JPH0353388B2 - - Google Patents

Info

Publication number
JPH0353388B2
JPH0353388B2 JP58168405A JP16840583A JPH0353388B2 JP H0353388 B2 JPH0353388 B2 JP H0353388B2 JP 58168405 A JP58168405 A JP 58168405A JP 16840583 A JP16840583 A JP 16840583A JP H0353388 B2 JPH0353388 B2 JP H0353388B2
Authority
JP
Japan
Prior art keywords
plasma
workpiece
molten
test
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58168405A
Other languages
Japanese (ja)
Other versions
JPS6070136A (en
Inventor
Norihiko Saga
Tsuyoshi Makita
Hisao Hirono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP58168405A priority Critical patent/JPS6070136A/en
Priority to CA000463029A priority patent/CA1249038A/en
Priority to GB08423101A priority patent/GB2148166B/en
Priority to DE19843433698 priority patent/DE3433698A1/en
Priority to FR8414115A priority patent/FR2551770B1/en
Publication of JPS6070136A publication Critical patent/JPS6070136A/en
Publication of JPH0353388B2 publication Critical patent/JPH0353388B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/327Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C comprising refractory compounds, e.g. carbides

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は例えばエンジンの動弁カムをワークと
し、その摺動面に高い耐摩耗性を与えるべく適用
される表面処理方法に関する。 従来この種方法として、鋳鉄その他の金属材料
から成るワークの表面に、プラズマアークによる
溶融部を生じさせると共に次で該溶融部を冷却凝
固させてリメルト処理層を形成させる式のものは
知られるが、かゝるものでは該処理層は例えば該
冷却凝固に際し、その冷却速度を増大させてチル
組織の硬化層に得られるに留まり、かくて例えば
前記した動弁カムの場合、これに必ずしも充分な
耐摩耗性に得難い不都合を伴う。 又従来、摺動面に耐摩耗性、耐かじり性を有す
る部材として、粉末治金法により母材金属粉と硫
化物粉を混合して圧粉成形し、焼結して製造した
もの或は溶湯に、硫化物粉を添加して撹拌したも
のを鋳造したものがあるが、不要な部分にも高価
な硫化物が混入されるためコスト上から不利であ
る。又粉末治金法では焼結中に、鋳造法において
は、注湯凝固までの間、硫化物が比較的長時間高
温に保持されるため分解し、硫化物として残存す
る量が著しく減少し、その結果充分な耐摩耗性、
耐かじり性を有するものが得難かつた。 本発明は、かゝる従来の不都合なくリメルト処
理層の各種の特性、例えば耐摩耗性を更に向上す
る表面処理層を得る方法を提供することをその目
的としたもので、鋳鉄、アルミ合金その他の金属
材料から成るワークの表面に、プラズマアークに
よる溶融部を生じさせ該溶融部に、ワークの金属
材料とは異種の金属材料その他の材料からなる添
加剤を混入させて冷却凝固させるリメルト処理層
を形成させる式のものにおいて、前記プラズマア
ークのシールドガス流を突破させて該プラズマア
ークに伴わせて、前記溶融部内に強制的に混入さ
せ、該溶融部内に前記添加剤を含む合金或いは化
合物を形成させたことを特徴とする。 この場合、該添加剤は例えば、Ni、Cr、Moそ
の他の金属又はその合金、WC、SiC、MO2C、
Cr3C2、B4Cその他の炭化物、BN、TiBその他の
硼化物、MoS2、WS2、FeSその他硫化物、
Al2O3、SiO2その他の酸化物、等から選択される
少くとも1種類の粉末から成る。 本発明方法を別紙図面につき更に詳述するに、
1は鋳鉄、アルミ合金その他の金属材料から成る
動弁カムその他のワーク、2はこれに対向するプ
ラズマトーチを示し、該トーチ2は第1図に明示
するように中心の電極3と、その外周に作動ガス
通路4を介してノズル5と、その外周にシールド
ガス通路6を介してシールドキヤツプ7とを備え
ると共に該ノズル5の先端に該作動ガス通路4に
連るプラズマガス通路8と、該ノズル5内に冷却
水通路9とを備えて成り、該プラズマガス通路8
を介して該ワーク1にプラズマガスのジエツトが
吹付けられると共にこれを介して該ワーク1上に
は該電極3との間にプラズマアーク10が作用さ
れて該ワーク1の表面に溶融部11を生じ、かく
て該トーチ2を該ワーク1上で走査させれば、該
溶融部11はその走査線上に漸次連続して形成さ
れると共にこれはその始動側から漸次冷却凝固
し、所謂リメルト処理層が得られるもので、この
点は従来のものと特に異らない。 本発明によれば前記したように該ワーク1の金
属材料とは異種の材料の粉末を添加剤12として
用意し、これを該プラズマアーク10に伴わせて
該溶融部11に導かせてその内部に強制的に混入
させるもので、その手段としては例えば第1図に
明示するように前記したプラズマアーク10に先
端を臨ませて例えばセラミツク製の混合管13を
用意し、前記した添加剤12を例えばアルゴンガ
スで搬送させて該混合管13内を該アーク10内
に供給し、かくて該添加剤12は該アーク10に
伴われて該溶融部11に導かれてその内部に混入
されるようにした。更に説明すれば、該プラズマ
トーチ2におけるプラズマジエツトの流速を20
m/sec、その外周のシールドガスの流速を0.33
m/secとし、該粉末の搬送速度を該シールドガ
スの流速の1.5〜3倍以上の例えば7m/secと
し、かくて該粉末は該シールドガス流に打勝つて
該プラズマジエツト内に導かれるようにした。 本発明方法の各作動状態は例えば第2図乃至第
6図示の通りであり、即ち先づ第2図示のように
該プラズマトーチ2と該ワーク1との間に該プラ
ズマアーク10を生じさせて該ワーク1側に第3
図示のように該溶融部11を生じさせる一方、該
導入管13内を介して例えばアルゴンガスにより
該添加剤12を搬送させるもので、かくて第4図
示のように該添加剤12は該プラズマアーク10
の上流側に導入されて加熱加速されて該アーク1
0と共に該溶融部11に導かれてその内部に混入
される。この際該プラズマトーチ2は横方向に走
査されて例えば第5図示のように該溶融部11は
漸次横方向に拡大すると共にその始端部は該ワー
ク1の残部が有する大きな比熱により急速に冷却
されて凝固し、前記したリメルト処理層11aを
作るが、かゝる作動に際し各溶融部11にはその
内部に溶湯の上下方向及び横方向の流動を生じて
撹拌作用が与えられるもので、かくてこれに導か
れた該添加剤12は該撹拌作用によりこの内部略
均一に分散され、得られるリメルト処理層11a
は例えば第6図示のように内部に該添加剤12が
略均等に分散された状態となり、該処理層は該添
加剤12により対応する特性、例えば耐摩耗性を
向上される。 尚該プラズマアーク10におけるプラズマジエ
ツトのガス量は、通常のプラズマ溶融の場合と比
較して少量の例えば0.3〜3.0/minとし、この
際該添加剤12の搬送速度は例えば0.5m/sec以
上とし、更に該アーク10の電流及び電圧は例え
ば30〜200A、20〜30Vとし、更に添加剤12の
粉末はそのサイズを200μ以下が一般で就中、
100μが好ましい。 尚該添加剤12は該溶融部11に混入されたと
き、そのまゝの粉末状態で分散され、或は少くと
もその一部が溶融し或は熱分されて該溶融部11
内にその合金或いは化合物を作るものとする。 実施例 1 第1図示の状態を使用してFC30大越式摩耗試
験片から成るワーク1を処理した。プラズマ電流
を50A、プラズマガスの流量を0.8/min、プラ
ズマトーチの走査速度を0.5m/minとし、その
全面にリメルト処理層を形成させ、これに添加剤
12としてCr粉末を混入させた。Cr粉末はその
サイズを5〜100μとし、その供給量を0.2g/min
とした。該リメルト処理層は表面から1.8mmの深
さに形成され、これはその冷却凝固時の急冷によ
りチル組成を呈した。該層内にはCrが全域に亘
り約1.2%の割合に略均一に分散して含有された。 得られた製品をAとし、単なるリメルト処理層
のものをBとして摩耗テストした結果は次の通り
である。 Co% 比摩耗量 A 1.2 8.6×10-8mm2/Kg B 0 2.2×10-7 〃 該テストにおけるロータはSCM420を浸炭焼入
し、次でこれにハードクロームメツキを80μの肉
厚に施して成り、摩耗速度を1.36m/sec、最終
荷重を3.1Kg、摩擦距離を200mとした。 実施例 2 第1図示の装置を使用し、S50C大越式摩耗試
験片から成るワーク1を処理した。プラズマ電流
を100A、プラズマガス量を0.8/minプラズマ
トーチの走査速度を0.5m/minとして該試験片
の全面を処理し、これに添加剤12としてMo2C
の粉末を添加した。そのサイズを2〜30μ、搬送
量を0.6g/minとした。該リメルトは表面から1.2
mmの深さに生じ、これはマルテンサイト組織を呈
した。該リメルト処理層内には全域に亘りMoが
約3.6%の割合に略均等に分散して含有された。 得られる製品をCとし、単なるリメルト処理層
のものをDとし、摩耗テストした結果は次の通り
である。 Mo% 比摩耗量 C 5.2 7.8×10-7mm2/Kg D 0 8.5×10-6 〃 実施例 3 第1図の装置を使用し、Ni−10%Cu合金の大
越式摩耗試験片から成るワーク1を処理した。プ
ラズマ電流を100A、プラズマガスを0.8/min、
プラズマトーチの走査速度を0.5m/minとして
その全面を走査し、これに添加剤12としたTiB
の粉末を添加した。この供給量を0.4g/minとし
た。該処理層は深さ1.0mmに生じ、この内部には
TiBが全域に亘り体積比約2.6%の割合に略均等
に分散された。その製品をEとし、単なるリメル
ト処理のものをFとして比較した結果は次の通り
である。 TiB% 比摩耗量 E 2.6 4.0×10-6mm2/Kg F 0 7.2×10-6 〃 実施例 4 第1図の装置を使用し、FC30の大越式摩耗試
験片から成るワーク1に処理を施した。プラズマ
電流を50A、プラズマガスを0.8/minプラズマ
トーチの走査速度を0.5m/minとし、その全面
をリメルトとしてこれにFeS粉末を混入させた。
該粉末は5〜30μのサイズであり、その搬送量を
0.3g/minとした。該処理層は1.6mmの深さに形成
され、これはチル組織を呈したが、その内部には
FeSとその1部と母材合金であるMnとが反応し
て生成した(FeMn)Sが全域に亘り体積比約20
%の割合に略均等に分散して含有された。 その製品をGとし、単なるリメルト処理のもの
をHとして摩耗テストした結果は次の通りであ
る。 (FeMn)S% 比摩耗量 G 2.0 6.9×10-8mm2/Kg H 0 2.2×10-7 〃 実施例 5 第1図示の装置を使用し、Ai合金AC2Bの大越
式摩耗試験片から成るワーク1を処理した。プラ
ズマ電流を100A、プラズマガス量を0.8/min、
プラズマトーチの走査速度を0.8m/minとし、
その全面をリメルトしてこれにAl2O3の粉末を添
加した。 該粉末は0.5〜10μのサイズであり、その搬送量
を0.6g/minとした。処理層は0.8m/mの深さに
形成され、その内部にはAl2O3が全域に亘り約6.0
%の割合に略均等に分散して含有された。 得られる製品をIとし、単なるリメルト処理の
ものをJとして比較テストした結果は次の通りで
ある。 Al2O3% 比摩耗量 I 6.0 8.3×10-6mm2/Kg J 0 6.2×10-5 〃 以上の各実施例に見られる通り、各ワーク1は
添加剤の混入により耐摩耗性を著しく向上され
た。 実施例 6 第1図示の状態を使用し、鋳鉄FC30大越式摩
耗試験片から成るステーター用のワーク1を次の
ように再溶融処理した。即ちプラズマアーク電流
80A、プラズマガス量を0.8/min、プラズマト
ーチの走査速度を0.3m/minとし、軌跡を描き
ながら摺動面をリメルトしてこれに2μ〜10μの
Or2S3粉をArガス中に1.2g/min含有させ溶融部
に供給した。表面より深さ1.2mmまで溶融し、添
加したCr2S3と母材であるFe及びその合金元素で
あるMnとが反応してその部分に(CrFe)2S3
(CrFeMn)2S3,(CrFe)3S4及び(CrFeMn)3S4
のCr硫化物の混合した分散組織が形成された。
このCr硫化物の体積比は7.5%であつた。これら
Cr硫化物の粒子の大きさは約1〜8μであつた。
この場合、溶融後冷却は、溶融層以外の母材によ
つて熱を奮われ、急速凝固したため、レデブライ
トが析出し、いわゆるチル組織を呈し、その中に
(CrFe)2S3,(CrFe)3S4,(CrFeMn)2S3
(CrFeMn)3S4が分散している。処理後、摺動面
を研磨し試験片Kとした。 比較のため、Cr2S3粉を添加せず、単なるプラ
ズマアークにより溶融硬化してチル組織を形成し
た。その摺動面を研磨し試験片とした。これらに
つき実施例1と同様に摩耗テストした。その結果
は下表の通りである。 分散硫化物 体積比率 比摩耗量 K Cr硫化物 7.5% 8.0×10-9mm/Kg L − − 2.2×10-7mm/Kg 実施例 7 第1図示の装置を使用し、鉄・炭素=元合金
(0.50%)製から成るワーク1を次のように再溶
融処理した。即ち、プラズマアーク電流80A、プ
ラズマアークArガス量を1/min、プラズマ
トーチ蛇行走査速度を0.3m/minとし蛇行させ
ながら摺動面をリメルトしてこれに2μ〜10μの
Cr3C2を50wt%と5〜60μのMoS2を50wt%の混
合粉末を、Arガス中に0.1g/min含有させ、溶
融部に供給し、表面より1.4m/mまでの溶融層
内にこれら混合粉末同志の反応でCr2S3,Cr3S4
硫化クロム粒子が生成した分散組織が形成され
た。Cr硫化物の体積比は略0.5%、その粒子の大
きさは約1〜9μであつた。この製品の処理面を
研磨して試験片Mとした。比較のため無添加でリ
メルト処理した試験片Nを作成し、これらにつき
実施例1と同様に摩耗テストした。その結果は下
表の通りである。 試験片 分 散 物 体積比 比摩耗性 M Cr硫化物 0.5% 3.6×10-6mm2/Kg N な し − 8.5×10-6mm2/Kg 実施例 8 第1図示の装置を使用し、自動車用エンジンに
組込まれるFC30製カムシヤフトのカムリフト部
をワーク1としてこれを次のように再溶融処理し
た。即ち、プラズマアーク電流60A、アーク用
Arガス量0.5/min、プラズマトーチ走査速度
1m/min、2μ〜10μのCrS3粉末供給量0.6g/
minとし、該粉末を溶融層に供給した。かくして
(CrFe)2S3,(CrFeMn)2S3,(CrFe)3S4及び
(CrFeMn)3S4の各種Cr硫化粉の生成分散含有す
る厚さ1.8m/mの冷却硬化層を得た。Cr硫化物
の体積比は2.2%、その粒径は1〜8μであつた。
硬度はHRC58であつた。 このカムシヤフトのカム面を研摩し、実用試験
に供し、これを試験材0とした。1方向一材料の
カムシヤフトを前記粉末を添加せず、前記と同一
条件でプラズマ処理し、再溶融硬化処理したもの
をカムシヤフト試験材Pとした。その硬化層の厚
さは1.9m/m、硬度はHRC51であつた。 実用試験条件: エンジン回転 1000rpm 油温65℃ テスト時間 200時間 この試験の結果、試験材0のカムトツプの摩耗
量は10μであつた。1方試験材Pのカムトツプの
摩耗量は120μであつた。 実施例 9 第1図示の装置を使用し、自動車用エンジンに
組込まれるSCM420製バルブロツカーアームをワ
ーク1としそのスリツパー面を次のように再溶融
処理した。即ち、アーク電流45A、プラズマアー
ク用Arガス量0.5/min、2〜10μのCr2S3粉末
供給量0.4g/min、トーチスピード0.8m/min
とし、軌跡状に描かせスリツパー面を溶融し、溶
融層に該粉末を添加した。この結果、Cr2S3は母
材の主体であるFe及びその合金元素であるMnと
が反応して生成した(CrFe)2S3,(CrFeMn)2S3
(CrFe)3S4,(CrFeMn)3S4の混在したCr硫化物
の分散粒子を含有するチル硬化層が得られた。そ
の層の厚みは1.0mm、そのCr硫化物の体積比は3.4
%であつた。これを浸炭焼入れした後研摩し試験
材Qとした。1方同材質のバルブロツカーアーム
をプラズマアークによる再溶融硬硬化処理を行な
わないで、単に浸炭焼入れしたものを試験材Rと
して、その両試験材を下記の実用試験に供した。
その結果、試験材Qのスリツパー面の摩耗深さは
3μであり、試験材Rのスリツパー面の摩耗深さ
は50μであつた。 実用試験条件: エンジン回転 1000rpm 油温65℃ 時間 200時間 実施例 10 第1図示の装置を使用し、鋳鉄FCD55大越式
摩耗試験片から成るステーター用のワーク1を次
のように再溶融処理した。即ち、プラズマアーク
の電流80A、プラズマアークArガス量0.8/
min、プラズマトーチ走査速度0.3m/minとし、
軌跡を描きながら摺動面をリメルトとしそのリメ
ルト層に5μ〜40μのFeS粉をArガス中に1.5g/
min含有させた供給量で供給した。 該溶融層の深さは1.2m/mとした。この際、
その添加量の1部のFeSが、合金母材の主体であ
るFeと1部のMnとに反応して(FeMn)Sを生
成し、全体としてFeSと(FeMn)Sとの混合し
た鉄硫化物の分散粒子の分散したリメルト硬化層
が形成された。その分散粒子の大きさは1〜9μ
であつた。又FeS及び(FeMn)Sの体積比は15
%であつた。このようにして得られた処理品の摺
動面を研摩し試験片Sとした。1方比較のため、
鉄硫化物を添加せず、同じ材料のワーク1を上記
と同じ条件で単にリメルト硬化処理したものを試
験片Tとした。これらにつき、前記実施例1と同
様にして摩耗テストを行なつた。その試験結果は
次の通りであつた。
The present invention relates to a surface treatment method that is applied to provide high wear resistance to sliding surfaces of engine valve cams, for example, as a workpiece. Conventionally, as a method of this type, a method is known in which a plasma arc generates a molten part on the surface of a workpiece made of cast iron or other metal material, and then the molten part is cooled and solidified to form a remelt treatment layer. In such a case, the treated layer is merely obtained as a hardened layer of the chill structure by increasing the cooling rate during the cooling solidification, and thus, for example, in the case of the above-mentioned valve train cam, the treatment layer is not necessarily sufficient for this purpose. It is accompanied by disadvantages that are difficult to obtain in terms of wear resistance. Conventionally, members with wear resistance and galling resistance on sliding surfaces have been manufactured by mixing base metal powder and sulfide powder using powder metallurgy, compacting the mixture, and sintering it. There is a method in which sulfide powder is added to molten metal and stirred and then cast, but this is disadvantageous in terms of cost because expensive sulfide is mixed into unnecessary parts. In addition, during sintering in the powder metallurgy method, and during pouring and solidification in the casting method, sulfides are held at high temperatures for a relatively long period of time, so they decompose and the amount remaining as sulfides is significantly reduced. As a result, sufficient wear resistance,
It was difficult to obtain a material with galling resistance. The object of the present invention is to provide a method for obtaining a surface treatment layer that further improves various properties of the remelt treatment layer, such as wear resistance, without such conventional disadvantages. A remelt treatment layer in which a plasma arc creates a molten part on the surface of a workpiece made of a metal material, and an additive made of a metal material or other material different from the metal material of the workpiece is mixed into the molten part, and the mixture is cooled and solidified. In the method of forming a shielding gas flow of the plasma arc, the alloy or compound containing the additive is forcibly mixed into the molten zone along with the plasma arc, and the alloy or compound containing the additive is mixed into the molten zone. It is characterized by being formed. In this case, the additives include, for example, Ni, Cr, Mo and other metals or their alloys, WC, SiC, MO 2 C,
Cr 3 C 2 , B 4 C and other carbides, BN, TiB and other borides, MoS 2 , WS 2 , FeS and other sulfides,
It consists of at least one type of powder selected from Al 2 O 3 , SiO 2 and other oxides. The method of the present invention will be explained in more detail with reference to the accompanying drawings.
Reference numeral 1 indicates a valve train cam and other workpieces made of cast iron, aluminum alloy, or other metal materials, and 2 indicates a plasma torch that opposes this, and the torch 2 has a central electrode 3 and its outer periphery, as shown in FIG. The nozzle 5 is provided with a nozzle 5 via a working gas passage 4, and a shield cap 7 is provided on the outer periphery of the nozzle 5 via a shield gas passage 6. At the tip of the nozzle 5, a plasma gas passage 8 connected to the working gas passage 4 is provided. A cooling water passage 9 is provided in the nozzle 5, and the plasma gas passage 8 is provided with a cooling water passage 9.
A jet of plasma gas is blown onto the workpiece 1 through the jet, and a plasma arc 10 is applied between the workpiece 1 and the electrode 3 to form a molten part 11 on the surface of the workpiece 1. Thus, when the torch 2 is scanned over the workpiece 1, the molten area 11 is gradually and continuously formed on the scanning line, and this is gradually cooled and solidified from the starting side, forming a so-called remelt treatment layer. This is not particularly different from the conventional method. According to the present invention, as described above, a powder of a material different from the metal material of the workpiece 1 is prepared as the additive 12, and is guided into the molten part 11 along with the plasma arc 10 and inside the melted part 11. For example, as shown in FIG. 1, a mixing tube 13 made of ceramic, for example, is prepared with its tip facing the plasma arc 10, and the additive 12 is mixed into the mixing tube 13 forcibly. For example, by transporting argon gas, the inside of the mixing tube 13 is supplied into the arc 10, so that the additive 12 is guided to the melting part 11 along with the arc 10 and mixed therein. I made it. To explain further, the flow rate of the plasma jet in the plasma torch 2 is set to 20
m/sec, the flow velocity of the shielding gas around the outer circumference is 0.33
m/sec, and the conveyance speed of the powder is set to 1.5 to 3 times or more than the flow rate of the shielding gas, for example 7 m/sec, so that the powder overcomes the shielding gas flow and is guided into the plasma jet. I did it like that. The operating states of the method of the present invention are, for example, as shown in FIGS. 2 to 6, that is, first, as shown in FIG. 2, the plasma arc 10 is generated between the plasma torch 2 and the workpiece 1. There is a third on the workpiece 1 side.
While the melting zone 11 is generated as shown in the figure, the additive 12 is conveyed through the introduction pipe 13 by, for example, argon gas, and thus the additive 12 is transferred to the plasma as shown in the fourth figure. arc 10
The arc 1 is introduced into the upstream side of the arc 1 and heated and accelerated.
0 and is introduced into the melting section 11 and mixed therein. At this time, the plasma torch 2 is scanned in the lateral direction, and the molten part 11 gradually expands in the lateral direction, as shown in FIG. The molten metal is solidified to form the above-mentioned remelt treatment layer 11a. During such operation, each molten part 11 is given a stirring action by causing the molten metal to flow in the vertical and lateral directions. The additive 12 introduced therein is almost uniformly dispersed inside this by the stirring action, resulting in a remelt treated layer 11a.
For example, as shown in FIG. 6, the additive 12 is almost uniformly dispersed inside the treated layer, and the corresponding properties, such as wear resistance, of the treated layer are improved by the additive 12. The gas amount of the plasma jet in the plasma arc 10 is set to be a small amount, for example, 0.3 to 3.0/min, compared to the case of normal plasma melting, and the conveyance speed of the additive 12 is, for example, 0.5 m/sec or more. Further, the current and voltage of the arc 10 are, for example, 30 to 200 A and 20 to 30 V, and the size of the powder of the additive 12 is generally 200 μ or less, particularly,
100μ is preferred. It should be noted that when the additive 12 is mixed into the melting section 11, it is dispersed in the powder state as it is, or at least a part of it is melted or heat-dissipated and the additive 12 is mixed into the melting section 11.
The alloy or compound shall be made within. Example 1 A workpiece 1 consisting of an FC30 Okoshi wear test piece was processed using the conditions shown in the first diagram. The plasma current was set to 50 A, the flow rate of plasma gas was set to 0.8/min, and the scanning speed of the plasma torch was set to 0.5 m/min to form a remelt treatment layer on the entire surface, and Cr powder was mixed therein as additive 12. The size of Cr powder is 5 to 100μ, and the feeding rate is 0.2g/min.
And so. The remelt treated layer was formed at a depth of 1.8 mm from the surface and exhibited a chilled composition due to rapid cooling during cooling and solidification. Cr was contained in the layer in a substantially uniformly dispersed manner at a ratio of about 1.2% over the entire area. The resulting product was designated as A and the product with a simple remelt treatment layer was designated as B. The results of the abrasion test are as follows. Co% Specific wear A 1.2 8.6×10 -8 mm 2 /Kg B 0 2.2×10 -7 The rotor used in this test was carburized and quenched SCM420, and then hard chrome plated to a thickness of 80μ. The wear rate was 1.36m/sec, the final load was 3.1Kg, and the friction distance was 200m. Example 2 Using the apparatus shown in the first figure, a workpiece 1 consisting of an S50C Okoshi type wear test piece was processed. The entire surface of the specimen was treated with a plasma current of 100 A, a plasma gas amount of 0.8/min, and a plasma torch scanning speed of 0.5 m/min, and Mo 2 C was added as additive 12 to this.
powder was added. The size was 2 to 30μ, and the conveyance amount was 0.6g/min. The remelt is 1.2 from the surface.
It occurred at a depth of mm and exhibited a martensitic structure. Mo was contained in the remelt treated layer in a substantially uniformly dispersed manner at a ratio of about 3.6% over the entire area. The obtained product was designated as C, and the product with a simple remelt treatment layer was designated as D. The results of the abrasion test are as follows. Mo% Specific wear amount C 5.2 7.8×10 -7 mm 2 /Kg D 0 8.5×10 -6 〃 Example 3 Using the apparatus shown in Fig. 1, an Okoshi type wear test piece of Ni-10% Cu alloy was used. Work 1 was processed. Plasma current 100A, plasma gas 0.8/min,
TiB with additive 12 was scanned over the entire surface at a scanning speed of 0.5 m/min with the plasma torch.
powder was added. This supply amount was set to 0.4 g/min. The treated layer is formed at a depth of 1.0 mm, and inside this
TiB was almost evenly distributed over the entire area at a volume ratio of approximately 2.6%. The results of a comparison between the product designated as E and the product subjected to simple remelting treatment as F are as follows. TiB% Specific wear amount E 2.6 4.0×10 -6 mm 2 /Kg F 0 7.2×10 -6 〃 Example 4 Using the apparatus shown in Figure 1, workpiece 1 consisting of an FC30 Okoshi type wear test piece was treated. provided. The plasma current was 50 A, the plasma gas was 0.8/min, the scanning speed of the plasma torch was 0.5 m/min, and the entire surface was remelted and FeS powder was mixed therein.
The powder has a size of 5 to 30μ, and the amount of conveyance is
It was set to 0.3g/min. The treated layer was formed to a depth of 1.6 mm and exhibited a chilled structure, but there were
(FeMn)S, which is generated by the reaction between FeS, a part of FeS, and the base alloy Mn, has a volume ratio of approximately 20 over the entire area.
It was contained in a substantially uniformly dispersed proportion. The results of the abrasion test, with the product designated as G and the product subjected to simple remelting treatment as H, are as follows. (FeMn) S% Specific wear amount G 2.0 6.9×10 -8 mm 2 /Kg H 0 2.2×10 -7 〃 Example 5 Using the apparatus shown in Figure 1, Okoshi type wear test pieces were made of Ai alloy AC2B. Work 1 was processed. Plasma current 100A, plasma gas amount 0.8/min,
The scanning speed of the plasma torch was 0.8 m/min,
The entire surface was remelted and Al 2 O 3 powder was added thereto. The powder had a size of 0.5 to 10 microns, and its conveyance rate was 0.6 g/min. The treated layer is formed to a depth of 0.8 m/m, and inside it, Al 2 O 3 is distributed over the entire area at a concentration of approximately 6.0 m/m.
It was contained in a substantially uniformly dispersed proportion. The obtained product was designated as I, and the product simply remelted was designated as J. The results of a comparative test are as follows. Al 2 O 3 % Specific wear amount I 6.0 8.3×10 -6 mm 2 /Kg J 0 6.2×10 -5 As seen in each of the above examples, each workpiece 1 has improved wear resistance by mixing additives. Significantly improved. Example 6 Using the state shown in the first figure, a workpiece 1 for a stator consisting of a cast iron FC30 Okoshi type wear test piece was remelted as follows. i.e. plasma arc current
80A, plasma gas amount 0.8/min, plasma torch scanning speed 0.3m/min, remelt the sliding surface while drawing a trajectory, and apply 2μ to 10μ
Or 2 S 3 powder was contained in Ar gas at 1.2 g/min and supplied to the melting section. It melts to a depth of 1.2 mm from the surface, and the added Cr 2 S 3 reacts with the base metal Fe and its alloying element Mn, forming (CrFe) 2 S 3 ,
A dispersed structure containing a mixture of Cr sulfides such as (CrFeMn) 2 S 3 , (CrFe) 3 S 4 and (CrFeMn) 3 S 4 was formed.
The volume ratio of this Cr sulfide was 7.5%. these
The size of the Cr sulfide particles was about 1-8μ.
In this case, cooling after melting was heated by the base material other than the molten layer and solidified rapidly, leading to the precipitation of ledebrite and a so-called chill structure, in which (CrFe) 2 S 3 , (CrFe) 3 S 4 , (CrFeMn) 2 S 3 ,
(CrFeMn) 3 S 4 is dispersed. After the treatment, the sliding surface was polished to obtain a test piece K. For comparison, a chilled structure was formed by melting and hardening simply by plasma arc without adding Cr 2 S 3 powder. The sliding surface was polished and used as a test piece. These were subjected to wear tests in the same manner as in Example 1. The results are shown in the table below. Dispersed sulfide Volume ratio Specific wear amount K Cr sulfide 7.5% 8.0×10 -9 mm/Kg L − − 2.2×10 −7 mm/Kg Example 7 Using the apparatus shown in Figure 1, iron and carbon = original Work 1 made of alloy (0.50%) was remelted as follows. That is, the plasma arc current is 80 A, the plasma arc Ar gas amount is 1/min, the plasma torch meandering scanning speed is 0.3 m/min, and the sliding surface is remelted while meandering.
A mixed powder of 50 wt% Cr 3 C 2 and 50 wt % MoS 2 of 5 to 60μ is contained in Ar gas at 0.1 g/min, and is supplied to the melting zone to a depth of 1.4 m/m from the surface. As a result of the reaction between these mixed powders, a dispersed structure containing chromium sulfide particles of Cr 2 S 3 and Cr 3 S 4 was formed. The volume ratio of Cr sulfide was about 0.5%, and the particle size was about 1 to 9 μm. The treated surface of this product was polished to obtain a test piece M. For comparison, a test piece N which was remelted without any additives was prepared and subjected to the wear test in the same manner as in Example 1. The results are shown in the table below. Test piece Dispersed material Volume ratio Specific wearability M Cr sulfide 0.5% 3.6×10 -6 mm 2 /Kg N None - 8.5×10 -6 mm 2 /Kg Example 8 Using the apparatus shown in the first diagram, A cam lift part of an FC30 camshaft to be incorporated into an automobile engine was used as work 1 and was remelted as follows. That is, plasma arc current 60A, for arc
Ar gas amount 0.5/min, plasma torch scanning speed 1m/min, CrS 3 powder supply amount of 2μ to 10μ 0.6g/
min, and the powder was fed into the melt bed. In this way, a cooling hardened layer with a thickness of 1.8 m/m containing various Cr sulfide powders of (CrFe) 2 S 3 , (CrFeMn) 2 S 3 , (CrFe) 3 S 4 and (CrFeMn) 3 S 4 was obtained. Ta. The volume ratio of Cr sulfide was 2.2%, and the particle size was 1 to 8μ.
The hardness was HRC58. The cam surface of this camshaft was polished and subjected to a practical test, and this was designated as test material 0. A camshaft made of one material in one direction was subjected to plasma treatment under the same conditions as above without adding the powder, and was then remelted and hardened, which was designated as camshaft test material P. The thickness of the hardened layer was 1.9 m/m, and the hardness was HRC51. Practical test conditions: Engine rotation: 1000 rpm Oil temperature: 65°C Test time: 200 hours As a result of this test, the amount of wear on the cam top of test material 0 was 10μ. The amount of wear on the cam top of test material P was 120μ. Example 9 Using the apparatus shown in Figure 1, the workpiece 1 was a valve blocker arm made of SCM420 to be incorporated into an automobile engine, and its slipper surface was remelted as follows. That is, arc current 45A, Ar gas amount for plasma arc 0.5/min, Cr 2 S 3 powder supply amount of 2-10μ 0.4g/min, torch speed 0.8m/min.
The surface of the slipper was melted in a locus, and the powder was added to the molten layer. As a result, Cr 2 S 3 was generated by the reaction between Fe, which is the main component of the base metal, and Mn, which is its alloying element. (CrFe) 2 S 3 , (CrFeMn) 2 S 3 ,
A chill hardened layer containing dispersed particles of Cr sulfide in which (CrFe) 3 S 4 and (CrFeMn) 3 S 4 were mixed was obtained. The thickness of that layer is 1.0mm, and the volume ratio of its Cr sulfide is 3.4
It was %. This was carburized and quenched and then polished to give a test material Q. On the other hand, a valve rocker arm made of the same material was simply carburized and quenched without being remelted and hardened using a plasma arc, and both test materials were subjected to the following practical test.
As a result, the wear depth of the slipper surface of test material Q was
3μ, and the wear depth of the slipper surface of test material R was 50μ. Practical test conditions: Engine rotation 1000 rpm Oil temperature 65°C Time 200 hours Example 10 Using the apparatus shown in Figure 1, work 1 for a stator consisting of a cast iron FCD55 Okoshi wear test piece was remelted as follows. That is, plasma arc current 80A, plasma arc Ar gas amount 0.8/
min, plasma torch scanning speed 0.3 m/min,
Remelt the sliding surface while drawing a trajectory, and add 5μ to 40μ FeS powder to the remelt layer at 1.5g/1.5g in Ar gas.
It was supplied in an amount containing min. The depth of the molten layer was 1.2 m/m. On this occasion,
One part of the added amount of FeS reacts with Fe, which is the main component of the alloy base material, and one part of Mn to generate (FeMn)S, and the iron sulfide as a whole is a mixture of FeS and (FeMn)S. A remelt hardened layer containing dispersed particles of the substance was formed. The size of the dispersed particles is 1~9μ
It was hot. Also, the volume ratio of FeS and (FeMn)S is 15
It was %. The sliding surface of the thus obtained treated product was polished to obtain a test piece S. For one-way comparison,
Test piece T was obtained by simply remelting the workpiece 1 made of the same material under the same conditions as above without adding iron sulfide. These were subjected to a wear test in the same manner as in Example 1 above. The test results were as follows.

【表】 実施例 11 第1図示の装置を使用しS50C製摩耗試験片を
ステーター用のワーク1とし、これを次のように
再溶融処理した。即ち、プラズマアーク電流
80A、プラズマアークArガス量1/min、トー
チ蛇行走査速度0.3m/minとし、蛇行させなが
ら摺動面をリメルトし、その1.4m/mの深さの
溶融層に、10μ〜40μのMoSをArガス中に0.15
g/min含有させた供給量で供給した。その結
果、MoSと合金母材であるFeMnとが反応してそ
の溶融層内にFeS及び(FeMn)Sが生成分散し
た硬化層が爾後の冷却により得られる。これら生
成粒子の寸法は約1〜7μであり、その体積比は
約0.8%であつた。その処理面を研摩して試験片
Uとした。比較のため、かゝる添加剤を添加しな
いで、同じ材料のワーク1を前記と同様に単にリ
メルト硬化処理し、これを試験片Vとした。 これら試験片につき、前記と同様に耐摩耗テス
トを行ない、下記の結果を得た。
[Table] Example 11 Using the apparatus shown in the first figure, a wear test piece made of S50C was used as work 1 for a stator, and this was remelted as follows. That is, plasma arc current
80A, plasma arc Ar gas flow rate 1/min, torch meandering scanning speed 0.3m/min, remelt the sliding surface while meandering, and add 10μ to 40μ MoS to the molten layer at a depth of 1.4m/m. 0.15 in Ar gas
It was fed at a feed rate containing g/min. As a result, a hardened layer in which MoS and FeMn, which is the alloy base material, react and FeS and (FeMn)S are generated and dispersed in the molten layer is obtained by subsequent cooling. The size of these produced particles was about 1 to 7 microns, and their volume ratio was about 0.8%. The treated surface was polished to obtain a test piece U. For comparison, Work 1 made of the same material was simply remelt hardened in the same manner as described above without adding such additives, and this was designated as Test Piece V. These test pieces were subjected to wear resistance tests in the same manner as described above, and the following results were obtained.

【表】 実施例 12 第1図示の装置を使用し、自動車用エンジンに
組込まれるFC30製カムシヤフトのカムリフト部
をワーク1として次のように再溶融処理した。即
ち、プラズマアーク電流60A、アーク用Arガス
量0.5/min、プラズマトーチの走査速度1
m/minとし、軌跡を描きながらカムリフト部の
表面を溶融し、2〜10μのWS2粉末をガス中の供
給量0.6g/minでその溶融部に供給した。溶融
層の深さは、1.8m/mであつた。その添加の結
果、WS2と母材の組成元素であるFe,Mnと反応
して生成したFeSと(FeMn)Sの混在分散した
溶融層の硬化層が得られた。その分散粒子の大き
さは約1〜10μであり、その体積比は28%であつ
た。又その硬化層の硬度はHRC53であつた。こ
のカムシヤフトをカム研摩し試験材Wとした。比
較のため、同じカムシヤフトを単にリメルト処理
したものを試験材Xとした。その硬化層の硬度は
HRC51であつた。 これら試験材をエンジン回転1000rpm、油温65
℃、テスト時間200時間の試験条件で実用試験に
供した。その結果試験材Uの摩耗量は30μ、試験
材Vの摩耗量は120μであつた。 実施例 13 第1図示の装置を使用し、自動車用エンジンに
組込まれるSCM420製バルブロツカーアームをワ
ーク1としてそのスリツパー面を次のようにリメ
ルト処理した。即ち、プラズマアーク電流45A、
プラズマArガス量0.5/min、プラズマトーチ
スピード0.8m/minとし、スリツパー面を走査
溶融し、その溶融部にFeSをArガスで搬送し0.4
g/minの供給量で供給した。供給量の1部の
FeSは合金母材の組成元素であるMnと反対して
生成した(FeMn)SがFeSと共に混在分散含有
する溶融硬化層が冷却により得られた。FeS及び
(FeMn)Sの大きさは約1〜8μ、その体積比は
約3.2%であつた。次でこのように処理したワー
ク1のスリツパー面の強度を向上させるべく、浸
炭焼入れを施し、その硬化層に約1.2mmの浸炭層
を形成し、実質的に浸炭硬化層の中に前記硫化物
が混在した耐摩耗性組織層とした。この表面を研
摩し試験材Wとした。比較のため、同じワーク1
に単にリメルト処理を施した後、前記と同じ浸炭
焼入れを施した耐摩耗性組織層としたものを試験
材Xとした。これら試験材につき、エンジン回転
1000rpm、油温65℃、テスト時間200時間の条件
で実用試験を行なつた。その結果、試験材Wは摩
耗深さは10μ、試験材Xは摩耗深さは50μであつ
た。 上記実施例1〜13から明らかなように、Cr,
Mo,TiB,Al2O3,FeSその他の各種硫化物など
を被処理物のリメルト処理層に分散含有させるこ
とにより、その耐摩耗性を、かゝる処理をしない
ものに比し著しく向上せしめることができる。特
に、Cr硫化物は他の硫化物に比べて高温におけ
る安定性が高く、1000℃以上の高温でも他のCr
硫化物粉と異なり分解することなく著しく安定し
た摩擦摺動面を与え、且つ潤滑剤として効果を併
せ有し有利である。 添加すべき粒子は、200μ以下の粒径のものを
一般に使用し、特に100μ以下のものが好ましい。
これを被処理物の表面の溶融層に添加したとき
は、液粒となり、この状態でプラズマアークの走
査を受けるので、融体中に流動撹拌現象が生じ、
液相粒はこれにより細分化され、この状態で冷却
凝固する結果、その細分化した固相粒子が硬化層
中に分散した状態の表面処理層が得られる。硬化
物の場合に例をとれば、分散粒子の径が約1〜
20μの範囲が好ましく、内部応力集中率を減らす
ので、耐ピツチング性耐カジリ性等に優れ、又摩
耗表面に硫化物の潤滑効果が摺動面に均一に作用
し易い。又その摩擦の繰り返しで、その粒子は引
き延ばされて、その表面に数十〜数百Åの硫化物
の被覆ができ易く好ましい。 又本発明によればリメルト時間は僅か約1秒或
はそれ以下が一般であるので、例えば硫化物の熱
分解による損失が殆んどなく有利である。 第7図は、Cr硫化物の体積%と処理品の摩耗
量との関係を、自動車エンジンFC30製カムシヤ
フトにつき調べた結果を示す。これから明らかな
ように、略0.2%以上から耐摩耗性の効果を発揮
し、少量の添加でその効果が著しい。但し、12%
程度以上になると靭性が低下する傾向があるの
で、又効果の向上が少なく経済的に高価となる観
点より、12%程度までの含有量に留めることが有
利である。 第8図は鉄硫化物粉(FeS+(FeMn)S)の
体積%と処理品の摩耗量との関係を、自動車エン
ジンFC30製カムシヤフトにつき調べた結果を示
す。この場合は、0.5%以上で効果を発揮する。
その量の増大により効果の向上が少なくなり、経
済面より20%程度にとゞめることが有利である。 このように本発明によるときはプラズマアーク
による溶融部に混入される添加剤は、これをプラ
ズマアークのシールドガス流を突破させて該プラ
ズマアークに伴わせて溶融部内に強制的に混入さ
せ、該溶融部内に添加剤を含む合金或は化合物を
形成させたものであるから添加剤はプラズマアー
クのジエツト流中での一部溶融により活性化され
この活性化された状態において更に母材溶融金属
内に強制的に混入されるため溶融部の深層に渉つ
て溶融撹拌されて母材との合金性を高めその合金
或は化合物は母材の深層に達し母材そのものが改
善されて耐摩耗性その他の特性の向上を得ること
ができ、例えばエンジンの動弁カムの摺動面に適
用して優れた耐摩耗性のものを得ることができる
効果を有する。
[Table] Example 12 Using the apparatus shown in Figure 1, a cam lift portion of an FC30 camshaft to be incorporated into an automobile engine was remelted as work 1 as follows. That is, plasma arc current 60A, arc Ar gas amount 0.5/min, plasma torch scanning speed 1
m/min, the surface of the cam lift part was melted while drawing a trajectory, and WS 2 powder of 2 to 10 microns was supplied to the melted part at a supply rate of 0.6 g/min in gas. The depth of the molten layer was 1.8 m/m. As a result of its addition, a hardened layer of a molten layer in which FeS and (FeMn)S, which were generated by the reaction between WS 2 and Fe and Mn, which are the constituent elements of the base material, were mixed and dispersed was obtained. The size of the dispersed particles was about 1 to 10 microns, and the volume ratio was 28%. The hardness of the hardened layer was HRC53. This camshaft was cam-polished to give a test material W. For comparison, the same camshaft was simply remelted and used as test material X. The hardness of the hardened layer is
It was HRC51. These test materials were tested at an engine speed of 1000 rpm and an oil temperature of 65.
It was subjected to a practical test under the test conditions of ℃ and test time of 200 hours. As a result, the amount of wear of test material U was 30μ, and the amount of wear of test material V was 120μ. Example 13 Using the apparatus shown in Figure 1, the slipper surface of the SCM420 valve rocker arm to be incorporated into an automobile engine was treated as work 1 by remelting as follows. That is, plasma arc current 45A,
The plasma Ar gas flow rate was 0.5/min, the plasma torch speed was 0.8 m/min, the slipper surface was scanned and melted, and the FeS was transported to the melted part using Ar gas.
It was supplied at a feed rate of g/min. part of the supply
FeS was produced in opposition to Mn, which is a constituent element of the alloy base material, and a molten hardened layer containing (FeMn)S mixed and dispersed together with FeS was obtained by cooling. The size of FeS and (FeMn)S was approximately 1 to 8 μm, and their volume ratio was approximately 3.2%. Next, in order to improve the strength of the slipper surface of the workpiece 1 treated in this way, carburizing and quenching is performed to form a carburized layer of approximately 1.2 mm on the hardened layer, and the sulfide is substantially contained in the carburized hardened layer. A wear-resistant tissue layer with a mixture of This surface was polished to obtain a test material W. For comparison, the same work 1
Test material For these test materials, engine rotation
Practical tests were conducted under the conditions of 1000 rpm, oil temperature of 65°C, and test time of 200 hours. As a result, test material W had a wear depth of 10μ, and test material X had a wear depth of 50μ. As is clear from Examples 1 to 13 above, Cr,
By dispersing and containing Mo, TiB, Al 2 O 3 , FeS, and other various sulfides in the remelt treatment layer of the workpiece, its wear resistance is significantly improved compared to those without such treatment. be able to. In particular, Cr sulfide has higher stability at high temperatures than other sulfides, and even at high temperatures of 1000°C or higher, it is more stable than other Cr sulfides.
Unlike sulfide powder, it does not decompose and provides an extremely stable frictional sliding surface, and also has the advantage of being effective as a lubricant. The particles to be added generally have a particle size of 200 μm or less, and preferably 100 μm or less.
When this is added to the molten layer on the surface of the workpiece, it becomes liquid droplets and is scanned by the plasma arc in this state, causing a fluid stirring phenomenon in the molten material.
The liquid phase particles are thereby finely divided, and as a result of being cooled and solidified in this state, a surface treatment layer in which the finely divided solid phase particles are dispersed in the hardened layer is obtained. For example, in the case of a cured product, the diameter of the dispersed particles is about 1 to
A range of 20μ is preferable, since it reduces the internal stress concentration rate, resulting in excellent pitting resistance, galling resistance, etc., and the lubricating effect of sulfide on the worn surface tends to act uniformly on the sliding surface. Further, by repeating the friction, the particles are stretched and a sulfide coating of tens to hundreds of angstroms is easily formed on the surface, which is preferable. Further, according to the present invention, the remelt time is generally only about 1 second or less, which is advantageous because there is almost no loss due to thermal decomposition of sulfides, for example. FIG. 7 shows the results of investigating the relationship between the volume percent of Cr sulfide and the amount of wear of the treated product for a camshaft made of FC30 automobile engine. As is clear from this, the effect of wear resistance is exhibited at approximately 0.2% or more, and the effect is remarkable even when a small amount is added. However, 12%
If the content exceeds a certain level, the toughness tends to decrease, and from the viewpoint that the effect is not improved much and it becomes economically expensive, it is advantageous to limit the content to about 12%. Figure 8 shows the results of investigating the relationship between the volume percent of iron sulfide powder (FeS+(FeMn)S) and the amount of wear of the treated product for a camshaft made of FC30 automobile engine. In this case, it is effective at 0.5% or more.
As the amount increases, the improvement in effectiveness decreases, and from an economical point of view, it is advantageous to limit the amount to about 20%. In this way, according to the present invention, the additive mixed into the molten zone by the plasma arc is forcibly mixed into the molten zone by breaking through the shielding gas flow of the plasma arc and being mixed into the molten zone along with the plasma arc. Since the alloy or compound containing the additive is formed in the molten zone, the additive is activated by partially melting in the jet stream of the plasma arc, and in this activated state, it is further absorbed into the base molten metal. As the alloy or compound is forcibly mixed into the base metal, it melts and stirs into the deep layer of the molten zone, increasing the alloying properties with the base metal, and the alloy or compound reaches the deep layer of the base metal, improving the base metal itself and improving its wear resistance and other properties. For example, when applied to the sliding surfaces of engine valve cams, it is possible to obtain excellent wear resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する装置の1例の説
明線図、第2図乃至第6図は本発明方法の各工程
の原理的な説明線図、第7図及び第8図は、硫化
物の体積%と摩耗量の関係を示す曲線図である。 1…ワーク、2…プラズマトーチ、10…プラ
ズマアーク、11…溶融部、12…添加剤。
FIG. 1 is an explanatory diagram of an example of an apparatus for carrying out the method of the present invention, FIGS. 2 to 6 are diagrams explaining the principle of each step of the method of the present invention, and FIGS. 7 and 8 are It is a curve diagram showing the relationship between volume % of sulfide and amount of wear. DESCRIPTION OF SYMBOLS 1... Workpiece, 2... Plasma torch, 10... Plasma arc, 11... Melting part, 12... Additive.

Claims (1)

【特許請求の範囲】 1 鋳鉄、アルミ合金その他の金属材料から成る
ワークの表面に、プラズマアークによる溶融部を
生じさせ該溶融部に、ワークの金属材料とは異種
の金属材料その他の材料からなる添加剤を混入さ
せて冷却凝固させるリメルト処理層を形成させる
式のものにおいて、前記添加剤を、前記プラズマ
アークのシールドガス流を突破させて該プラズマ
アークに伴わせて、前記溶融部内に強制的に混入
させ、該溶融部内に前記添加剤を含む合金或いは
化合物を形成させたことを特徴とするワークの表
面処理方法。 2 該添加剤はNi、Cr、Moその他の金属又はそ
の合金、WC、SiC、MO2C、Cr3C2、B4Cその他
の炭化物、BN、TiBその他の硼化物、MoS2
WS2、FeSその他の硫化物、Al2O3、SiO2その他
の酸化物、等から選択される少くとも1種類の粉
末から成る特許請求の範囲第1項記載のワークの
表面処理方法。
[Scope of Claims] 1. Plasma arc generates a molten part on the surface of a workpiece made of cast iron, aluminum alloy, or other metal material, and the molten part is made of a metal material or other material different from the metal material of the workpiece. In the method of forming a remelt treatment layer by mixing additives and solidifying them by cooling, the additives are forced into the molten zone by breaking through the shielding gas flow of the plasma arc and accompanying the plasma arc. 1. A method for surface treatment of a workpiece, characterized in that an alloy or a compound containing the additive is formed in the molten zone. 2 The additives include Ni, Cr, Mo and other metals or their alloys, WC, SiC, MO 2 C, Cr 3 C 2 , B 4 C and other carbides, BN, TiB and other borides, MoS 2 ,
The method for surface treating a workpiece according to claim 1, comprising at least one powder selected from WS 2 , FeS and other sulfides, Al 2 O 3 , SiO 2 and other oxides, and the like.
JP58168405A 1983-09-14 1983-09-14 Surface treatment of work Granted JPS6070136A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58168405A JPS6070136A (en) 1983-09-14 1983-09-14 Surface treatment of work
CA000463029A CA1249038A (en) 1983-09-14 1984-09-13 Surface treatment process for workpiece
GB08423101A GB2148166B (en) 1983-09-14 1984-09-13 A process for treating the surface of a metallic material
DE19843433698 DE3433698A1 (en) 1983-09-14 1984-09-13 METHOD FOR TREATING A WORKPIECE
FR8414115A FR2551770B1 (en) 1983-09-14 1984-09-14 METHOD FOR THE SURFACE TREATMENT OF A METAL PART BY REFUSION AND PRODUCTS OBTAINED

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58168405A JPS6070136A (en) 1983-09-14 1983-09-14 Surface treatment of work

Publications (2)

Publication Number Publication Date
JPS6070136A JPS6070136A (en) 1985-04-20
JPH0353388B2 true JPH0353388B2 (en) 1991-08-14

Family

ID=15867510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58168405A Granted JPS6070136A (en) 1983-09-14 1983-09-14 Surface treatment of work

Country Status (5)

Country Link
JP (1) JPS6070136A (en)
CA (1) CA1249038A (en)
DE (1) DE3433698A1 (en)
FR (1) FR2551770B1 (en)
GB (1) GB2148166B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920872A (en) * 2014-04-26 2014-07-16 武汉高斯激光技术有限公司 Laser alloying powder and application of laser alloying powder in steel cylinder circular mould laser surface alloying

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187660A (en) * 1984-02-24 1985-09-25 Honda Motor Co Ltd Partially hardened cast iron member
JPS60224790A (en) * 1984-04-19 1985-11-09 Toyota Motor Corp Wear resistant al alloy member and its production
JPS6213521A (en) * 1985-07-09 1987-01-22 Honda Motor Co Ltd Wear resistant member and its production
JPS6233758A (en) * 1985-08-05 1987-02-13 Honda Motor Co Ltd Method and apparatus for hardening metal surface using plasma gas
JPS6293314A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Wear resistant sliding member
JPS6297770A (en) * 1985-10-22 1987-05-07 Daido Steel Co Ltd Production of tool
EP0230959A3 (en) * 1986-01-21 1989-07-12 Energy Conversion Devices, Inc. Fabrication of atomically alloyed synthetic materials
DE3715326A1 (en) * 1987-05-08 1988-11-24 Castolin Sa METHOD FOR PRODUCING A SELF-SHARPENING CUTTING OR KNIFE EDGE
US4854196A (en) * 1988-05-25 1989-08-08 General Electric Company Method of forming turbine blades with abradable tips
JP2769338B2 (en) * 1988-11-30 1998-06-25 昭和アルミニウム株式会社 Manufacturing method of aluminum alloy material with excellent wear resistance
JP2769339B2 (en) * 1988-11-30 1998-06-25 昭和アルミニウム株式会社 Manufacturing method of aluminum alloy material with excellent wear resistance
ATE155828T1 (en) * 1990-03-19 1997-08-15 Duroc Ab METHOD FOR SURFACE TREATMENT OF METALS
DE4102495A1 (en) * 1991-01-29 1992-07-30 Thyssen Edelstahlwerke Ag METHOD FOR COATING SUBSTRATES
DE4139956C2 (en) * 1991-12-04 2003-04-24 Opel Adam Ag Process for the production of wear-resistant boron layers on metallic objects and metal object with a wear-resistant boron layer
DE19639480A1 (en) * 1996-09-26 1998-04-02 Guenter Hackerodt Process for the internal coating of cylinder treads, in particular aluminum treads
DE19643029A1 (en) * 1996-10-18 1998-04-23 Bayerische Motoren Werke Ag Method for coating an internal combustion engine component made of an aluminum alloy with silicon
EP0915184B1 (en) * 1997-11-06 2003-06-25 Sulzer Markets and Technology AG Process for producing a ceramic layer on a metallic substrate
GB0127033D0 (en) * 2001-11-09 2002-01-02 Biocompatibles Ltd Stent manufacture
DE10235813B4 (en) * 2002-08-05 2004-07-22 Brueninghaus Hydromatik Gmbh Sliding shoe and method for producing raised contact surfaces of a sliding shoe
DE102004026636B3 (en) * 2004-06-01 2005-07-21 Daimlerchrysler Ag Plasma jet process to modify the surface of a metal component by exposure to high-pressure jet in the presence of a carrier gas
DE102013219784A1 (en) * 2013-09-30 2015-04-02 Federal-Mogul Friedberg Gmbh Slip rings with leatherburitic structure on the surface
CN105695985A (en) * 2016-02-15 2016-06-22 河北南车环保科技有限公司 Multi-purpose metal powder repair machine
CN107338434A (en) * 2016-11-22 2017-11-10 国营芜湖机械厂 Wear-resisting composite coating of the spontaneous high-temperature self-lubrication of Laser Cladding in-situ and preparation method thereof
DE102018113643A1 (en) * 2018-06-07 2019-12-12 Durum Verschleißschutz GmbH Device for coating a surface
CN108971803B (en) * 2018-08-17 2020-12-29 广州汉源新材料股份有限公司 Composite reinforced solder and preparation method thereof
CN111239102A (en) * 2020-01-21 2020-06-05 沈阳德其乐科技有限公司 Remelting and whitening spectral detection method for surface of grey iron
CN111876717B (en) * 2020-07-14 2022-07-08 江苏科环新材料有限公司 High-temperature-resistant, abrasion-resistant and remelting nickel-based composite material coating for fire grate segment of garbage incinerator and preparation method thereof
CN113019408B (en) * 2021-03-12 2023-06-20 河南理工大学 Preparation method and application of ammonia borane hydrolysis hydrogen production catalyst
CN114250466B (en) * 2022-03-01 2022-05-03 潍坊学院 Preparation method of laser cladding coating on titanium alloy surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50812A (en) * 1972-11-14 1975-01-07
JPS53109882A (en) * 1977-03-09 1978-09-26 Toshiba Corp Coating method
JPS55131164A (en) * 1979-03-30 1980-10-11 Rolls Royce Method and apparatus for applying metal coating to metal substrate
JPS55148752A (en) * 1979-05-11 1980-11-19 Nippon Steel Corp Formation method of coating on metal surface
JPS56158871A (en) * 1980-05-14 1981-12-07 Permelec Electrode Ltd Method for forming corrosion-resistant coating on metallic substrate

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB718866A (en) * 1952-04-01 1954-11-24 Air Reduction Improvements in method of hard surfacing
GB801039A (en) * 1954-06-30 1958-09-03 Kaiser Aluminium Chem Corp Improvements in or relating to welding metals using an inert-gas-shielded arc
US3016447A (en) * 1956-12-31 1962-01-09 Union Carbide Corp Collimated electric arc-powder deposition process
GB1027504A (en) * 1962-02-05 1966-04-27 Union Carbide Corp Improvements in and relating to electric welding
FR1493829A (en) * 1965-09-03 1967-09-01 Boehler & Co Ag Geb Process for the manufacture of shields with high resistance to corrosion and wear, from hot-malleable alloys
FR1481510A (en) * 1966-05-27 1967-05-19 Union Carbide Corp Method for depositing metal
FR2193674A1 (en) * 1972-07-31 1974-02-22 Inst Dece Cetari Plasma beam hard facing - by feeding mild steel strip with serrations filled by cemented carbide grains
DD111589A1 (en) * 1974-04-17 1975-02-20
DE2522690C3 (en) * 1975-05-22 1982-03-04 Goetze Ag, 5093 Burscheid Plasma deposition welding powder for the production of wear-resistant layers
CH593754A5 (en) * 1976-01-15 1977-12-15 Castolin Sa
US4097711A (en) * 1976-09-16 1978-06-27 Ingersoll-Rand Company Roller shell hard coating
DE2703469C3 (en) * 1977-01-28 1979-11-22 Audi Nsu Auto Union Ag, 7107 Neckarsulm Device for hardening the cam surfaces of camshafts for internal combustion engines
JPS555126A (en) * 1978-06-26 1980-01-16 Mitsubishi Heavy Ind Ltd Surface hardening build-up welding method
US4234776A (en) * 1978-07-12 1980-11-18 Thermatool Corp. Method of producing areas of alloy metal on a metal part using electric currents
US4192984A (en) * 1978-07-12 1980-03-11 Thermatool Corporation Embedment of hard particles in a metal surface
GB2096514B (en) * 1981-04-13 1985-08-07 Inst Elektroswarki Patona Deposition of metal on aluminium-based alloys
AU8505082A (en) * 1981-07-17 1983-01-20 Deere & Company Hardfacing
US4376793A (en) * 1981-08-28 1983-03-15 Metallurgical Industries, Inc. Process for forming a hardfacing surface including particulate refractory metal
US4471034A (en) * 1982-11-16 1984-09-11 Eutectic Corporation Alloy coating for cast iron parts, such as glass molds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50812A (en) * 1972-11-14 1975-01-07
JPS53109882A (en) * 1977-03-09 1978-09-26 Toshiba Corp Coating method
JPS55131164A (en) * 1979-03-30 1980-10-11 Rolls Royce Method and apparatus for applying metal coating to metal substrate
JPS55148752A (en) * 1979-05-11 1980-11-19 Nippon Steel Corp Formation method of coating on metal surface
JPS56158871A (en) * 1980-05-14 1981-12-07 Permelec Electrode Ltd Method for forming corrosion-resistant coating on metallic substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920872A (en) * 2014-04-26 2014-07-16 武汉高斯激光技术有限公司 Laser alloying powder and application of laser alloying powder in steel cylinder circular mould laser surface alloying
CN103920872B (en) * 2014-04-26 2016-01-06 武汉高斯激光技术有限公司 Laser alloying powder and the application in steel cylinder ring mould laser surface alloying thereof

Also Published As

Publication number Publication date
DE3433698C2 (en) 1987-06-11
FR2551770B1 (en) 1989-07-21
GB2148166A (en) 1985-05-30
GB8423101D0 (en) 1984-10-17
GB2148166B (en) 1986-12-10
CA1249038A (en) 1989-01-17
FR2551770A1 (en) 1985-03-15
DE3433698A1 (en) 1985-04-04
JPS6070136A (en) 1985-04-20

Similar Documents

Publication Publication Date Title
JPH0353388B2 (en)
US4832982A (en) Laser process for forming dispersion alloy layer from powder on metallic base
US5352538A (en) Surface hardened aluminum part and method of producing same
JPS60187660A (en) Partially hardened cast iron member
CN108570571A (en) Sliding material and its manufacturing method and sliding component and bearing arrangement
JPH08506143A (en) Engineering Ferras Metals
JP2004501276A (en) Thermal spray formed nitrogen-added steel, method for producing the steel, and composite material produced from the steel
Chaus Use of REM-based modifying agents for improving the structure and properties of cast tungsten-molybdenum high-speed steels
EP2915965B1 (en) Engine valve
DE3221884A1 (en) Wear-resistant part for use in an internal-combustion engine
Babinets et al. Influence of modification and microalloying on deposited metal structure and properties
KR940008938B1 (en) Production of anticorrosive and antiwearing alloy
US7235144B2 (en) Method for the formation of a high-strength and wear-resistant composite layer
Mordike State of the art of surface engineering with high energy beams
JP3196389B2 (en) Ni-base alloy for metallurgy
EP0494977B1 (en) Method of modifying the surface of a substrate
JPH06122076A (en) Cladding by welding method of oxide dispersion strengthened alloy
EP0604836B1 (en) Method for making wear-resistant surface coatings on steel pieces and steel pieces with such coatings
JP2637500B2 (en) Sliding member
Mordike Lasers and the processing of engineering materials
Mordike et al. Laser Melting and Surface Alloying
Mordike CHAPITRE 9 SURFACE TREATMENT BY LASERS
JP2001172756A (en) Sliding member with ferrous lubrication coating layer, material for forming ferrous thermally sprayed layer, and method of manufacturing for sliding member with ferrous lubrication coating layer
JPH02243777A (en) Production of engine valve
JPH0521989B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees