JPH0521989B2 - - Google Patents

Info

Publication number
JPH0521989B2
JPH0521989B2 JP10454386A JP10454386A JPH0521989B2 JP H0521989 B2 JPH0521989 B2 JP H0521989B2 JP 10454386 A JP10454386 A JP 10454386A JP 10454386 A JP10454386 A JP 10454386A JP H0521989 B2 JPH0521989 B2 JP H0521989B2
Authority
JP
Japan
Prior art keywords
wear
density
carbides
carbide
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10454386A
Other languages
Japanese (ja)
Other versions
JPS62263951A (en
Inventor
Yoshuki Kojima
Teru Mehata
Masayuki Doi
Naotatsu Asahi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10454386A priority Critical patent/JPS62263951A/en
Publication of JPS62263951A publication Critical patent/JPS62263951A/en
Publication of JPH0521989B2 publication Critical patent/JPH0521989B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は高強度で高耐摩耗性を有するFeを主
成分とする金属材料およびその製法に関する。 〔従来の技術〕 従来、耐摩耗金属材料としてはFeを主成分と
する材料が多用されており、特にFeマトリツク
ス中に炭化物を形成し、その硬さを向上せしめた
ものが主に用いられている。このような材料にお
いては炭化物の大きさとその分散量が非常に重要
であり、良好な耐摩耗性を得るには炭化物が微細
に分散しかつその分散量が多いことが望ましい。
しかるに、従来の市販されている工具鋼等におい
ては微細な炭化物の析出した金属組織ではある
が、その分布量に限界がある。すなわち、炭化物
の分布量を多くするにはCの含有量を多くする必
要があるが、その場合、炭化物が巨大になる。 このような観点から、溶融状態から急冷凝固せ
しめることにより、高C含有金属材料を得る試み
が行なわれており、例えば特開昭60−12424号公
報、特開昭60−12425号公報に記載のように高C
−高Cr鋳鉄粉末をプラズマ溶射した耐摩耗材あ
るいは摺動部材が公知になつている。しかし、こ
れらのいずれのも、溶射被膜の断面組成において
炭化物が微細に析出したものではあるが、被膜中
には空孔等の欠陥が含まれたものになり、被膜中
には酸化物の介在物が存在している。このように
組織になるのは、公知の方法では大気中でプラズ
マ溶射したためである。すなわち、溶射中に、プ
ラズマジエツト中で加熱溶融した粉末粒子の表面
が酸化され、そのような酸化被膜が混入した被膜
では、積層される溶射粒子間に空孔等の欠陥が生
じ易くなる。このような組織を有した被膜は局部
的には炭化物が微細に析出したものであるが、必
ずしも均質なものではなく、良好な耐摩耗性を得
る上で好ましくない。このような問題点を改善す
るため、上記公報の中では、高C−高Cr鋳鉄粉
末に更に自溶性合金又はCu合金等の粉末を混合
した材料を溶射する方法も提案されているが、や
はり、炭化物が均質に分散した組織にはなり得
ず、むしろ、二相が混存したものになり、良好な
耐摩耗性を得る上で十分満足できるものではな
い。 このように、従来のプラスマ溶射による高C−
高Cr鋳鉄材料においては、良好な耐摩耗性を得
る上で、炭化物の分散状態、酸化物被膜、空孔等
の内部欠陥の存在が問題となる。 又、特開昭59−47346号、特開昭59−47347号に
示されたように高合金粉末およびその焼結合金の
製法及び焼結合金に関する公知例がある。これ
は、良好な耐摩耗性部材を得る方法として、高C
−高Cr鋳鉄粉末を原料粉末とし、この粉末を平
衡炭化物の析出する温度で加熱焼結し、均質な焼
結合金を得るものである。この場合、1μ以下の
微細な炭化物が微細に分散した組織を有する耐摩
耗性部材が得られるが、焼結材であるため、その
形状・大きさに制約がある。又、部材の表面に被
覆層として上記耐摩耗焼結合金を用いる場合、接
合等の技術課題がある。 なお、鋳造、鍛造等の方法では、高C−高Cr
鋳鉄材料において炭化物を微細に均質に分散させ
ることは著しく困難である。 〔発明が解決しようとする問題点〕 上記のように、プラズマ溶射による従来の高C
高Cr鋳鉄材料は材料中に酸化物被膜や空孔等の
欠陥を含み、耐摩耗性材料として問題があつた。
一方、焼結材料の場合、製品の形状に制約がある
等の問題がある。 本発明の目的は、このような点に鑑みて、炭化
物が微細かつ均質に分散し、更に、その内部構造
を酸化物、空孔等の欠陥を含まない良好な耐摩耗
性を有するプラズマ溶射耐摩耗鉄系材料とその製
法を提供することにある。 〔問題点を解決するための手段〕 本発明のプラズマ溶射耐摩耗性鉄系材料はFe
を主成分とし、CおよびCrを含有する材料であ
つて、大きさが0.1〜5μmの析出炭化物が均質に
分散しており、酸素含有量が約3000ppm未満であ
り、密度が理論度の97%以上であることを特徴と
するものである。 この耐摩耗性鉄系材料は、基材(例えば軟鋼)
上に減圧雰囲気中でプラズマ溶射された被覆とし
て形成されてもよいし、又は、基材に減圧雰囲気
中でプラズマ溶射後、基材を除去することによつ
て、該耐摩耗性鉄系材料のみからなる部材として
形成されてもよい。 〔作用〕 上記本発明の耐摩耗性鉄系材料は、耐摩耗性材
料として要求される炭化物微細均質分散、炭化物
脱落防止性、強靭性等の諸性質を十分満足するも
のである。 〔実施例〕 本発明者らは、高C高Cr鋳鉄材料の炭化物の
大きさ及びその分布状態と耐摩耗性との関連につ
いて注目した。一般に良好な耐摩耗性を得る上で
は、微細な炭化物が多量に均質に分布している構
造が望ましい。その為にはC含有量が多い方が望
ましいが、一方、C含有量の増加とともに炭化物
の析出物の大きさは大きくなつてくる。従つて高
C鋳鉄は溶湯から急冷凝固せしめることにより、
過飽和にCを固溶した高C鋳鉄を得ることができ
る。このような観点から本発明者らはプラズマ溶
射法が適していると考えた。更に、プラズマ溶射
法で形成した高C鋳鉄においては、炭化物の大き
さ、その分布状態が重要になり、更に、良好な耐
摩耗材料を得る上で、その材料中の酸素含有量、
密度が重要である。 プラズマ溶射で形成した材料において微細な炭
化物を形成する上でFe−C−Cr系が有効である。
これは炭化物としてFe炭化物の他にCr炭化物を
析出させることができるからである。このような
炭化物を有効に析出させるためにはC量は1wt%
以上が必要である。一方、Crの含有量は有効な
Cr炭化物を形成する上で5wt%以上が必要であ
る。 ところでプラズマ溶射は急冷凝固作用を有する
が、プラズマ溶射法においてもその冷却速度には
限界があり、C含有量が多すぎると析出する炭化
物は大きくなる。そこで、本発明者らはプラズマ
溶射法で形成したFe−C−Cr系の種々の成分の
材料について、炭化物の大きさ、材料中の酸素含
有量、材料の密度等をパラメーターとして、それ
ぞれのパラメータと耐摩耗性の関係について検討
した。耐摩耗試験としてはロールによる摺動摩耗
試験を行なつた。摺動の相手材は硬度840Hvのロ
ール材を用い、タービン油による潤滑条件で試験
した。試験に用いたロール材は、組成が、wt%
で0.9C、0.5Si、0.5Mn、3.0Cr、0.5Mo、残部鉄
の軸受鋼の焼入れ焼戻し材である。荷重は100
Kg/cm3で繰り返し数は10000回とした。比較材と
してはJIS工具鋼SKD−1を用いた。以下、本発
明による耐摩耗性鉄系材料の製法の実施例を第1
図乃至第3図を参照して説明する。 第1図は炭化物の大きさを種々変えた場合の結
果である。図から炭化物の大きさが5μm以上の
場合、耐摩耗性は低下することがわかる。一方、
炭化物が0.1μm以下の場合、耐摩耗性は若干低下
する傾向が認められる。このように、良好な耐摩
耗性を得る上で炭化物物の大きさは5μm以下で
あることが望ましい。第1図に示す試料および製
法条件は、次表のとおりである。
[Industrial Application Field] The present invention relates to a metal material mainly composed of Fe, which has high strength and high wear resistance, and a method for producing the same. [Conventional technology] Conventionally, materials containing Fe as the main component have been widely used as wear-resistant metal materials, and in particular, materials with carbide formed in the Fe matrix to improve its hardness have been mainly used. There is. In such materials, the size of the carbide and the amount of its dispersion are very important, and in order to obtain good wear resistance, it is desirable that the carbide be finely dispersed and its amount of dispersion be large.
However, although conventional commercially available tool steels have a metal structure in which fine carbides are precipitated, there is a limit to the amount of their distribution. That is, in order to increase the amount of carbide distribution, it is necessary to increase the C content, but in that case, the carbides become huge. From this point of view, attempts have been made to obtain high C-containing metal materials by rapidly cooling and solidifying them from a molten state. Like high C
- Wear-resistant materials or sliding members made of plasma-sprayed high Cr cast iron powder have become known. However, in all of these cases, although carbides are finely precipitated in the cross-sectional composition of the thermally sprayed coating, the coating contains defects such as pores, and there are oxides intervening in the coating. things exist. This structure is due to plasma spraying in the atmosphere in the known method. That is, during thermal spraying, the surfaces of powder particles heated and melted in a plasma jet are oxidized, and in a coating containing such an oxide film, defects such as holes are likely to occur between the laminated thermal spray particles. Although a film having such a structure has locally finely precipitated carbides, it is not necessarily homogeneous and is not preferable in terms of obtaining good wear resistance. In order to improve these problems, the above-mentioned publication also proposes a method of thermal spraying a material made by mixing high C-high Cr cast iron powder with self-fusing alloy or Cu alloy powder. However, the structure cannot be a structure in which carbides are homogeneously dispersed, but rather a structure in which two phases coexist, which is not fully satisfactory in terms of obtaining good wear resistance. In this way, high C-
In high Cr cast iron materials, the presence of internal defects such as the dispersion state of carbides, oxide films, and pores pose problems in obtaining good wear resistance. Furthermore, as shown in Japanese Patent Application Laid-open No. 59-47346 and Japanese Patent Application Laid-Open No. 59-47347, there are known examples regarding high alloy powders, methods for producing sintered alloys thereof, and sintered alloys. This is a method to obtain good wear-resistant parts.
- A homogeneous sintered alloy is obtained by using high Cr cast iron powder as a raw material powder and heating and sintering this powder at a temperature at which equilibrium carbides precipitate. In this case, a wear-resistant member having a structure in which fine carbides of 1 μm or less are finely dispersed can be obtained, but since it is a sintered material, there are restrictions on its shape and size. Furthermore, when using the wear-resistant sintered alloy as a coating layer on the surface of a member, there are technical problems such as bonding. In addition, in methods such as casting and forging, high C-high Cr
It is extremely difficult to finely and homogeneously disperse carbides in cast iron materials. [Problems to be solved by the invention] As mentioned above, the conventional high C
High Cr cast iron materials contain defects such as oxide films and pores, and have problems as wear-resistant materials.
On the other hand, in the case of sintered materials, there are problems such as restrictions on the shape of the product. In view of these points, the object of the present invention is to provide plasma spraying resistant material in which carbides are finely and homogeneously dispersed, and whose internal structure is free from defects such as oxides and pores and has good abrasion resistance. The purpose of the present invention is to provide a wearable iron-based material and a manufacturing method thereof. [Means for solving the problem] The plasma sprayed wear-resistant iron-based material of the present invention is made of Fe.
A material containing C and Cr as the main component, in which precipitated carbides with a size of 0.1 to 5 μm are homogeneously dispersed, the oxygen content is less than about 3000 ppm, and the density is 97% of the theoretical degree. It is characterized by the above. This wear-resistant ferrous material is a base material (e.g. mild steel)
The wear-resistant ferrous material may be formed as a coating that is plasma sprayed in a vacuum atmosphere onto a substrate, or by plasma spraying in a vacuum atmosphere onto a substrate and then removing the substrate. It may be formed as a member consisting of. [Operation] The wear-resistant iron-based material of the present invention sufficiently satisfies the various properties required of a wear-resistant material, such as fine and homogeneous dispersion of carbides, prevention of carbide shedding, and toughness. [Example] The present inventors focused on the relationship between the size of carbides and their distribution state in a high-C, high-Cr cast iron material and wear resistance. Generally, in order to obtain good wear resistance, a structure in which a large amount of fine carbides are uniformly distributed is desirable. For this purpose, it is desirable to have a large C content, but on the other hand, as the C content increases, the size of carbide precipitates increases. Therefore, high C cast iron is produced by rapidly cooling and solidifying the molten metal.
It is possible to obtain high C cast iron in which C is supersaturated as a solid solution. From this point of view, the present inventors considered that the plasma spraying method is suitable. Furthermore, in high C cast iron formed by plasma spraying, the size and distribution of carbides are important, and in order to obtain a material with good wear resistance, the oxygen content in the material,
Density is important. The Fe-C-Cr system is effective in forming fine carbides in materials formed by plasma spraying.
This is because Cr carbide can be precipitated as a carbide in addition to Fe carbide. In order to effectively precipitate such carbides, the amount of C must be 1wt%.
The above is necessary. On the other hand, the content of Cr is
5wt% or more is required to form Cr carbide. By the way, plasma spraying has a rapid solidification effect, but there is a limit to the cooling rate even in plasma spraying, and if the C content is too high, the precipitated carbides will become large. Therefore, the present inventors investigated Fe-C-Cr-based materials with various components formed by plasma spraying, using parameters such as the size of carbides, oxygen content in the material, and density of the material. The relationship between wear resistance and wear resistance was investigated. As an abrasion resistance test, a sliding abrasion test using a roll was conducted. The sliding material was a roll material with a hardness of 840Hv, and the test was conducted under conditions of lubrication with turbine oil. The roll material used in the test had a composition of wt%
It is a quenched and tempered bearing steel material of 0.9C, 0.5Si, 0.5Mn, 3.0Cr, 0.5Mo, the balance being iron. Load is 100
Kg/cm 3 and the number of repetitions was 10,000. JIS tool steel SKD-1 was used as a comparison material. The following is a first example of the method for manufacturing a wear-resistant iron-based material according to the present invention.
This will be explained with reference to FIGS. 3 to 3. Figure 1 shows the results when the size of the carbide was varied. From the figure, it can be seen that when the size of carbide is 5 μm or more, the wear resistance decreases. on the other hand,
When the carbide is 0.1 μm or less, the wear resistance tends to decrease slightly. Thus, in order to obtain good wear resistance, it is desirable that the size of the carbide is 5 μm or less. The samples and manufacturing process conditions shown in FIG. 1 are as shown in the following table.

【表】 なお、後処理として、950℃で30分間Ar雰囲気
中で加熱した後、油中焼入れを行なつた。 次に、材料中の酸素含有量について検討した。
第2図はその結果である。この場合、炭化物の大
きさは約1μmである。図から、材料中の酸素含
有量は非常に重要な要因であり、3000ppm以上の
場合、耐摩耗性は劣しく低下することがわかる。 第2図に示す試料および製法条件は、次表の通
りである。
[Table] As a post-treatment, quenching in oil was performed after heating at 950°C for 30 minutes in an Ar atmosphere. Next, we examined the oxygen content in the material.
Figure 2 shows the results. In this case, the size of the carbide is approximately 1 μm. From the figure, it can be seen that the oxygen content in the material is a very important factor, and when it is more than 3000 ppm, the wear resistance is poor and decreases. The samples and manufacturing process conditions shown in FIG. 2 are as shown in the following table.

【表】【table】

【表】 なお、後処理として、920℃で30分間Ar雰囲気
中で加熱した後、油中焼入れを行なつた。 次に第3図は材料の密度についいて検討した結
果である。この場合、、炭化物の大きさ約1μmで
ある。図から材料の密度が理論密度の97%以下の
場合、その耐摩耗性は著しく低下することがわか
る。第3図に示す試料および製法条件は、次表の
通りである。
[Table] As a post-treatment, quenching in oil was performed after heating at 920°C for 30 minutes in an Ar atmosphere. Next, Figure 3 shows the results of studying the density of the material. In this case, the size of the carbide is about 1 μm. The figure shows that when the density of the material is less than 97% of the theoretical density, its wear resistance decreases significantly. The samples and manufacturing process conditions shown in FIG. 3 are as shown in the following table.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の高C系の耐摩耗材料と
は異なり、高C系材料中の炭化物の大きさを0.1
〜5μmと微細にし、且つその分布状態を均質に
し、しかも材料中の酸素含有量を3000ppm以下、
密度を理論密度の97%以上とすることにより、耐
摩耗性材料として要求される炭化物微細均質分
散、炭化物等の脱落防止、強靭化等の諸性質を十
分満足する高C−高Cr系鋳鉄耐摩耗材料を提供
することができる。しかも、その製造法には減圧
雰囲気中プラズマ溶射法を採用することにより、
部品の耐摩耗性を要求される部分にのみ、本発明
の材料を被覆することにより部品の靭性、強度、
コスト等に関して部品の基材を構成する材料の特
徴を生かすことができる。あるいは本発明の耐摩
耗性鉄系材料のみで構成される部品としても形成
することができ、この場合、焼結方法等では困難
な薄肉複雑形状部品の製作も可能となる。
According to the present invention, unlike conventional high-C wear-resistant materials, the size of carbides in high-C materials can be reduced by 0.1.
We made the material as fine as ~5μm and made the distribution state homogeneous, and the oxygen content in the material was 3000ppm or less.
By setting the density to 97% or more of the theoretical density, high C-high Cr cast iron can fully satisfy the various properties required for wear-resistant materials, such as fine and homogeneous dispersion of carbides, prevention of carbide etc. from falling off, and toughening. Wear materials can be provided. Moreover, by adopting the plasma spraying method in a reduced pressure atmosphere for its manufacturing method,
By coating the material of the present invention only in parts where wear resistance is required, the toughness, strength,
It is possible to take advantage of the characteristics of the material constituting the base material of the component in terms of cost and the like. Alternatively, it can be formed as a component made only of the wear-resistant iron-based material of the present invention, and in this case, it becomes possible to manufacture thin-walled, complex-shaped components that are difficult to produce using sintering methods or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は夫々炭化物の大き
さ、酸素含有量、密度と摩耗量の関係を示す実験
結果の図、第4図、第5図は本発明の実施例によ
るプラズマ溶射耐摩耗鉄系材料の金属組織を示す
顕微鏡写真である。
1, 2, and 3 are experimental results showing the relationship between carbide size, oxygen content, density, and wear amount, respectively. It is a micrograph showing the metal structure of a thermal sprayed wear-resistant iron-based material.

Claims (1)

【特許請求の範囲】 1 Cを1〜6wt%、Crを5〜45wt%含有し、
残部がFeであり、直径0.1〜5μmの粒径を有する
析出炭化物が均質に分散しており、酸素含有量が
3000ppm以下および密度が理論密度の97%以上で
ある溶射層を有することを特徴とする耐摩耗性鉄
系材料。 2 Cを1〜6wt%、Crを5〜45wt%含有し、
残部がFeであり、粒径1〜100μmの合金粉末を
15〜100Torrの減圧非酸化性雰囲気中でプラズマ
溶射することにより、基材表面にCを1〜6wt
%、Crを5〜45wt%含有し、残部がFeであり、
直径0.1〜5μmの粒径を有する析出炭化物が均質
に分散しており、酸素含有量が3000ppm以下およ
び密度が理論密度の97%以上である溶射層を形成
することを特徴とする耐摩耗性鉄系材料の製法。 3 上記溶射層の形成後に、基材を除去すること
を特徴とする特許請求の範囲第2項記載の耐摩耗
性鉄系材料の製法。
[Claims] 1 Contains 1 to 6 wt% of C and 5 to 45 wt% of Cr,
The remainder is Fe, and precipitated carbides with a particle size of 0.1 to 5 μm in diameter are homogeneously dispersed, and the oxygen content is low.
A wear-resistant iron-based material characterized by having a thermally sprayed layer with a density of 3000 ppm or less and a density of 97% or more of the theoretical density. 2 Contains 1 to 6 wt% of C and 5 to 45 wt% of Cr,
The balance is Fe, and alloy powder with a particle size of 1 to 100 μm is used.
1 to 6 wt of C is applied to the surface of the base material by plasma spraying in a reduced pressure non-oxidizing atmosphere of 15 to 100 Torr.
%, contains 5 to 45 wt% Cr, and the balance is Fe,
A wear-resistant iron characterized by the fact that precipitated carbides with a particle size of 0.1 to 5 μm in diameter are homogeneously dispersed, forming a sprayed layer with an oxygen content of 3000 ppm or less and a density of 97% or more of the theoretical density. Manufacturing method of system materials. 3. The method for producing a wear-resistant iron-based material according to claim 2, wherein the base material is removed after the thermal spray layer is formed.
JP10454386A 1986-05-07 1986-05-07 Wear-resistant ferrous material and its production Granted JPS62263951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10454386A JPS62263951A (en) 1986-05-07 1986-05-07 Wear-resistant ferrous material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10454386A JPS62263951A (en) 1986-05-07 1986-05-07 Wear-resistant ferrous material and its production

Publications (2)

Publication Number Publication Date
JPS62263951A JPS62263951A (en) 1987-11-16
JPH0521989B2 true JPH0521989B2 (en) 1993-03-26

Family

ID=14383399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10454386A Granted JPS62263951A (en) 1986-05-07 1986-05-07 Wear-resistant ferrous material and its production

Country Status (1)

Country Link
JP (1) JPS62263951A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2681125B2 (en) * 1988-02-05 1997-11-26 豊 川野 Iron-based ceramic material
JP2639057B2 (en) * 1988-03-01 1997-08-06 トヨタ自動車株式会社 Aluminum alloy valve lifter

Also Published As

Publication number Publication date
JPS62263951A (en) 1987-11-16

Similar Documents

Publication Publication Date Title
US4873150A (en) High water-resistant member, and valve gear using the same for use in internal combustion engine
US5858056A (en) Metal sintered body composite material and a method for producing the same
US8524375B2 (en) Thermal spray coated work rolls for use in metal and metal alloy sheet manufacture
EP2456900B1 (en) Bearing steels
JPS5918463B2 (en) Wear-resistant sintered alloy and its manufacturing method
JP4703005B2 (en) Steel, use of the steel, product made of the steel and method for producing the steel
CN113396233A (en) Hard powder particles with improved compressibility and green strength
MXPA00007460A (en) Iron-graphite composite powders and sintered articles produced therefrom.
US20030156965A1 (en) Nitrogen alloyed steel, spray compacted steels, method for the production thereof and composite material produced from said steel
US4587096A (en) Canless method for hot working gas atomized powders
US5034282A (en) Process for the powder metallurgical production of working pieces or tools and PM parts
JPH0521989B2 (en)
US4676949A (en) Method of producing metal sinters
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
KR0183227B1 (en) A metal sintered body composite material and method for producing the same
JPH0459362B2 (en)
JPS62227072A (en) High strength member and its manufacture
JPH05263200A (en) Sintered high speed steel excellent in seizing resistance and its manufacture
JP2637500B2 (en) Sliding member
CN114231969A (en) Wear-resistant composite coating for improving surface hardness of U-shaped roller and production process of U-shaped roller
KR20010055791A (en) Manufacturing method of high heat-resistance and high wear-resistance aluminum alloys
JPH0135043B2 (en)
JPS589139B2 (en) Materials made by powder hot forging
JPH062082A (en) High speed steel series sintered alloy
JPH062081A (en) High speed steel series sintered alloy