 470-520 cm -1 (D1, peak area AD1) 580-640 cm -1 (D2, peak area AD2) Next, from these three peak areas, D2 The ratio (I) of the peak areas of is calculated. I = {AD2 / (AW1-AD1-AD2)}

【0023】この(I)と仮想温度との関係をグラフに
示し、標準線(検量線)として仮想温度が分らないサン
プルの(I)から仮想温度を推測する。この手法により
前記各試験体に仮想温度を測定した所、比較例1につい
てはほぼ全域に亙って仮想温度が1000℃以上であ
り、又比較例2については周縁部おいて仮想温度が10
00℃以上の所が存在し、実施例1については中心域及
び周縁域のいずれもが仮想温度が850〜950℃の中
に入っていることが、また実施例2については、中心域
及び周緑域のいずれもが仮想温度900℃〜1000℃
の中に入っていることが確認された。
The relationship between this (I) and the fictive temperature is shown in a graph, and the fictive temperature is estimated from the (I) of the sample for which the fictive temperature is unknown as a standard line (calibration curve). When the fictive temperature of each of the test specimens was measured by this method, the fictive temperature was 1000 ° C. or higher in almost the entire area in Comparative Example 1, and the fictive temperature was 10 in the peripheral portion in Comparative Example 2.
There is a location of 00 ° C. or higher, and for Example 1, both the central region and the peripheral region have fictive temperatures within 850 to 950 ° C., and for Example 2, the central region and the peripheral region. Virtual temperature of all green areas is 900 ℃ -1000 ℃
It was confirmed that it was inside.

【0024】尚、前記各試験体についてアルカリ金属元
素Li,Na,K,アルカリ土類金属元素Mg,Ca 及び遷移金属元
素Ti,Cr,Fe,Ni,Cuの各元素の含量分析を行ってみると、
いずれもLi,Na及びKのトータル含有量を150ppb以下、 M
g及びCaのトータル含有量を100ppb以下、 Ti,Cr,Fe,Ni
及びCuのトータル含有量を50ppb以下と高純度が維持さ
れていた。
The content of each of the alkali metal elements Li, Na, K, the alkaline earth metal elements Mg, Ca and the transition metal elements Ti, Cr, Fe, Ni, Cu is analyzed for each of the above-mentioned test bodies. When,
All have a total content of Li, Na and K of 150 ppb or less, M
Total content of g and Ca is 100ppb or less, Ti, Cr, Fe, Ni
High purity was maintained with a total Cu content of less than 50 ppb.

【0025】[0025]

【発明の効果】以上記載の如く本発明によれば、特に肉
厚を30mm以上に設定する大型の光学部材においても
屈折率のバラツキが生じる事なく、これにより該バラツ
キ等に起因する結像性能や耐レーザ性が低下する事のな
い光学部材を得ることが出来る。等の種々の著効を有
す。
As described above, according to the present invention, even in a large-sized optical member whose thickness is set to 30 mm or more, the refractive index does not fluctuate, so that the imaging performance resulting from the fluctuation or the like occurs. It is possible to obtain an optical member in which the laser resistance does not deteriorate. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例(A)と比較例(B)の熱処理
温度分布図である。
FIG. 1 is a heat treatment temperature distribution diagram of an example (A) of the present invention and a comparative example (B).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 肉厚が30mm以上の合成シリカガラス
からなる光学部材において、 OH基を100〜1000(wt・ppm)含有させる
と共に、仮想温度を800〜1000℃で且つ均質性Δ
nを1×10ー5以下に設定した事を特徴とする光学部材
1. An optical member made of synthetic silica glass having a wall thickness of 30 mm or more containing 100 to 1000 (wt.ppm) of OH groups, a fictive temperature of 800 to 1000 ° C., and a homogeneity Δ.
Optical member characterized by setting n to 1 × 10 −5 or less
【請求項2】 H2ガス分子の含有量を1×1016molec
ules/cm3以上に設定したことを特徴とする請求項1記載
の光学部材
2. The content of H 2 gas molecules is 1 × 10 16 molec.
The optical member according to claim 1, wherein the optical member is set to ules / cm 3 or more.
JP3244248A 1991-08-30 1991-08-30 Optical member Expired - Lifetime JP2530954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3244248A JP2530954B2 (en) 1991-08-30 1991-08-30 Optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3244248A JP2530954B2 (en) 1991-08-30 1991-08-30 Optical member

Publications (2)

Publication Number Publication Date
JPH0558667A true JPH0558667A (en) 1993-03-09
JP2530954B2 JP2530954B2 (en) 1996-09-04

Family

ID=17115936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3244248A Expired - Lifetime JP2530954B2 (en) 1991-08-30 1991-08-30 Optical member

Country Status (1)

Country Link
JP (1) JP2530954B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033745A1 (en) 1997-12-26 1999-07-08 Suntory Limited Drinking water dispenser with sterilization means
EP1319637A2 (en) 2001-12-11 2003-06-18 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass blank
US7534733B2 (en) 2004-02-23 2009-05-19 Corning Incorporated Synthetic silica glass optical material having high resistance to laser induced damage
JP2010163347A (en) * 2008-03-21 2010-07-29 Asahi Glass Co Ltd TiO2-CONTAINING SILICA GLASS
WO2012002493A1 (en) * 2010-06-30 2012-01-05 国立大学法人東北大学 Method for measuring the fictive temperature of optical glass
JP2013224261A (en) * 2003-04-03 2013-10-31 Asahi Glass Co Ltd SILICA GLASS CONTAINING TiO2, AND PROCESS FOR PRODUCTION OF THE SAME
JP2022526062A (en) * 2020-09-22 2022-05-23 中天科技精密材料有限公司 Low hydroxy group high purity quartz glass and its preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291824A (en) * 1987-05-22 1988-11-29 Seiko Epson Corp Production of quartz glass transmitting short wavelength laser light
JPH0388742A (en) * 1989-06-09 1991-04-15 Shinetsu Sekiei Kk Synthetic silica glass optical body and production therefor
JPH0388743A (en) * 1989-06-19 1991-04-15 Shinetsu Sekiei Kk Synthetic silica glass optical body for ultraviolet laser and production therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291824A (en) * 1987-05-22 1988-11-29 Seiko Epson Corp Production of quartz glass transmitting short wavelength laser light
JPH0388742A (en) * 1989-06-09 1991-04-15 Shinetsu Sekiei Kk Synthetic silica glass optical body and production therefor
JPH0388743A (en) * 1989-06-19 1991-04-15 Shinetsu Sekiei Kk Synthetic silica glass optical body for ultraviolet laser and production therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033745A1 (en) 1997-12-26 1999-07-08 Suntory Limited Drinking water dispenser with sterilization means
EP1319637A2 (en) 2001-12-11 2003-06-18 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass blank
US6761951B2 (en) 2001-12-11 2004-07-13 Shin-Etsu Chemical Co., Ltd. Synthetic quartz glass blank
JP2013224261A (en) * 2003-04-03 2013-10-31 Asahi Glass Co Ltd SILICA GLASS CONTAINING TiO2, AND PROCESS FOR PRODUCTION OF THE SAME
US7534733B2 (en) 2004-02-23 2009-05-19 Corning Incorporated Synthetic silica glass optical material having high resistance to laser induced damage
JP2010163347A (en) * 2008-03-21 2010-07-29 Asahi Glass Co Ltd TiO2-CONTAINING SILICA GLASS
WO2012002493A1 (en) * 2010-06-30 2012-01-05 国立大学法人東北大学 Method for measuring the fictive temperature of optical glass
JP5626927B2 (en) * 2010-06-30 2014-11-19 株式会社 東北テクノアーチ Method for measuring virtual temperature of optical glass
JP2022526062A (en) * 2020-09-22 2022-05-23 中天科技精密材料有限公司 Low hydroxy group high purity quartz glass and its preparation method
US11981594B2 (en) 2020-09-22 2024-05-14 Zhongtian Technology Advanced Materials Co., Ltd. Quartz glass with low content of hydroxyl and high purity and method for preparing the same

Also Published As

Publication number Publication date
JP2530954B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
EP0720970B1 (en) Silica glass for photolithography, optical member including the same, exposure apparatus including the same, and method for producing the same
US5325230A (en) Optical members and blanks of synthetic silica glass and method for their production
US5086352A (en) Optical members and blanks or synthetic silica glass and method for their production
EP1394590A1 (en) Method for growing a calcium fluoride crystal
WO2000024685A1 (en) Synthetic quartz glass and method for production thereof
US7312170B2 (en) Optical synthetic quartz glass and method for producing the same
US20110053059A1 (en) Mask blanks
EP1204611A1 (en) Synthetic quartz glass optical material and optical member for f 2? excimer lasers
JP2003221245A (en) SYNTHETIC QUARTZ GLASS MATERIAL FOR ArF PHOTOLITHOGRAPHY DEVICE
JPH0388742A (en) Synthetic silica glass optical body and production therefor
JPH0558667A (en) Optical member
JPWO2003004987A1 (en) Optical member for optical lithography and its evaluation method
JPH0627014B2 (en) Synthetic silica glass optical body for ultraviolet laser and manufacturing method thereof
JP2770224B2 (en) Quartz glass for optical lithography, optical member including the same, exposure apparatus using the same, and method of manufacturing the same
JPH03109233A (en) Synthetic silica glass optical body for ultraviolet laser beam and its production
JP2000239040A (en) Quartz glass material for optical member for f2 excimer laser, and optical member
JP2005503313A (en) UV light transmitting fluoride crystal for photolithography
JPH03101282A (en) Optical system member for laser light
JPH01212247A (en) Production of base material for laser optical system
JPH0829960B2 (en) Ultraviolet laser optical components
JP2001114530A (en) Silica glass optical material for excimer laser and excimer lamp
JPH1067526A (en) Optical quartz glass element
JPH02102139A (en) Quartz glass matrix for light transmitter, quartz glass raw block for mainly producing same matrix and light transmitter formed with same matrix
US6518210B1 (en) Exposure apparatus including silica glass and method for producing silica glass
JP4174400B2 (en) Silica glass sorting method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20080627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20110627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20120627

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20120627