JPH0353389B2 - - Google Patents

Info

Publication number
JPH0353389B2
JPH0353389B2 JP59033735A JP3373584A JPH0353389B2 JP H0353389 B2 JPH0353389 B2 JP H0353389B2 JP 59033735 A JP59033735 A JP 59033735A JP 3373584 A JP3373584 A JP 3373584A JP H0353389 B2 JPH0353389 B2 JP H0353389B2
Authority
JP
Japan
Prior art keywords
molten pool
plasma arc
metal powder
cast iron
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59033735A
Other languages
Japanese (ja)
Other versions
JPS60187660A (en
Inventor
Norihiko Saga
Tsuyoshi Makita
Hisao Hirono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP59033735A priority Critical patent/JPS60187660A/en
Priority to FR858502501A priority patent/FR2560090B1/en
Priority to DE3506302A priority patent/DE3506302C3/en
Priority to GB08504617A priority patent/GB2155495B/en
Priority to CA000475028A priority patent/CA1242409A/en
Publication of JPS60187660A publication Critical patent/JPS60187660A/en
Publication of JPH0353389B2 publication Critical patent/JPH0353389B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/327Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C comprising refractory compounds, e.g. carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3093Fe as the principal constituent with other elements as next major constituents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • F01L1/16Silencing impact; Reducing wear

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Articles (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 本発明は表層の一部を耐摩耗性に優れた再溶融
処理層としたカムシヤフト或いはロツカアーム等
の鋳鉄部材のプラズマアークによる表面硬化方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for surface hardening a cast iron member such as a camshaft or a rocker arm using a plasma arc, in which a part of the surface layer is a remelted layer having excellent wear resistance.

内燃機関にあつては、適切な時期にバルブを開
閉して、燃焼室に混合気を導入したり、燃料ガス
を放出すべく、クランクシヤフトの回転とバルブ
の開閉とをカムシヤフト及びロツカアームを介し
て連動せしめている。ここでカムシヤフト及びロ
ツカアームはOHC型にあつては直接その一部が
摺接しており、OHV型にあつてはタぺツトの一
部とカムシヤフト及びロツカアームの一部とが摺
接している。このため、カムシヤフト及びロツカ
アームの表層の一部は他の部位に比べ、高い耐摩
耗性が要求される。
In an internal combustion engine, the rotation of the crankshaft and the opening and closing of the valves are controlled via the camshaft and rocker arm in order to open and close the valves at appropriate times to introduce the mixture into the combustion chamber and release fuel gas. It is linked. Here, in the case of the OHC type, a part of the camshaft and the rocker arm are in direct sliding contact, and in the case of the OHV type, a part of the tappet and a part of the camshaft and rocker arm are in sliding contact. Therefore, a portion of the surface layer of the camshaft and rocker arm is required to have higher wear resistance than other portions.

そこで、従来にあつては、一部に耐摩耗性に優
れた部分が要求されるカムシヤフト等の鋳鉄部材
を製造するにあたつて、鋳造時にCr、Mo等の高
硬度の金属を溶湯中に添加するとともに、金型の
一部に冷し金をセツトし、冷し金の当たる部分に
耐摩耗性に優れたチル化層を鋳造と同時に形成す
るようにしている。
Therefore, in the past, when manufacturing cast iron parts such as camshafts that require parts with excellent wear resistance, high hardness metals such as Cr and Mo are added to the molten metal during casting. At the same time, a chilled metal is set in a part of the mold, and a chilled layer with excellent wear resistance is formed at the same time as casting in the area that the chilled metal touches.

ところで、チル化層の硬度を高め、耐摩耗性を
更に向上せしめるには、溶湯中に添加する高硬度
金属の量を増せば良いが、添加量を増すと、冷し
金を当てない他の部分、例えばジヤーナル軸など
が高硬度金属を添加した効果として硬さが増し、
鋳造後の切削加工が困難となり、場合によつて
は、冷し金を当てない部分にチル組織が形成さ
れ、後の切削加工が極めて困難となる。
By the way, in order to increase the hardness of the chilled layer and further improve its wear resistance, it is sufficient to increase the amount of high-hardness metal added to the molten metal. The hardness of parts, such as journal shafts, increases as a result of adding high-hardness metals,
Cutting after casting becomes difficult, and in some cases, a chill structure is formed in areas where the cold metal is not applied, making subsequent cutting extremely difficult.

このため、後の切削加工を考慮すれば、添加す
る高硬度金属の割合は、単独の場合には1.0wt%
が、また複数種の高硬度金属を添加する場合であ
つても1.4wt%が添加量の上限であり、これ以上
の添加は実用上困難であつた。したがつて従来の
鋳鉄部材にあつてはその一部に形成される耐摩耗
性は十分なものとはいえない。
Therefore, considering the subsequent cutting process, the proportion of high hardness metal added is 1.0wt% when added alone.
However, even when multiple types of high-hardness metals are added, the upper limit of the amount added is 1.4 wt%, and it has been practically difficult to add more than this. Therefore, in the case of conventional cast iron members, the wear resistance formed in a part thereof cannot be said to be sufficient.

本発明は上述した従来の問題点に鑑み成したも
のであり、その目的とする処は、切削加工が極め
て容易であり、且つ表層の一部に極めて高硬度
で、耐摩耗性、耐ピツチング性に優れた再溶融処
理層を形成した部分硬化鋳鉄部材が得られるよう
にしたプラズマアークによる表面硬化方法を提供
するにある。
The present invention was made in view of the above-mentioned conventional problems, and its purpose is to provide extremely easy cutting processing, and a part of the surface layer that has extremely high hardness, wear resistance, and pitting resistance. An object of the present invention is to provide a method for surface hardening using plasma arc, which allows a partially hardened cast iron member to be formed with a remelted layer having excellent properties.

以上の課題を解決すべく本発明は、鋳鉄部材の
表層の一部に対向して、プラズマトーチと金属粉
末導入管を配設し、前記トーチから噴出するプラ
ズマアークにより前記鋳鉄部材の表層の一部に溶
融池を形成すると同時に、前記導入管からCr、
Mo、Ni、W、V或いはNb等の単体、合金又は
化合物の高硬度金属粉末を前記プラズマアーク中
に搬入して、前記溶融池中に前記高硬度金属粉末
を強制的に供給し、前記溶融池中に前記高硬度金
属粉末が固溶若しくは分散してなる再溶融処理層
を形成するプラズマアークによる鋳鉄部材の表面
硬化方法であつて、前記Cr、Mo、Ni、W、V或
いはNb等の高硬度金属の前記溶融池に対する少
なくとも単体での添加割合を1.0〜15.0wt%とし
て、前記導入管から前記高硬度金属粉末を0.5
m/sec以上の搬送速度で前記プラズマアーク中
に搬入するとともに、前記プラズマアークによる
前記溶融池中への前記高硬度金属粉末の強制的な
供給と同時に、前記トーチと前記鋳鉄部材との相
対移動により前記溶融池に撹拌作用を生じさせ
て、前記溶融池底部に至る極めて深い層にわたり
前記高硬度金属粉末を略均一に混在させることを
特徴とする。
In order to solve the above problems, the present invention disposes a plasma torch and a metal powder introduction pipe opposite to a part of the surface layer of the cast iron member, and uses a plasma arc ejected from the torch to partially form the surface layer of the cast iron member. At the same time a molten pool is formed in the part, Cr,
A high-hardness metal powder of a single substance, an alloy, or a compound such as Mo, Ni, W, V, or Nb is introduced into the plasma arc, and the high-hardness metal powder is forcibly fed into the molten pool. A surface hardening method for a cast iron member using a plasma arc to form a remelted layer in which the high-hardness metal powder is solid-dissolved or dispersed in a pond, the method comprising: The high hardness metal powder is added from the introduction tube to the molten pool at a rate of at least 1.0 to 15.0wt%, and 0.5% of the high hardness metal powder is added to the molten pool.
Carrying into the plasma arc at a conveying speed of m/sec or more and at the same time forcibly supplying the high hardness metal powder into the molten pool by the plasma arc, relative movement between the torch and the cast iron member. The method is characterized in that a stirring action is produced in the molten pool, so that the high-hardness metal powder is mixed substantially uniformly over a very deep layer down to the bottom of the molten pool.

例えば、前記Cr、Mo、Ni、W、V或いはNb
等の高硬度金属の単体又は化合物は二種以上を複
合して前記溶融池に供給され、その添加割合は個
別には0.7〜15.0wt%であり、全体としては1.4〜
16.0wt%であつても良い。
For example, the Cr, Mo, Ni, W, V or Nb
A single substance or a compound of high hardness metals, such as, is supplied to the molten pool in combination of two or more types, and the addition ratio is 0.7 to 15.0 wt% individually, and 1.4 to 1.4 wt% as a whole.
It may be 16.0wt%.

更には、前記Cr、Mo、Ni、W、V或いはNb
等の高硬度金属の化合物は硫黄添加による硫化物
となつており、その硫黄の添加割合は前記再溶融
処理層に対して0.2〜1.5wt%であつても良い。
Furthermore, the above Cr, Mo, Ni, W, V or Nb
Compounds of high hardness metals such as sulfur are added to form sulfides, and the addition ratio of sulfur may be 0.2 to 1.5 wt% with respect to the remelted layer.

以下に本発明の実施例を添付図面に基づいて説
明する。
Embodiments of the present invention will be described below based on the accompanying drawings.

第1図は本発明に係る鋳造部材の製造に用いる
プラズマトーチ1の内部構造を示す断面図であ
り、プラズマトーチ1は中空状のシールドキヤツ
プ2内に銅製のノズル3を配設し、シールドキヤ
ツプ2とノズル3との間に不活性ガス等のシール
ドガスの通路4を形成している。またノズル3の
中心にはアルゴンガス等の作動ガスの通路5を形
成するとともにこの通路5の周囲に冷却通路6を
形成している。そして、作動ガスの通路5内には
タングステン電極7を設け、更に通路5の下端を
プラズマガス吹付用通路8としている。更に前記
シールドキヤツプ2には筒状ガイド9,9を斜め
に貫通して取付け、この筒状ガイド9,9に金属
粉末導入管10をその軸線の延長がプラズマガス
吹付用通路8の軸線の延長と交わるように挿通固
着している。尚、筒状ガイド9の数は2つに限ら
ず、シールドキヤツプ2の周囲に等間隔で複数配
設されているものとする。
FIG. 1 is a sectional view showing the internal structure of a plasma torch 1 used for manufacturing a cast member according to the present invention. A passage 4 for a shielding gas such as an inert gas is formed between the nozzle 2 and the nozzle 3. Further, a passage 5 for a working gas such as argon gas is formed in the center of the nozzle 3, and a cooling passage 6 is formed around this passage 5. A tungsten electrode 7 is provided in the working gas passage 5, and the lower end of the passage 5 is used as a plasma gas spraying passage 8. Further, cylindrical guides 9, 9 are installed diagonally through the shield cap 2, and a metal powder introduction tube 10 is attached to the cylindrical guides 9, 9 so that the extension of the axis thereof is an extension of the axis of the plasma gas spray passage 8. It is inserted and fixed so that it intersects with the Note that the number of cylindrical guides 9 is not limited to two, but a plurality of cylindrical guides 9 may be arranged around the shield cap 2 at equal intervals.

以上の構成からなるプラズマトーチ1を用いて
本発明に係る鋳鉄部材を製造する方法を以下に述
べる。
A method for manufacturing a cast iron member according to the present invention using the plasma torch 1 having the above configuration will be described below.

まず、通常の方法で鋳造した鋳鉄部材即ち、切
削加工に支障をきたす程高硬度金属を添加せず、
また冷し金も用いることなく鋳造した鋳鉄部材に
切削加工を施し、この切削加工が終了した鋳鉄部
材11の表層の一部、つまり耐摩耗性及び耐ピツ
チング性が要求される部分に第1図に示すよう
に、プラズマトーチ1を対向してセツトする。
First, cast iron parts are cast using normal methods, that is, without the addition of high-hardness metals that would interfere with cutting.
In addition, a part of the surface layer of the cast iron member 11 that has been cut, that is, a part where wear resistance and pitting resistance are required, is cut by cutting the cast iron member without using a chilled metal. The plasma torches 1 are set facing each other as shown in FIG.

次いで、鋳鉄部材11を他方の電極として、タ
ングステン電極7及び鋳鉄部材11を直流電源に
接続し、またシールドガス通路4からはシールド
ガスを流し、作動ガス通路5からはアルゴンガス
等の作動ガスを流す。
Next, using the cast iron member 11 as the other electrode, the tungsten electrode 7 and the cast iron member 11 are connected to a DC power source, and a shielding gas is supplied from the shielding gas passage 4, and a working gas such as argon gas is supplied from the working gas passage 5. Flow.

すると、電極間で放電が生じ、作動ガスがプラ
ズマ化し、このプラズマガスがプラズマガス吹付
用通路8にて絞られ高温高速のプラズマアーク1
2(プラズマジエツト)として噴出する。噴出し
たプラズマアーク12はタングステン電極7に対
してプラス電位を有する鋳鉄部材11の表層部に
吹付けられ、この部分に溶融池13を形成する。
Then, an electric discharge occurs between the electrodes, the working gas turns into plasma, and this plasma gas is condensed in the plasma gas blowing passage 8 to generate a high-temperature and high-speed plasma arc 1.
Ejects as 2 (plasma jet). The ejected plasma arc 12 is blown onto the surface layer of the cast iron member 11 which has a positive potential with respect to the tungsten electrode 7, and forms a molten pool 13 in this portion.

一方、以上の操作を併行して金属粉末導入管1
0を介して、プラズマアーク12中に高硬度金属
14を粉末状態で供給する。ここで、供給する高
硬度金属14としては、Cr、Mo、Ni、W、V、
Nb等の単体、これらの金属同士又は他の金属の
合金、或いは炭素等との化合物等種々のものが可
能であり、またプラズマアーク12中に供給する
手段としては、上記の高硬度金属を単独で或いは
二種以上複合して供給する。そして、単独で供給
する場合には溶融池13に対する重量割合が1.0
〜15.0wt%とするのが好ましく、二種以上複合し
て供給する場合には一種の金属が0.7〜15wt%で
全体として1.4〜16.0wt%とするのが好ましい。
このように重量割合を特定するのは、上記の割合
以下であると、従来のチル化した鋳鉄部材と耐摩
耗性において殆ど変らず、十分な硬化が得られ
ず、また上記の割合以上とすると、極めて硬度が
高くなり過ぎて脆くなり、かえつてピツチング強
度が低下し、研摩時及び溶融後の空冷時に割れが
生じ易くなることによる。
Meanwhile, while performing the above operations, the metal powder introduction tube 1
A high-hardness metal 14 is supplied in powder form into the plasma arc 12 through the plasma arc 12 . Here, the high hardness metals 14 to be supplied include Cr, Mo, Ni, W, V,
Various materials such as Nb alone, alloys of these metals or other metals, or compounds with carbon, etc. are possible, and as a means of feeding into the plasma arc 12, the above-mentioned high hardness metals alone can be used. or a combination of two or more. When it is supplied alone, the weight ratio to the molten pool 13 is 1.0.
The amount is preferably 15.0 wt%, and when two or more metals are supplied in combination, one metal is preferably 0.7 to 15 wt%, and the total amount is 1.4 to 16.0 wt%.
The reason for specifying the weight ratio in this way is that if it is less than the above ratio, there will be little difference in wear resistance from conventional chilled cast iron parts, and sufficient hardening will not be obtained, and if it is above the above ratio, This is because the hardness becomes extremely high, making it brittle, and on the contrary, the pitting strength decreases, making it more likely that cracks will occur during polishing and air cooling after melting.

このような割合にてプラズマアーク12中に供
給された高硬度金属14はプラズマアーク12中
に封じ込められ、封じ込められた高硬度金属14
はプラズマアーク12により加速且つ加熱せしめ
られ、高速、高温の状態で、溶融池13にたたき
つけられ、溶融池13中にもぐり込む。一方、溶
融池13はプラズマアーク12の圧力によつて凹
みを生じており、この凹みはトーチの移動に従つ
て、上・下方向及び移動方向に流動するため、溶
融池13には撹拌作用が生じる。その結果、溶融
池13中にもぐり込んだ高硬度金属は上記撹拌作
用により溶融池12中に均一に混在する。そして
供給した高硬度金属14の融点が低い場合、或い
は溶解し易い場合には、溶融池13中の母材成分
と混合して合金又は折出反応により化合物を折出
し、溶解しにくい場合には最初の組成状態のまま
溶融池13中に分散する。
The high hardness metal 14 supplied into the plasma arc 12 at such a ratio is confined in the plasma arc 12, and the confined high hardness metal 14
is accelerated and heated by the plasma arc 12, hits the molten pool 13 at high speed and high temperature, and sinks into the molten pool 13. On the other hand, the molten pool 13 has a dent caused by the pressure of the plasma arc 12, and this dent flows upward, downward, and in the moving direction as the torch moves, so the molten pool 13 has a stirring action. arise. As a result, the high-hardness metal that has penetrated into the molten pool 13 is uniformly mixed in the molten pool 12 due to the above stirring action. If the supplied high-hardness metal 14 has a low melting point or is easily melted, it is mixed with the base material components in the molten pool 13 to precipitate a compound through an alloy or precipitation reaction; It is dispersed in the molten pool 13 in its initial composition state.

而して、上記溶融池13を冷却すれば、高硬度
金属が均一に分散或いは固溶することで耐摩耗性
及び耐ピツチング性に優れた再溶融処理層が表層
の一部に形成された鋳鉄部材が得られる。
When the molten pool 13 is cooled, the cast iron is formed with a remelted layer formed on a part of the surface layer, which has excellent wear resistance and pitting resistance due to the high hardness metal being uniformly dispersed or dissolved in solid solution. A member is obtained.

次に、上記の如き耐摩耗性及び耐ピツチング性
を有する再溶融処理層を形成するための具体的な
操作条件を以下に述べる。
Next, specific operating conditions for forming a remelted layer having wear resistance and pitting resistance as described above will be described below.

先ず、金属粉末導入管10内のガス流速はプラ
ズマアーク12中に金属粉末を確実に封じ込める
べく0.5m/sec以上とするのが好ましく、作動ガ
ス量は0.3〜3.0/min以上とするのが好ましく、
通常のプラズマ溶射よりも大幅に少なくして溶融
池13から溶融金属が飛散するのを防止するのが
望ましい。また、高硬度金属14の粒径は、作動
ガス供給量を上述の如く少なくするため、1〜
200μ好ましくは1〜100μとするのが好ましい。
更にアーク電流は溶融母材の材質、大きさ、形状
及び溶融すべき深さ、添加物質粉末量、溶融面
積、トーチ移動速度等によつて適宜設定する必要
があるが、略30〜200A、20〜30Vで行うのがよ
い。
First, the gas flow rate in the metal powder introduction tube 10 is preferably 0.5 m/sec or more to reliably contain the metal powder in the plasma arc 12, and the working gas flow rate is preferably 0.3 to 3.0/min or more. ,
It is desirable to prevent the molten metal from scattering from the molten pool 13 by significantly reducing the amount compared to normal plasma spraying. In addition, the particle size of the high hardness metal 14 is set to 1 to 1 in order to reduce the amount of working gas supplied as described above.
The thickness is preferably 200μ, preferably 1 to 100μ.
Furthermore, the arc current needs to be set appropriately depending on the material, size, shape, and depth of the melting base metal, amount of additive powder, melting area, torch movement speed, etc., but it is approximately 30 to 200 A, 20 It is best to do this at ~30V.

尚、以上は本発明の実施の一例を示したもので
あり、上記の高硬度金属14とともに硫黄を単独
又は硫黄化合物として添加してもよい。このよう
にすると、高硬度金属は硫化物の形態として再溶
融処理層中に均一に分散又は固溶するため、潤滑
性が高くなり、耐摩耗性が更に向上する。ただ
し、硫黄の添加割合を1.5wt%以上とすると再溶
融処理層が脆くなりピツチング強度が低下し、
0.2wt%以下とした場合には、潤滑性はそれほど
高くならないため、硫黄の添加割合は0.2〜1.5wt
%とするのが好ましい。
Incidentally, the above is an example of the implementation of the present invention, and sulfur may be added alone or as a sulfur compound together with the above-mentioned high hardness metal 14. In this case, the high hardness metal is uniformly dispersed or dissolved in the remelted layer in the form of sulfide, thereby increasing the lubricity and further improving the wear resistance. However, if the addition ratio of sulfur is 1.5wt% or more, the remelting layer becomes brittle and the pitting strength decreases.
If the sulfur content is 0.2wt% or less, the lubricity will not be so high, so the proportion of sulfur added should be 0.2 to 1.5wt.
% is preferable.

第2図は高硬度金属としてCr及びMoの単体を
用い、これに上記範囲内で硫黄を添加して形成し
た再溶融処理層のEPMA分析(X線マイクロア
ナライザ)の結果を示すグラフであり、このグラ
フからも分かるように再溶融処理層中には硫黄
(S),Cr、及びMoがそれぞれ略均一に存在して
おり、再溶融処理層以外の部分には上記元素が含
まれていないことが分かる。
FIG. 2 is a graph showing the results of EPMA analysis (X-ray microanalyzer) of a remelted layer formed by adding sulfur within the above range using Cr and Mo alone as high hardness metals, As can be seen from this graph, sulfur (S), Cr, and Mo are present almost uniformly in the remelted layer, and the above elements are not contained in the areas other than the remelted layer. I understand.

次に本発明に係る鋳鉄部材を従来の鋳鉄部材と
を比較した実験例を以下に挙げる。
Next, an experimental example comparing the cast iron member according to the present invention with a conventional cast iron member will be described below.

実験例 1 自動車用FC30製鋳造カムシヤフトを粗切削加
工しカムリフト部表面をプラズマアークにより再
溶融しながらCr金属粉末を添加し以下の条件で
再溶融硬化処理した。
Experimental Example 1 A cast camshaft made of FC30 for automobiles was roughly cut, and while the surface of the cam lift part was remelted using a plasma arc, Cr metal powder was added, and remelted and hardened under the following conditions.

条件:●プラズマアーク電流 85A ● 〃 ガス量 20.3/min ● Cr粉末添加量 1.4g/min ● トーチスピード 1m/min 得られたカムリフト部の再溶融処理層(チル硬
化層)の深さは1.6mmであつた同部にはほぼ均一
にCrが約13%含まれており、その硬度はHRC63
であつた。これをカム研削仕上げし試験材Aとし
た。これに対し鋳造素材成分内にCr0.9%を含ま
せ、且つカムリフト部のみ冷し金を当ててチル化
したカムシヤフトをカム研仕げして試験材Bとし
て実機試験に供した。テスト条件としてエンジン
回転数1000rpm、油温65℃、耐久時間200Hrで行
つた。その結果カム部の最大摩耗深さは試験片A
で25μ、試験片Bで105μであつて、Aが格段に優
れた耐摩耗性を有していた。
Conditions: ●Plasma arc current 85A ●〃Gas amount 20.3/min ●Additional amount of Cr powder 1.4g/min ●Torch speed 1m/min The depth of the resulting remelted layer (chill hardened layer) in the cam lift section is 1.6mm. The same part contains about 13% Cr almost uniformly, and its hardness is HRC63.
It was hot. This was finished by cam grinding and used as test material A. On the other hand, a camshaft in which 0.9% of Cr was included in the casting material composition and chilled by applying a cold metal only to the cam lift portion was cam-ground and used as test material B for actual machine testing. The test conditions were an engine speed of 1000 rpm, an oil temperature of 65°C, and an endurance time of 200 hours. As a result, the maximum wear depth of the cam part was
The abrasion resistance of specimen B was 25μ, and that of test piece B was 105μ, indicating that specimen A had much better abrasion resistance.

実験例 2 自動二輪用FCD55鋳造カムシヤフトを粗切削
加工し、以下の条件でカムリフト部表面をプラズ
マアークにより再溶融しながらMo2C金属粉末で
粒度10〜50μのものを添加した。
Experimental Example 2 An FCD55 cast camshaft for a motorcycle was roughly cut, and Mo 2 C metal powder with a particle size of 10 to 50 μm was added to the surface of the cam lift portion under the following conditions while being remelted using a plasma arc.

条件:●プラズマアーク電流 80A ● 〃 ガス量 20.5/min ● Mo2C粉末添加量 0.3g/min ● トーチスピード 1.2m/min 得られたチル深さは1.8mmで、Mo濃度は、1.5
%で、硬度はHRC57であつた。これをカム研削
仕上げして試験片Cとした。これに対しFCD55
の鋳造チルカムシヤフトをカム研削仕上げして試
験片Dとした。これを実験例1と同様の実機試験
でテストしたところ、摩耗量は試験片Cで80μ、
試験片Dは120μでありCがDより優れた耐摩耗
性を有していた。
Conditions: ● Plasma arc current 80A ● 〃 Gas amount 20.5/min ● Mo 2 C powder addition amount 0.3 g/min ● Torch speed 1.2 m/min The obtained chill depth was 1.8 mm, and the Mo concentration was 1.5
%, and the hardness was HRC57. This was finished by cam grinding to obtain a test piece C. On the other hand, FCD55
A cast chill camshaft was finished by cam grinding to obtain test piece D. When this was tested in the same actual machine test as in Experimental Example 1, the amount of wear was 80μ for test piece C.
Test piece D had a diameter of 120 μm and had better wear resistance than D.

実験例 3 自動車用FC30製鋳造カムシヤフトを粗切削加
工し、次いで以下の条件でカムリフト部表面をプ
ラズマアークにより再溶融しながらCr3C2粉末と
Mo粉末(2〜60μ)の金属粉末を重量比を各々
50%づつ混合し再溶融硬化処理した。
Experimental example 3 A cast camshaft made of FC30 for automobiles was rough cut, and then the surface of the cam lift part was remelted with Cr 3 C 2 powder under the following conditions using a plasma arc.
Each weight ratio of metal powder of Mo powder (2~60μ)
They were mixed at 50% and remelted and hardened.

条件:●プラズマアーク電流 80A ● 〃 ガス量 0.5/min ● トーチスピード 1m/min ● Cr3C2(50%)+Mo(50%)の添加量 0.3g/min 得られたカム部のチル硬化深さは1.7mmであり、
且つMoが約0.9%、Crが約0.8%含まれていた。
尚、硬度はHRC58であつた、これをカム研削仕
上げし試験片Eとした。これに対しFC30材に
Mo0.3%、Cr0.6%含有させた合金チルカムシヤ
フトを鋳造で作りカム研削仕上げして試験材Fと
した。これらを実機試験に供しテストした結果、
摩耗深さは試験片Eで63μ、試験片Fで110μであ
り、試験片Eは極めて優れた耐摩耗性を有してい
た。
Conditions: ● Plasma arc current 80A ● 〃 Gas amount 0.5/min ● Torch speed 1m/min ● Addition amount of Cr 3 C 2 (50%) + Mo (50%) 0.3 g/min Chill hardening depth of the obtained cam part The length is 1.7mm,
Moreover, it contained about 0.9% Mo and about 0.8% Cr.
Incidentally, the hardness was HRC58, and this was finished by cam grinding and used as test piece E. On the other hand, FC30 material
An alloy chill camshaft containing 0.3% Mo and 0.6% Cr was made by casting and finished by cam grinding to obtain test material F. As a result of testing these on actual machines,
The abrasion depth was 63μ for test piece E and 110μ for test piece F, indicating that test piece E had extremely excellent wear resistance.

実験例 4 自動車用FC30製鋳造カムシヤフトを粗切削加
工し、次いで以下の条件カムリフト部表面をプラ
ズマアークにより再溶融しながらCr3C2粉末と
Mo粉末(2〜60μ)の金属粉末を前者を65%、
後者を35%の割合で再溶融硬化処理した。
Experimental example 4 A cast camshaft made of FC30 for automobiles was roughly cut, and then the surface of the cam lift part was remelted with Cr 3 C 2 powder under the following conditions.
Mo powder (2~60μ) metal powder, 65% of the former,
The latter was remelted and hardened at a rate of 35%.

条件:●プラズマアーク電流 80A ● 〃 ガス量 0.5/min ● トーチスピード 0.5m/min ● Cr3C2(65%)+Mo(35%)の添加量 1.6g/min 得られたカム部のチル硬化深さは1.5mmであつ
た同部にはMo約5.6%、Cr9.4%が含まれており、
硬度はHRC64であつた。これをカム研削仕上げ
し試験片Gとした。これに対しFC30材にMo0.3
%、Cr0.6%を含有させた合金チルカムシヤフト
を鋳造で作りカム研削仕上げして試験材Fとし
た。これらを実機試験に供しテストした結果、摩
耗深さは試験片Gで38μ、試験片Hで110μであつ
た。この結果試験片Gは極めて優れた耐摩耗性を
有していることが判明した。
Conditions: ● Plasma arc current 80A ● 〃 Gas amount 0.5/min ● Torch speed 0.5m/min ● Addition amount of Cr 3 C 2 (65%) + Mo (35%) 1.6 g/min Chill hardening of the obtained cam part The same part, which was 1.5 mm deep, contained approximately 5.6% Mo and 9.4% Cr.
The hardness was HRC64. This was finished by cam grinding and used as a test piece G. On the other hand, Mo0.3 for FC30 material
Test material F was made by casting an alloy chill camshaft containing 0.6% and 0.6% of Cr and finishing with cam grinding. As a result of subjecting these to an actual machine test, the wear depth was 38μ for test piece G and 110μ for test piece H. As a result, it was found that test piece G had extremely excellent wear resistance.

実験例 5 自動車用FC30製鋳造カムシヤフトを粗切削加
工し、次いで以下の条件でカムリフト部表面をプ
ラズマアークにより再溶融しながらCr3C2粉末と
MoS2粉末(2〜10μ)の金属粉末とを重量比で
各々50%づつ混合し再溶融硬化処理した。
Experimental Example 5 A cast camshaft made of FC30 for an automobile was rough cut, and then the surface of the cam lift part was remelted with Cr 3 C 2 powder under the following conditions using a plasma arc.
MoS 2 powder (2 to 10μ) and metal powder were mixed in a weight ratio of 50% each and remelted and hardened.

条件:●プラズマアーク電流 80A ● 〃 ガス量 0.5/min ● トーチスピード 0.9m/min ● Cr3C2(50%)+MoS2(50%)の添加
量 0.8g/min 得られたカム部のチル硬化深さは1.6mmであつ
た同部にはMo約3.4%、Cr約4.8%、S約0.82%が
含まれており硬度はHRC63であつた。これをカ
ム研削仕上げし試験片Iとした。これに対し
Fc30材にMo0.3%、Cr0.6%を含有させた合金チ
ルカムシヤフトを鋳造で作りカム研削仕上げして
試験材Fとした。これ等を実機試験に供しテスト
した結果、摩耗深さは試験片Iで26μであつた。
この結果試験片Iは極めて優れた摩耗性を有して
いることが判明した。
Conditions: ● Plasma arc current 80A ● 〃 Gas amount 0.5/min ● Torch speed 0.9m/min ● Addition amount of Cr 3 C 2 (50%) + MoS 2 (50%) 0.8 g/min Chill of the obtained cam part The hardened portion had a hardening depth of 1.6 mm, contained about 3.4% Mo, about 4.8% Cr, and about 0.82% S, and had a hardness of HRC63. This was finished by cam grinding and used as a test piece I. In contrast to this
An alloy chill camshaft made of Fc30 material containing 0.3% Mo and 0.6% Cr was made by casting and finished by cam grinding to obtain test material F. As a result of testing these by subjecting them to actual machine tests, the wear depth of test piece I was 26μ.
As a result, it was found that Test Piece I had extremely excellent abrasion resistance.

以上に説明した如く本発明によれば、一旦鋳造
したカムシヤフト、ロツカアーム等の鋳鉄部材の
表層の一部にCr、Mo等の高硬度金属が均一に分
散或いは点在した再溶融処理層を形成する場合に
おいて、プラズマアークにより鋳鉄部材の表層の
一部に溶融池を形成すると同時に、高硬度金属粉
末をプラズマアーク中に搬入して、溶融池中に高
硬度金属粉末を強制的に供給するに際し、Cr、
Mo、Ni、W、V或いはNb等の高硬硬度金属の
溶融地に対する少なくとも単体での添加割合を
1.0〜15.0wt%として、高硬度金属粉末を0.5m/
sec以上の搬送速度でプラズマアーク中に搬入す
るとともに、プラズマアークによる溶融池中への
高硬度金属粉末の強制的な供給と同時に、プラズ
マトーチと鋳鉄部材との相対移動により溶融池に
撹拌作用を生じさせて、溶融池底部に至る極めて
深い層にわたり高硬度金属粉末を略均一に混在さ
せるようにしたため、溶融池の表面張力による凝
固後の盛り上がり及びビード状の痕を研削等して
実用に供するための平滑な摺動面を得る場合で
も、研削後等においても耐摩耗性及び耐ピツチン
グ性が要求される摺動面に充分な深さの層にわた
つて高硬度の合金層を得ることができるものであ
り、他の部分は切削加工が容易となるように硬度
を低く抑えることができ、したがつて、耐摩耗性
及び耐ピツチング性に優れ且つ切削加工性にも優
れるという相反する特性を兼持した鋳鉄部材とす
ることができる。よつてカムシヤフト或いはロツ
カアームに応用して極めて有効である。
As explained above, according to the present invention, a remelted layer in which high-hardness metals such as Cr and Mo are uniformly dispersed or dotted is formed on a part of the surface layer of cast iron members such as camshafts and rocker arms that have been cast. In this case, when a molten pool is formed on a part of the surface layer of a cast iron member by a plasma arc, and at the same time, high-hardness metal powder is introduced into the plasma arc and the high-hardness metal powder is forcibly fed into the molten pool, Cr,
Addition ratio of high hardness metals such as Mo, Ni, W, V or Nb to the molten material at least individually.
0.5m/0.5m of high hardness metal powder at 1.0~15.0wt%
The high-hardness metal powder is transported into the plasma arc at a transport speed of sec or more, and at the same time, the plasma arc forces the high-hardness metal powder into the molten pool, and at the same time, the relative movement between the plasma torch and the cast iron member creates a stirring effect on the molten pool. This allows the high-hardness metal powder to be mixed almost uniformly over an extremely deep layer down to the bottom of the molten pool, so it is possible to grind out the bulges and bead-like marks after solidification due to the surface tension of the molten pool for practical use. Even when obtaining a smooth sliding surface for grinding, it is difficult to obtain a highly hard alloy layer with sufficient depth on the sliding surface that requires wear resistance and pitting resistance even after grinding. The hardness of the other parts can be kept low to make cutting easier, and therefore it has the contradictory properties of having excellent wear resistance and pitting resistance as well as excellent machinability. It can be a cast iron member that has both functions. Therefore, it is extremely effective when applied to camshafts or rocker arms.

また、上記高硬度金属の他に硫黄を添加すれば
更なる耐摩耗性も向上を図ることができる等多く
の効果を発揮する。
Furthermore, if sulfur is added in addition to the above-mentioned high-hardness metals, many effects such as further improvement in wear resistance can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る鋳鉄部材の製造に用いる
プラズマトーチの一部断面図、第2図A乃至Cは
同鋳鉄部材の再溶融処理層における主要元素の分
布状態を示すEPMA分析グラフである。 尚、図面中1はプラズマトーチ、2はシールド
キヤツプ、3はノズル、4はシールドガス通路、
5は作動ガス通路、7はタングステン電極、11
は鋳鉄部材、12はプラズマアーク、13は溶融
池、14は高硬度金属である。
Fig. 1 is a partial cross-sectional view of a plasma torch used for manufacturing a cast iron member according to the present invention, and Figs. 2 A to C are EPMA analysis graphs showing the distribution state of major elements in the remelting treatment layer of the cast iron member. . In addition, in the drawing, 1 is a plasma torch, 2 is a shield cap, 3 is a nozzle, 4 is a shield gas passage,
5 is a working gas passage, 7 is a tungsten electrode, 11
1 is a cast iron member, 12 is a plasma arc, 13 is a molten pool, and 14 is a high hardness metal.

Claims (1)

【特許請求の範囲】 1 鋳鉄部材の表層の一部に対向して、プラズマ
トーチと金属粉末導入管を配設し、前記トーチか
ら噴出するプラズマアークにより前記鋳鉄部材の
表層の一部に溶融池を形成すると同時に、前記導
入管からCr、Mo、Ni、W、V或いはNb等の単
体、合金又は化合物の高硬度金属粉末を前記プラ
ズマアーク中に搬入して、前記溶融池中に前記高
硬度金属粉末を強制的に供給し、前記溶融池中に
前記高硬度金属粉末が固溶若しくは分散してなる
再溶融処理層を形成するプラズマアークによる鋳
鉄部材の表面硬化方法であつて、 前記Cr、Mo、Ni、W、V或いはNb等の高硬
度金属の前記溶融池に対する少なくとも単体での
添加割合を1.0〜15.0wt%として、 前記導入管から前記高硬度金属粉末を0.5m/
sec以上の搬送速度で前記プラズマアーク中に搬
入するとともに、 前記プラズマアークによる前記溶融池中への前
記高硬度金属粉末の強制的な供給と同時に、前記
トーチと前記鋳鉄部材との相対移動により前記溶
融池に撹拌作用を生じさせて、前記溶融池底部に
至る極めて深い層にわたり前記高硬度金属粉末を
略均一に混在させることを特徴とするプラズマア
ークによる鋳鉄部材の表面硬化方法。 2 前記Cr、Mo、Ni、W、V或いはNb等の高
硬度金属の単体又は化合物は二種以上を複合して
前記溶融池に供給され、その添加割合は個別には
0.7〜15.0wt%であり、全体としては1.4〜16.0wt
%であることを特徴とする特許請求の範囲第1項
記載のプラズマアークによる鋳鉄部材の表面硬化
方法。 3 前記Cr、Mo、Ni、W、V或いはNb等の高
硬度金属の化合物は硫黄添加による硫化物となつ
ており、その硫黄の添加割合は前記再溶融処理層
に対して0.2〜1.5wt%であることを特徴とする特
許請求の範囲第1項または第2項記載のプラズマ
アークによる鋳鉄部材の表面硬化方法。
[Scope of Claims] 1. A plasma torch and a metal powder introduction pipe are arranged opposite to a part of the surface layer of the cast iron member, and a plasma arc ejected from the torch forms a molten pool in the part of the surface layer of the cast iron member. At the same time, a high-hardness metal powder of a single substance, alloy, or compound of Cr, Mo, Ni, W, V, or Nb, etc., is carried into the plasma arc from the introduction pipe to form the high-hardness metal powder into the molten pool. Cr, The high hardness metal powder, such as Mo, Ni, W, V, or Nb, is added at least individually to the molten pool at a rate of 1.0 to 15.0wt%, and the high hardness metal powder is added to the molten pool by 0.5m/
The high-hardness metal powder is transported into the plasma arc at a transport speed of sec or more, and at the same time the high-hardness metal powder is forcibly supplied into the molten pool by the plasma arc, and at the same time, the A method for surface hardening a cast iron member using a plasma arc, characterized in that the high-hardness metal powder is substantially uniformly mixed in an extremely deep layer down to the bottom of the molten pool by creating a stirring action in the molten pool. 2. The single or compound high hardness metals such as Cr, Mo, Ni, W, V, or Nb are supplied to the molten pool in combination of two or more, and the addition ratio is determined individually.
0.7~15.0wt%, overall 1.4~16.0wt
%. A method of surface hardening a cast iron member using a plasma arc according to claim 1. 3 The compound of high hardness metal such as Cr, Mo, Ni, W, V or Nb becomes a sulfide by adding sulfur, and the addition ratio of sulfur is 0.2 to 1.5 wt% to the remelting layer. A method of surface hardening a cast iron member by plasma arc according to claim 1 or 2, characterized in that:
JP59033735A 1984-02-24 1984-02-24 Partially hardened cast iron member Granted JPS60187660A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59033735A JPS60187660A (en) 1984-02-24 1984-02-24 Partially hardened cast iron member
FR858502501A FR2560090B1 (en) 1984-02-24 1985-02-21 CAST IRON ARTICLE AND MANUFACTURING METHOD THEREOF
DE3506302A DE3506302C3 (en) 1984-02-24 1985-02-22 Method for surface hardening of camshafts and apparatus for carrying out the method
GB08504617A GB2155495B (en) 1984-02-24 1985-02-22 Cast iron article surface hardened by plasma arc deposition
CA000475028A CA1242409A (en) 1984-02-24 1985-02-25 Cast iron article and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59033735A JPS60187660A (en) 1984-02-24 1984-02-24 Partially hardened cast iron member

Publications (2)

Publication Number Publication Date
JPS60187660A JPS60187660A (en) 1985-09-25
JPH0353389B2 true JPH0353389B2 (en) 1991-08-14

Family

ID=12394659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59033735A Granted JPS60187660A (en) 1984-02-24 1984-02-24 Partially hardened cast iron member

Country Status (5)

Country Link
JP (1) JPS60187660A (en)
CA (1) CA1242409A (en)
DE (1) DE3506302C3 (en)
FR (1) FR2560090B1 (en)
GB (1) GB2155495B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102843A1 (en) 2007-02-21 2008-08-28 National University Corporation Hokkaido University Dynamic tumor radiation treatment apparatus and dynamic tumor radiation treatment program
EP2201981A1 (en) 2008-12-26 2010-06-30 Hitachi Ltd. Radiotherapy system
WO2010098214A1 (en) 2009-02-26 2010-09-02 国立大学法人北海道大学 Target tracking device and radiation therapy apparatus
US9101761B2 (en) 2011-03-22 2015-08-11 National University Corporation Hokkaido University Moving object tracking system for radiotherapy

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213521A (en) * 1985-07-09 1987-01-22 Honda Motor Co Ltd Wear resistant member and its production
JPS6293314A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Wear resistant sliding member
JPS6297770A (en) * 1985-10-22 1987-05-07 Daido Steel Co Ltd Production of tool
JPH0774464B2 (en) * 1986-04-30 1995-08-09 マツダ株式会社 Sliding contact member
US4866240A (en) * 1988-09-08 1989-09-12 Stoody Deloro Stellite, Inc. Nozzle for plasma torch and method for introducing powder into the plasma plume of a plasma torch
JP2716816B2 (en) * 1989-10-20 1998-02-18 三菱重工業株式会社 Method for producing molybdenum alloyed sliding material
DE4244296A1 (en) * 1992-12-28 1994-06-30 Opel Adam Ag Process for the production of wear-resistant surface layers on steel components as well as steel components with wear-resistant surface layers
GB2276886B (en) * 1993-03-19 1997-04-23 Smith International Rock bits with hard facing
US7504008B2 (en) 2004-03-12 2009-03-17 Applied Materials, Inc. Refurbishment of sputtering targets
DE102004026636B3 (en) * 2004-06-01 2005-07-21 Daimlerchrysler Ag Plasma jet process to modify the surface of a metal component by exposure to high-pressure jet in the presence of a carrier gas
US9127362B2 (en) 2005-10-31 2015-09-08 Applied Materials, Inc. Process kit and target for substrate processing chamber
US8647484B2 (en) 2005-11-25 2014-02-11 Applied Materials, Inc. Target for sputtering chamber
US8968536B2 (en) 2007-06-18 2015-03-03 Applied Materials, Inc. Sputtering target having increased life and sputtering uniformity
KR100907828B1 (en) 2007-07-25 2009-07-14 주식회사 하나컴머셜 Apparatus for manufacturing shafts for cutting tools with carbide tips
US7901552B2 (en) 2007-10-05 2011-03-08 Applied Materials, Inc. Sputtering target with grooves and intersecting channels
CN104651569B (en) * 2015-03-02 2016-10-12 江西省科学院应用物理研究所 A kind of surface modifying method of cast iron
RU2722959C1 (en) * 2019-12-16 2020-06-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" (ФГБОУ ВО Волгоградский ГАУ) Method of hardening of working element cutting unit for soils development tool
RU2733879C1 (en) * 2019-12-16 2020-10-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" (ФГБОУ ВО Волгоградский ГАУ) Method of hardening cutting part of working members

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50101254A (en) * 1974-01-07 1975-08-11
JPS5266834A (en) * 1975-12-02 1977-06-02 Nippon Steel Corp Surface coating method of iron* steel and their products
JPS53119732A (en) * 1977-03-28 1978-10-19 Avco Everett Res Lab Inc Preparation of surface layer alloy casing
JPS55148752A (en) * 1979-05-11 1980-11-19 Nippon Steel Corp Formation method of coating on metal surface
JPS57131357A (en) * 1981-02-04 1982-08-14 Mazda Motor Corp Local surface hardening method for ferrous parts
JPS6070136A (en) * 1983-09-14 1985-04-20 Honda Motor Co Ltd Surface treatment of work
JPS60135518A (en) * 1983-12-23 1985-07-18 Mazda Motor Corp Surface hardening method of cast iron member

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB514527A (en) * 1938-05-09 1939-11-10 Robert Emerson Kinkead Improvements in or relating to the surface-alloying of metal bodies
GB707228A (en) * 1950-06-19 1954-04-14 Andrew Long Improvements in or relating to metal welding and/or coating devices
US4015100A (en) * 1974-01-07 1977-03-29 Avco Everett Research Laboratory, Inc. Surface modification
CA1051288A (en) * 1974-03-04 1979-03-27 Caterpillar Tractor Co. Method and apparatus for fusibly bonding a coating metal powder to a metal article
IT1038656B (en) * 1974-08-14 1979-11-30 Goetzewerke ALL-RESISTANT COATING FOR WANKEL SEALING STRIP WITH A HYPEREUTECTIC ALUMINUM SILI CIO ALLOY TROCHOID
DE2522690C3 (en) * 1975-05-22 1982-03-04 Goetze Ag, 5093 Burscheid Plasma deposition welding powder for the production of wear-resistant layers
GB1499602A (en) * 1975-12-22 1978-02-01 Caterpillar Tractor Co Method of applying a wear-resistant composite coating to an article
US4157923A (en) * 1976-09-13 1979-06-12 Ford Motor Company Surface alloying and heat treating processes
US4097711A (en) * 1976-09-16 1978-06-27 Ingersoll-Rand Company Roller shell hard coating
DE2742597C3 (en) * 1977-09-22 1980-02-07 Audi Nsu Auto Union Ag, 7107 Neckarsulm Camshaft for piston engines and work machines, preferably reciprocating internal combustion engines
GB2082203B (en) * 1980-08-18 1984-09-12 Ramsey Corp Iron/silicon extended molybdenum plasma spray powder
IT1219974B (en) * 1981-06-25 1990-05-24 Fischer Ag Georg REFUSION HARDENING PROCEDURE
AU8505082A (en) * 1981-07-17 1983-01-20 Deere & Company Hardfacing
US4471034A (en) * 1982-11-16 1984-09-11 Eutectic Corporation Alloy coating for cast iron parts, such as glass molds

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50101254A (en) * 1974-01-07 1975-08-11
JPS5266834A (en) * 1975-12-02 1977-06-02 Nippon Steel Corp Surface coating method of iron* steel and their products
JPS53119732A (en) * 1977-03-28 1978-10-19 Avco Everett Res Lab Inc Preparation of surface layer alloy casing
JPS55148752A (en) * 1979-05-11 1980-11-19 Nippon Steel Corp Formation method of coating on metal surface
JPS57131357A (en) * 1981-02-04 1982-08-14 Mazda Motor Corp Local surface hardening method for ferrous parts
JPS6070136A (en) * 1983-09-14 1985-04-20 Honda Motor Co Ltd Surface treatment of work
JPS60135518A (en) * 1983-12-23 1985-07-18 Mazda Motor Corp Surface hardening method of cast iron member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102843A1 (en) 2007-02-21 2008-08-28 National University Corporation Hokkaido University Dynamic tumor radiation treatment apparatus and dynamic tumor radiation treatment program
EP2201981A1 (en) 2008-12-26 2010-06-30 Hitachi Ltd. Radiotherapy system
WO2010098214A1 (en) 2009-02-26 2010-09-02 国立大学法人北海道大学 Target tracking device and radiation therapy apparatus
US9101761B2 (en) 2011-03-22 2015-08-11 National University Corporation Hokkaido University Moving object tracking system for radiotherapy

Also Published As

Publication number Publication date
GB8504617D0 (en) 1985-03-27
JPS60187660A (en) 1985-09-25
GB2155495A (en) 1985-09-25
FR2560090B1 (en) 1990-04-27
DE3506302C2 (en) 1994-04-14
FR2560090A1 (en) 1985-08-30
CA1242409A (en) 1988-09-27
GB2155495B (en) 1987-08-26
DE3506302A1 (en) 1985-08-29
DE3506302C3 (en) 1994-04-14

Similar Documents

Publication Publication Date Title
JPH0353389B2 (en)
Skryabin et al. The study of casting defects in steel 35HGSL
EP1304393B1 (en) Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing the same, and combination of piston ring and cylinder block
EP2682571B1 (en) An exhaust valve spindle for an exhaust valve in an internal combustion engine and a method of manufacturing the exhaust valve spindle
JPH0353388B2 (en)
JP2008522039A (en) Weldable cobalt alloy with crack resistance
JP3835694B2 (en) Manufacturing method of valve seat
US4905538A (en) Camshaft
US3502058A (en) Rocker arm
US7628870B2 (en) Heat treated valve guide and method of making
GB2183255A (en) Local remelting and resolidification
JPS62270277A (en) Production of titanium base alloy-made wear resistant member
EP2915965B1 (en) Engine valve
KR19990009039A (en) Engine tappet with excellent wear resistance and its manufacturing method
JP2774801B2 (en) Rocker arm and method of manufacturing the same
JPH11256306A (en) Spray forming method of insert
JPH09235651A (en) Wear resistant material and wear resistant machine parts
Chernyshev et al. Surface hardening with remelting of functional surfaces of cast iron camshafts
US3508529A (en) Composite valve structure
JPH0456747A (en) Manufacture of wear resistant ferrous sintered alloy
Mordike CHAPITRE 9 SURFACE TREATMENT BY LASERS
JP2839596B2 (en) Method of manufacturing wear-resistant sliding member
JPH03253708A (en) Valve guide for internal combustion engine
JP2637500B2 (en) Sliding member
JPH02185926A (en) Production of cam parts

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees