US3508529A - Composite valve structure - Google Patents

Composite valve structure Download PDF

Info

Publication number
US3508529A
US3508529A US529830A US3508529DA US3508529A US 3508529 A US3508529 A US 3508529A US 529830 A US529830 A US 529830A US 3508529D A US3508529D A US 3508529DA US 3508529 A US3508529 A US 3508529A
Authority
US
United States
Prior art keywords
chromium
metal
carbon
cast
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US529830A
Inventor
Earl A Thompson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EARL THOMPSON Mfg CO
Original Assignee
EARL THOMPSON Mfg CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EARL THOMPSON Mfg CO filed Critical EARL THOMPSON Mfg CO
Application granted granted Critical
Publication of US3508529A publication Critical patent/US3508529A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials

Definitions

  • Valves for internal combustion engines have different portions of the valve made of different combinations of high carbon, high chromium alloy containing from about 1.3% to about 3.1% carbon, from about 15% to about 35% chromium with the remainder iron, with or without up to about 3.5% silicon, manganese and other residuals. After each alloy is cast, it is cooled so quickly that a relatively small number of relatively large primary chromium carbide particles are formed and widely dispersed in a matrix of austenite containing a solid solution of chromium and carbon.
  • This invention relates to internal combustion engine valves made of improved high-chromium, high-carbon, iron alloys.
  • valves can be cast of particular highchromium, high-carbon, iron alloys which can be treated to provide a surprisingly easily machinable casting which can be processed further to give surprising hardness and resistance both to wear and corrosion.
  • the valve is surprisingly stable as to dimension so that it can be machined with customary cutting tools and can be ground to precisely finished size and shape before hardening.
  • Such alloys so treated make surprisingly long lasting, corrosion free, dimensionally stable valves. They are particularly economical and easy to make.
  • one of the objects of my invention is to provide an improved valve which is easily machinable at one stage of its manufacture, and after hardening is highly resistant to wear and corrosion and is dimensionally stable.
  • Another object is to provide a valve which can be economically made by conventional processes and which has improved dimensional stability.
  • Another object is to provide an improved process for making precision valves of high resistance to corrosion and wear.
  • FIG. 1 is a cross section of a portion of an internal combustion engine showing a valve to which my invention is particularly suitable.
  • FIG. 2 is an enlarged cross section of a portion of a 3,503,529 Patented Apr. 28, 1970 valve being cast in a mold suitable for casting according to my invention.
  • FIG. 3 is a photograph of a polished and etched section of a portion of a casting made of an alloy embodying one form of my invention. This photograph is of metal in the condition as cast, and is magnified about 1495 times. The scale line approximately 4; of an inch long at the bottom of the photograph represents one ten thousandths of an inch (.0001
  • FIG. 4 is a photograph corresponding to FIG. 3 of the same alloy after a subsequent heat treatment.
  • FIG. 5 is a photograph corresponding to FIG. 3 of the same metal after subsequent hardening.
  • FIG. 6 is a photograph corresponding to FIG. 3 of the same metal after drawing following hardening.
  • 10 designates an engine having a valve 12 which is reciprocated in a bushing or guide 14 pressed in a bore in the engine.
  • the valve stem may have a groove 16 for a spring retainer 18.
  • My improved valve is cast and one material of which I make some or all of the parts of the valve is a highcarbon, high-chromium, iron alloy containing about 2.20% carbon and about 22.5% chromium.
  • This alloy may also contain about 1.60% silicon and about .90% manganese.
  • the silicon may be added to make the alloy easier to pour.
  • the manganese combines with any sulphur which may be present in the material of which the alloy is made. Also the manganese may improve the hardenability of the matrix of the alloy upon subsequent quenching. Ordinarily such alloys are made from available ingredients including scrap or pig iron of uncertain analysis so that the resulting alloy may contain residual quantities of copper, nickel, molybdenum and other metals.
  • one batch of my preferred alloy contained 2.20% carbon, 1.60% silicon, .90% manganese, 22.5% chromium, and residuals of .25 copper, .31% nickel and .17% molybdenum.
  • alloys of the composition mentioned above, or of the ranges of composition disclosed herein can be given a new and improved metallurgical structure by cooling quickly after pouring, and that this new metallurgical structure can be treated to provide new, surprising and very desirable properties.
  • a melt having the proportions of ingredients to provide the alloy of the composition set forth above was poured at about 2750 F.
  • This particular alloy has a liquidus temperature of about 2399 F. and a solidus temperature of 2270 F., as determined by the Leeds and Northrup carbon determinator.
  • FIG. 3 is a photograph of a section of a part which has been cast of the above alloy according to my invention.
  • the temperature of the metal has been reduced from the liquidus to the solidus so quickly that two things have happened.
  • One is that the usual formation of primary chromium carbide particles has been arrested, so that the chromium carbide particles formed are fewer in number and smaller than they would be if the metal had cooled slowly.
  • Evidence of this is that the matrix has remained essentially non-magnetic austenite. If the casting had cooled slowly, austenite would not be formed.
  • the other thing that has happened is that the matrix contains large amounts of chromium and carbon in solid solution. Evidence of this is the subsequent formation of very fine chromium carbide particles during subsequent heat treatment.
  • the primary chromium carbides shown in FIG. 3 are very small, much smaller than if the metal had cooled slowly, and they are more widely dispersed.
  • the largest primary carbide particle visible in FIG. 3, measured in inches is about .00135 long, and in a representative area .001 square there are about 17 primary carbide particles.
  • the large dark particles shown are what is generally called chromium carbides. Among such chromium carbides Cr C and Cr C have been identified. It is also possible for iron to replace some of the chromium to form complex or mixed chromium iron carbides such as (FeCr) C.
  • the valve may be cast in any suitable mold such as shown in FIG. 2.
  • a silicon sand shell mold has an upper section 30 and a bottom section 32.
  • the upper section has an enlarged top for receiving molten metal.
  • the casting a section of which is shown in FIG. 3, was cooled under the following conditions.
  • a casting having a wall thickness of about .090 was poured in a silicon sand shell mold having a wall thickness of approximately one and one-half times the thickness of the casting.
  • the mold was at room temperature.
  • the metal was poured at about 2750 F.
  • the cooling rate under these conditions, dropped the temperature from the liquidus to the solidus so fast that the metallurgical structure shown in FIG. 3 and described above was formed.
  • the thickness of the metal influences the rate of cooling and this influences the metallurgical structure and properties of the cast metal, not only as cast, but in subsequent treatment. For example a thin section cools faster than a thick section. There is an important and discernible difference in the appearance and properties of the metallurgical structures of two thicknesses as cast. Thin sections can also be machined with a high speed steel tool more easily than thick sections after the subsequent heat treating step described below. Also after final hardening, as disclosed below, a thicker section (slowly cooled) is softer than a thinner section (quickly cooled).
  • test casting having a wall .190 thick as cast, cooled as described above, will have an ultimate hardness of about 60 Rockwell C, whereas one of .160 thickness and cooled as described will have a final hardness of about 63 Rockwell C.
  • FIG. 3 shows a typical structure, which has properly cooled according to my invention.
  • I may affect the cooling in other ways. Since a thick section cools more slowly than a thin section it may be necessary to mold thicker sections in zircon sand, for example, which cools the casting faster than silicon sand. Alternatively chills may be placed in the mold to accelerate the cooling of thick castings or I may use a permanent mold, water cooled. If the metal cools too slowly the casting will not only be too hard, but it cannot be satisfactorily heat treated so as to be machinable.
  • the casting was heat treated as follows. Its temperature was slowly raised from room temperature to about 1600 F. The time required was three hours. It was held at 1600 F. one hour. It was cooled to about 1400 F. during the next 40 minutes. It was cooled to about 1300 F. during the next hour. Total time 5 /3 hours.
  • FIG. 4 shows a casting after this treatment. It shows that the chromium carbides of FIG. 3 have not changed significantly.
  • the interstices or inter-carbide spaces in the previously austenitic matrix are now substantially filled with a dispersion of very small precipitated chromium carbides, having a representative size of the order of about .000018 (18 millionths of an inch).
  • a representative area .0001 square there are about 13 of these very small particles, or about 1300 particles in the .001 square containing about 17 primary carbide particles.
  • the time required is a function of temperature, a lower temperature requiring a longer time. Also the time and temperature of this reheating step infiuences the amount of carbon left in the matrix and so affects the subsequent hardenability of the alloy, when hardened as disclosed below.
  • the valve can be machined easily and economically with high speed steel tools and surprisingly can be ground to the exact final shape and desired dimensions.
  • the groove 16 can be machined in the stem, the stem can be turned and faced, and if desired ground, to final size and the valve head can be faced.
  • the part may be hardened by holding at a temperature above the critical temperature at which the matrix changes back into austenite and Well below the melting point, followed by quenching.
  • the time is a function of temperature, lower temperature requiring longer time.
  • the part may be held at about 1750 F. for about twenty minutes, then oil quenched.
  • FIG. 5 shows a casting which has been cooled, then re-heated, then hardened as above described.
  • the Rockwell C hardness is about 63 to 65.
  • the two sets of chromium carbide particles have remained unchanged.
  • the matrix has been essentially converted to martensite.
  • the part After hardening, the part may be drawn by holding it at a temperature higher than it will ever work in service, for example of about 375 F., for about one hour.
  • the hardness drops about 1 point Rockwell C and the structure is as shown in FIG. 6, with the alloy discussed above.
  • the processes described appear to leave about 1.10% of carbon in the matrix after the first re-heating step (in which the smaller carbide particles are formed). Then when the part is hardened as described, the matrix appears to contain no free carbon and is hardened to have properties resembling those of tool steel or 52100 steel. Measurements of properties of the cast and hardened alloy exceed those of steel. For example, a sample of the preferred alloy, cast and treated as above described showed a transverse bending stress of 693,000 pounds per square inch. From this the modulus of elasticity is calculated at 39,000,000. The modulus for steel is about 29,000,000.
  • Valves having different parts requiring different hardness can be made, in part, of an alloy having the general characteristics described above but being even harder and hence even more Wear resistant.
  • I may use a carbon content of about 3.10% and may use this with a chromium content varying between about 30% and about 35%.
  • This provides an extremely hard, wear resistant material. It is ditficult to machine by cutting tools, and although it is difficult to grind I have found that it affords some of the advantages of the invention.
  • I can machine the stem and grind the face of the valve to finished size with minimum grinding. This is partly due to my improved casting process which permits casting of two different metals within very small tolerances, and confines the extremely hard alloy to a small part. It is also due in part to the unusual dimensional stability of the material. This makes it possible to grind to close tolerances and final size before the hardening step of the manufacturing process described above.
  • the rim 34 of the valve head (the annular part outside the dotted lines) is cast first, and may be formed of the alloy containing 3.10% carbon and 25.7% chromium mentioned above.
  • the remainder of the head and the entire stem may be formed of any of the other alloys disclosed above, such as alloy containing 2.20% carbon and 22.5% chromium, or the lower portion 36 of the stem can be formed of one high-carbon, highchromium alloy while the upper portion 38 of the stem is formed of another high-chromium, high-carbon alloy.
  • a valve .for an internal combustion engine comprising in combination an integrally cast stem and head, at least a part of the head being cast of a first metal, part of the stem being cast of a second and different metal, and the remainder of the stem being cast of a third and different metal, the first and second metals being autogenously joined by a connecting zone which has the properties of a connecting zone which has been formed by pouring molten first metal into a mold, then while the main body of the first metal is molten forming on the surface of the first metal a non-liquid barrier composed of the first metal which prevents the flow of molten metal therethrough, then re-melting the barrier by pouring molten second metal onto the barrier to form a single body of molten metal, and the second and third metals being autogenously joined by a connecting zone which has the properties of a connecting zone which has been formed by :forming on the surface of the second metal, while the second metal is molten, a non-liquid barrier composed of the second metal which prevents the flow of
  • a valve for an internal combustion engine comprising in combination an integrally cast stern and head, at least a part of the head being cast of a first metal, and at least part of the stern being cast of a second and different metal, the first and second metals being autogenously joined by a connecting zone which has the properties of a connecting zone which has been formed by pouring molten first metal into a mold, then while the main body of the first metal is molten forming on the surface of the first metal a non-liquid barrier composed of the first metal which prevents the flow of molten metal therethrough, then re-melting the barrier by pouring molten second metal onto the barrier to form a single body of molten metal and then cooling the molten metal to form a valve, the first metal being an iron alloy containing from about 1.3% to about 3.1% carbon and from about 15% to about 35% chromium with the rest iron, the remaining metal being an iron alloy containing from about 1.7% to about 2.85% carbon and from 15% to about 27% chromium with the rest iron
  • a valve for an internal combustion engine comprising in combination an integrally cast stem and head, at least a part of the head being cast of a first metal, part of the stem being cast of a second and different metal, and the remainder of the stem being cast of a third and different metal, the first and second metals being autogenously joined by a connecting zone, and the second and third metals being autogenously joined by a connecting zone.
  • the first metal being an iron alloy containing from about 1.3% to about 3.1% carbon and from about 15% to about 35 chromium with the rest iron, one of the remaining metals being an iron alloy containing from about 1.7% to about 2.85% carbon and from about 15 to about 27% chromium with the rest iron, the other remaining metal being an iron alloy containing from about 2.2% to about 2.35% carbon and from about 22% to about 27% chromium with the rest iron, each of the iron alloys having a minimum hardness of about 61 Rockwell C and having a relatively small number of relatively large primary chromium carbide particles distributed in a matrix of martensite and having a relatively large number of relatively small precipitated chromium carbide particles distributed throughout the matrix between the large primary carbide particles.
  • a valve for an internal combustion engine comprising in combination an integrally cast stem and head, at least a part of the head being cast of a first metal, and at least part of the stem being cast of a second and different metal, the first and second metals being autogenously joined by a connective zone, the first metal being an iron alloy containing from about 1.3% to about 3.1% carbon and from about 15 to about 35% chromium with the rest iron, the remaining metal being an iron alloy containing from about 1.7% to about 2.85% carbon and from about 15 to about 27% chromium with the rest iron, each of the iron alloys having a minimum hardness of about 61 Rockwell C and having a relatively small number of relatively large primary chromium carbide particles distributed in a matrix of martensite and having a relatively large number of relatively small precipitated chromium carbide particles distributed throughout the matrix between the large primary carbide particles.
  • a valve for an internal combustion engine comprising in combination an integrally cast stem and head, at least a part of the head being cast of a first metal, part of the stem being cast of a second and difierent metal, and the remainder of the stem being cast of a third and different metal, the first and second metals being autogenously joined by a connecting zone, and the second and third metals being autogenously joined by a connecting zone, said zones each being formed of a mixture of the two adjacent metals in which mixture the properties of one metal diminish toward the other metal and the properties of the other metal diminish toward the one metal, the first metal being an iron alloy containing from about 1.3% to about 3.1% carbon and from about 15% to about 35 chromium with the rest iron, one of the remaining metals being an iron alloy containing from about 1.7% to about 2.85% carbon and from about 15% to about 27% chromium with the rest iron, the other remaining metal being an iron alloy containing from about 2.2% to about 2.35% carbon and from about 22% to about 27% chromium With the rest iron,
  • a valve for an internal combustion engine comprising in combination an integrally cast stem and head, at least a part of the head being cast of a first metal, and at least part of the stern being cast of a second and different metal, the first and second metals being autogenously joined by a connecting zone composed of a mixture of the two metals in which mixture the properties of the first metal diminish toward the second metal and the properties of the second metal diminish toward the first metal, the first metal being an iron alloy containing from about 1.3% to about 3.1% carbon and from about 15% to about 35% chromium with the rest iron, the remaining metal being an iron alloy containing from about 1.7% to about 2.85 carbon and from about 15 to about 27% chromium with the rest iron, each of the iron alloys having a minimum hardness of about 61 Rockwell C and having a relatively small number of relatively large primary chromium carbide particles distributed in a matrix of martensite and having a relatively large number of relatively small precipitated chromium carbide particles distributed throughout the matrix between the large primary carbide particles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

pril 28, 1970 E. A. THOMPSON 3,508,529
COMPOSITE VALVE STRUCTURE Filed Feb. 24, 1966 I 2 Sheets-Sheet 1 EARL A THQMPSON J-KZW Attorney P 1970 E. A. THOMPSON 3,508,529
COMPOSITE VALVE STRUCTURE Filed Feb. 24, 1966 2 Sheets-Sheet 2 EARL THOMPSON Attorney United States Patent 3,508,529 COMPOSITE VALVE STRUCTURE Earl A. Thompson, Bloomfield Hills, Mich., assignor to Earl Thompson Manufacturing Co., a corporation of Michigan Filed Feb. 24, 1966, Ser. No. 529,830 Int. Cl. F011 3/02 US. Cl. 123-188 6 Claims ABSTRACT OF THE DISCLOSURE Valves for internal combustion engines have different portions of the valve made of different combinations of high carbon, high chromium alloy containing from about 1.3% to about 3.1% carbon, from about 15% to about 35% chromium with the remainder iron, with or without up to about 3.5% silicon, manganese and other residuals. After each alloy is cast, it is cooled so quickly that a relatively small number of relatively large primary chromium carbide particles are formed and widely dispersed in a matrix of austenite containing a solid solution of chromium and carbon. Then large numbers of relatively small particles of chromium carbides are precipitated from the matrix and distributed throughout the spaces between the large primary carbon particles leaving the remainder of the matrix containing carbon and susceptible to subsequent hardening. Then the casting is hardened by heating and subsequent quenching by such temperature and at such time that the matrix is substantially converted to martensite without significantly changing the carbide particles. The joints between the diiferent parts of the valve are made by forming a solid skin over previously poured metal, then remelting the skin by pouring another metal on the skin to form a single mass of molten metal having different portions of diiferent compositions.
This invention relates to internal combustion engine valves made of improved high-chromium, high-carbon, iron alloys.
This invention is based in part on my discovery that greatly improved valves can be cast of particular highchromium, high-carbon, iron alloys which can be treated to provide a surprisingly easily machinable casting which can be processed further to give surprising hardness and resistance both to wear and corrosion. The valve is surprisingly stable as to dimension so that it can be machined with customary cutting tools and can be ground to precisely finished size and shape before hardening. Such alloys so treated make surprisingly long lasting, corrosion free, dimensionally stable valves. They are particularly economical and easy to make.
Accordingly one of the objects of my invention is to provide an improved valve which is easily machinable at one stage of its manufacture, and after hardening is highly resistant to wear and corrosion and is dimensionally stable.
Another object is to provide a valve which can be economically made by conventional processes and which has improved dimensional stability.
Another object is to provide an improved process for making precision valves of high resistance to corrosion and wear.
Other objects and advantages of the invention will be understood from the following description and from the annexed drawings in which FIG. 1 is a cross section of a portion of an internal combustion engine showing a valve to which my invention is particularly suitable.
FIG. 2 is an enlarged cross section of a portion of a 3,503,529 Patented Apr. 28, 1970 valve being cast in a mold suitable for casting according to my invention.
FIG. 3 is a photograph of a polished and etched section of a portion of a casting made of an alloy embodying one form of my invention. This photograph is of metal in the condition as cast, and is magnified about 1495 times. The scale line approximately 4; of an inch long at the bottom of the photograph represents one ten thousandths of an inch (.0001
FIG. 4 is a photograph corresponding to FIG. 3 of the same alloy after a subsequent heat treatment.
FIG. 5 is a photograph corresponding to FIG. 3 of the same metal after subsequent hardening.
FIG. 6 is a photograph corresponding to FIG. 3 of the same metal after drawing following hardening.
Referring to FIG. 1, 10 designates an engine having a valve 12 which is reciprocated in a bushing or guide 14 pressed in a bore in the engine. The valve stem may have a groove 16 for a spring retainer 18.
My improved valve is cast and one material of which I make some or all of the parts of the valve is a highcarbon, high-chromium, iron alloy containing about 2.20% carbon and about 22.5% chromium. This alloy may also contain about 1.60% silicon and about .90% manganese. The silicon may be added to make the alloy easier to pour. The manganese combines with any sulphur which may be present in the material of which the alloy is made. Also the manganese may improve the hardenability of the matrix of the alloy upon subsequent quenching. Ordinarily such alloys are made from available ingredients including scrap or pig iron of uncertain analysis so that the resulting alloy may contain residual quantities of copper, nickel, molybdenum and other metals. As one example an analysis showed that one batch of my preferred alloy contained 2.20% carbon, 1.60% silicon, .90% manganese, 22.5% chromium, and residuals of .25 copper, .31% nickel and .17% molybdenum.
The silicon, manganese and the residuals amount to about 3.25% and I believe that these do not importantly affect the final metallurgical structure, for the purpose of my invention. Consequently alloys containing them come within my definition of an alloy having stated ranges of carbon and chromium, and having the remainder iron.
I have discovered that alloys of the composition mentioned above, or of the ranges of composition disclosed herein, can be given a new and improved metallurgical structure by cooling quickly after pouring, and that this new metallurgical structure can be treated to provide new, surprising and very desirable properties. As one example a melt having the proportions of ingredients to provide the alloy of the composition set forth above was poured at about 2750 F. This particular alloy has a liquidus temperature of about 2399 F. and a solidus temperature of 2270 F., as determined by the Leeds and Northrup carbon determinator.
FIG. 3 is a photograph of a section of a part which has been cast of the above alloy according to my invention. The temperature of the metal has been reduced from the liquidus to the solidus so quickly that two things have happened. One is that the usual formation of primary chromium carbide particles has been arrested, so that the chromium carbide particles formed are fewer in number and smaller than they would be if the metal had cooled slowly. Evidence of this is that the matrix has remained essentially non-magnetic austenite. If the casting had cooled slowly, austenite would not be formed. The other thing that has happened is that the matrix contains large amounts of chromium and carbon in solid solution. Evidence of this is the subsequent formation of very fine chromium carbide particles during subsequent heat treatment. If the casting had cooled slowly the car- 3 bon and chromium now remaining in solution would have precipitated out as primary carbides. The primary chromium carbides shown in FIG. 3 are very small, much smaller than if the metal had cooled slowly, and they are more widely dispersed. The largest primary carbide particle visible in FIG. 3, measured in inches is about .00135 long, and in a representative area .001 square there are about 17 primary carbide particles. The large dark particles shown are what is generally called chromium carbides. Among such chromium carbides Cr C and Cr C have been identified. It is also possible for iron to replace some of the chromium to form complex or mixed chromium iron carbides such as (FeCr) C. All of these come within the definition of chromium carbides as that term is generally understood and used herein. The spaces, relatively large with reference to the carbides, are austenite and substantially non-magnetic. The hardness of the alloy as cast is about 44 Rockwell C.
The valve may be cast in any suitable mold such as shown in FIG. 2. A silicon sand shell mold has an upper section 30 and a bottom section 32. The upper section has an enlarged top for receiving molten metal.
The casting, a section of which is shown in FIG. 3, was cooled under the following conditions.
A casting having a wall thickness of about .090 was poured in a silicon sand shell mold having a wall thickness of approximately one and one-half times the thickness of the casting. The mold was at room temperature. The metal was poured at about 2750 F. The cooling rate, under these conditions, dropped the temperature from the liquidus to the solidus so fast that the metallurgical structure shown in FIG. 3 and described above was formed.
I have found that faster cooling forms even smaller and fewer primary chromium carbide particles and slower cooling forms more and larger primary carbides. The thickness of the metal influences the rate of cooling and this influences the metallurgical structure and properties of the cast metal, not only as cast, but in subsequent treatment. For example a thin section cools faster than a thick section. There is an important and discernible difference in the appearance and properties of the metallurgical structures of two thicknesses as cast. Thin sections can also be machined with a high speed steel tool more easily than thick sections after the subsequent heat treating step described below. Also after final hardening, as disclosed below, a thicker section (slowly cooled) is softer than a thinner section (quickly cooled). For example a test casting having a wall .190 thick as cast, cooled as described above, will have an ultimate hardness of about 60 Rockwell C, whereas one of .160 thickness and cooled as described will have a final hardness of about 63 Rockwell C.
The important thing is that the temperature of the metal must be reduced from the liquidus to the solidus soquickly that only relatively small numbers of very small chromium carbides can form, and that they will be formed in an austenite matrix which has large intercarbide spaces in which larger numbers of still smaller chromium carbides can be precipitated upon re-heating, while leaving the matrix containing carbon and in a condition which can be hardened. FIG. 3 shows a typical structure, which has properly cooled according to my invention.
I may affect the cooling in other ways. Since a thick section cools more slowly than a thin section it may be necessary to mold thicker sections in zircon sand, for example, which cools the casting faster than silicon sand. Alternatively chills may be placed in the mold to accelerate the cooling of thick castings or I may use a permanent mold, water cooled. If the metal cools too slowly the casting will not only be too hard, but it cannot be satisfactorily heat treated so as to be machinable.
After cooling the casting was heat treated as follows. Its temperature was slowly raised from room temperature to about 1600 F. The time required was three hours. It was held at 1600 F. one hour. It was cooled to about 1400 F. during the next 40 minutes. It was cooled to about 1300 F. during the next hour. Total time 5 /3 hours.
FIG. 4 shows a casting after this treatment. It shows that the chromium carbides of FIG. 3 have not changed significantly. The interstices or inter-carbide spaces in the previously austenitic matrix are now substantially filled with a dispersion of very small precipitated chromium carbides, having a representative size of the order of about .000018 (18 millionths of an inch). In a representative area .0001 square there are about 13 of these very small particles, or about 1300 particles in the .001 square containing about 17 primary carbide particles. Thus although the primary chromium carbides in FIG. 3 are very small (a large one being of the order of a thousandth of an inch long) they are of the order of from 50 to times as large as the smaller carbides formed in the re-heating process. The hardness after re-heating was from 27 to 33 Rockwell C.
I do not know the exact nature of the matrix after reheating, shown in FIG. 4. It is magnetic. It contains carbon, so that it can be hardened by subsequent heat treatment which appears to convert the matrix essentially to martensite having properties typical of tool steel.
In the foregoing heat treatment the time required is a function of temperature, a lower temperature requiring a longer time. Also the time and temperature of this reheating step infiuences the amount of carbon left in the matrix and so affects the subsequent hardenability of the alloy, when hardened as disclosed below.
This particular combination of carbide particles and the characters of the matrix in the two conditions appear to make possible the machinability at one stage of my invention and the hardness at a subsequent stage, combined with the surprising dimensional stability and other properties I have observed.
After the foregoing re-heating treatment the valve can be machined easily and economically with high speed steel tools and surprisingly can be ground to the exact final shape and desired dimensions. For example the groove 16 can be machined in the stem, the stem can be turned and faced, and if desired ground, to final size and the valve head can be faced.
Thereafter the part may be hardened by holding at a temperature above the critical temperature at which the matrix changes back into austenite and Well below the melting point, followed by quenching. The time is a function of temperature, lower temperature requiring longer time. For example the part may be held at about 1750 F. for about twenty minutes, then oil quenched. FIG. 5 shows a casting which has been cooled, then re-heated, then hardened as above described. The Rockwell C hardness is about 63 to 65. The two sets of chromium carbide particles have remained unchanged. The matrix has been essentially converted to martensite. I find that this hardening step changes the size of the part so slightly that in the case of articles which are acceptable within tolerances as large as .0001 (one hundred millionths) of an inch, I can grind to final size before hardening. This is of great advantage in manufacturing.
After hardening, the part may be drawn by holding it at a temperature higher than it will ever work in service, for example of about 375 F., for about one hour. The hardness drops about 1 point Rockwell C and the structure is as shown in FIG. 6, with the alloy discussed above.
The advantages of the invention are realized while varying the proportions of the ingredients of the alloy within the limits stated herein. For example I may use carbon up to 2.35% and chromium up to 27.00% without significantly changing, for the purposes of the invention, the characteristics of the alloy from those of the preferred analysis given above.
Increasing the proportion of carbon within certain critical limits tends to increase the final hardness and hence wear resistance of the article. More carbon is required in articles having a thick section, because due to slower cooling, more carbon is combined with chromium, which has a very high affinity for carbon. If more carbon were not used, the matrix would be so depleted that it could not be hardened satisfactorily. More carbon than about 2.95% appears to render the article impractically ditficult to machine although in some instances I can use up to about 3.10% carbon, particularly with high percentages of chromium. Increasing the proportion of chromium within a wider range of critical limits tends to increase the corrosion resistance and reduction of the chromium content below about appears to reduce the corrosion resistance undesirably. Increasing the proportion of chromium beyond about 30% appears to have no important effect on either wear or corrosion resistance, except With very high carbon percentages (above 3.10% for example) and increase of chromium beyond about 35% appears to have no advantage and may even be undesirable. There is a desirable relationship between the amounts of carbon and chromium to have the desired effects because one part carbon will combine with about ten parts chromium. Therefore higher proportions of chromium require higher percentages of carbon so as to leave in the matrix, after the re-heating step, enough carbon not combined with chromium, to harden the matrix satisfactorily in the hardening step discussed above.
For example with my preferred alloy first mentioned, the processes described appear to leave about 1.10% of carbon in the matrix after the first re-heating step (in which the smaller carbide particles are formed). Then when the part is hardened as described, the matrix appears to contain no free carbon and is hardened to have properties resembling those of tool steel or 52100 steel. Measurements of properties of the cast and hardened alloy exceed those of steel. For example, a sample of the preferred alloy, cast and treated as above described showed a transverse bending stress of 693,000 pounds per square inch. From this the modulus of elasticity is calculated at 39,000,000. The modulus for steel is about 29,000,000.
Many of the advantages of the invention are present in a range of carbon between 1.70% and 2.85% while using a range of chromium between 15 and 27%.
Valves having different parts requiring different hardness can be made, in part, of an alloy having the general characteristics described above but being even harder and hence even more Wear resistant. In such case I may use a carbon content of about 3.10% and may use this with a chromium content varying between about 30% and about 35%. This provides an extremely hard, wear resistant material. It is ditficult to machine by cutting tools, and although it is difficult to grind I have found that it affords some of the advantages of the invention. By confining this material to the face of the head, for example, I can machine the stem and grind the face of the valve to finished size with minimum grinding. This is partly due to my improved casting process which permits casting of two different metals within very small tolerances, and confines the extremely hard alloy to a small part. It is also due in part to the unusual dimensional stability of the material. This makes it possible to grind to close tolerances and final size before the hardening step of the manufacturing process described above.
An example of such composite value is shown in FIG. 2 and in my copending application for US. Patent Ser. No. 221,115 filed Sept. 4, 1962, and in my British Patent No. 991,513 published May 12, 1965 the disclosures of which are incorporated herein by reference with the same effect as if quoted herein.
In such case the rim 34 of the valve head (the annular part outside the dotted lines) is cast first, and may be formed of the alloy containing 3.10% carbon and 25.7% chromium mentioned above. The remainder of the head and the entire stem may be formed of any of the other alloys disclosed above, such as alloy containing 2.20% carbon and 22.5% chromium, or the lower portion 36 of the stem can be formed of one high-carbon, highchromium alloy while the upper portion 38 of the stem is formed of another high-chromium, high-carbon alloy.
Where such composite two-metal or three-metal valve is made the separate metals are autogenously joined at bonding Zones 40 formed by the process disclosed in my application and British patent referred to.
I have successfully cast articles of the character described having unusually high resistance to corrosion and wear and having exceptional dimensional stability of the alloys having the following analyses.
C Si Cu Mn C1 N 1 Mo I claim as my invention:
1. A valve .for an internal combustion engine comprising in combination an integrally cast stem and head, at least a part of the head being cast of a first metal, part of the stem being cast of a second and different metal, and the remainder of the stem being cast of a third and different metal, the first and second metals being autogenously joined by a connecting zone which has the properties of a connecting zone which has been formed by pouring molten first metal into a mold, then while the main body of the first metal is molten forming on the surface of the first metal a non-liquid barrier composed of the first metal which prevents the flow of molten metal therethrough, then re-melting the barrier by pouring molten second metal onto the barrier to form a single body of molten metal, and the second and third metals being autogenously joined by a connecting zone which has the properties of a connecting zone which has been formed by :forming on the surface of the second metal, while the second metal is molten, a non-liquid barrier composed of the second metal which prevents the flow of molten metal therethrough, then re-melting the second barrier by pouring molten third metal onto the barrier to form a single body of molten metal throughout the valve, and then cooling the molten metal to form a valve, the first metal being an iron alloy containing from about 1.3% to about 3.1% carbon and from about 15% to about 35% chromium with the rest iron, one of the remaining metals being an iron alloy containing :from about 1.7% to about 2.85% carbon and from about 15 to about 27% chromium with the rest iron, the other remaining metal being an iron alloy containing from about 2.2% to about 2.35% carbon and from about 22% to about 27% chromium with the rest iron, each of the iron alloys having a minimum hardness of about 61 Rockwell C and having a relatively small number of relatively large primary chromium carbide particles distributed in a matrix of martensite and having a relatively large number of relatively small precipitated chromium carbide particles distributed throughout the matrix between the large primary carbide particles.
2. A valve for an internal combustion engine comprising in combination an integrally cast stern and head, at least a part of the head being cast of a first metal, and at least part of the stern being cast of a second and different metal, the first and second metals being autogenously joined by a connecting zone which has the properties of a connecting zone which has been formed by pouring molten first metal into a mold, then while the main body of the first metal is molten forming on the surface of the first metal a non-liquid barrier composed of the first metal which prevents the flow of molten metal therethrough, then re-melting the barrier by pouring molten second metal onto the barrier to form a single body of molten metal and then cooling the molten metal to form a valve, the first metal being an iron alloy containing from about 1.3% to about 3.1% carbon and from about 15% to about 35% chromium with the rest iron, the remaining metal being an iron alloy containing from about 1.7% to about 2.85% carbon and from 15% to about 27% chromium with the rest iron, each of the iron alloys having a minimum hardness of about 61 Rockwell C and having a relatively small number of relatively large primary chromium carbide particles distributed in a matrix of martensite and having a relatively large number of relatively small precipitated chromium carbide particles distributed throughout the matrix between the large primary carbide particles.
3. A valve for an internal combustion engine comprising in combination an integrally cast stem and head, at least a part of the head being cast of a first metal, part of the stem being cast of a second and different metal, and the remainder of the stem being cast of a third and different metal, the first and second metals being autogenously joined by a connecting zone, and the second and third metals being autogenously joined by a connecting zone. The first metal being an iron alloy containing from about 1.3% to about 3.1% carbon and from about 15% to about 35 chromium with the rest iron, one of the remaining metals being an iron alloy containing from about 1.7% to about 2.85% carbon and from about 15 to about 27% chromium with the rest iron, the other remaining metal being an iron alloy containing from about 2.2% to about 2.35% carbon and from about 22% to about 27% chromium with the rest iron, each of the iron alloys having a minimum hardness of about 61 Rockwell C and having a relatively small number of relatively large primary chromium carbide particles distributed in a matrix of martensite and having a relatively large number of relatively small precipitated chromium carbide particles distributed throughout the matrix between the large primary carbide particles.
4. A valve for an internal combustion engine comprising in combination an integrally cast stem and head, at least a part of the head being cast of a first metal, and at least part of the stem being cast of a second and different metal, the first and second metals being autogenously joined by a connective zone, the first metal being an iron alloy containing from about 1.3% to about 3.1% carbon and from about 15 to about 35% chromium with the rest iron, the remaining metal being an iron alloy containing from about 1.7% to about 2.85% carbon and from about 15 to about 27% chromium with the rest iron, each of the iron alloys having a minimum hardness of about 61 Rockwell C and having a relatively small number of relatively large primary chromium carbide particles distributed in a matrix of martensite and having a relatively large number of relatively small precipitated chromium carbide particles distributed throughout the matrix between the large primary carbide particles.
5. A valve for an internal combustion engine comprising in combination an integrally cast stem and head, at least a part of the head being cast of a first metal, part of the stem being cast of a second and difierent metal, and the remainder of the stem being cast of a third and different metal, the first and second metals being autogenously joined by a connecting zone, and the second and third metals being autogenously joined by a connecting zone, said zones each being formed of a mixture of the two adjacent metals in which mixture the properties of one metal diminish toward the other metal and the properties of the other metal diminish toward the one metal, the first metal being an iron alloy containing from about 1.3% to about 3.1% carbon and from about 15% to about 35 chromium with the rest iron, one of the remaining metals being an iron alloy containing from about 1.7% to about 2.85% carbon and from about 15% to about 27% chromium with the rest iron, the other remaining metal being an iron alloy containing from about 2.2% to about 2.35% carbon and from about 22% to about 27% chromium With the rest iron, each of the iron alloys having a minimum hardness of about 61 Rockwell C and having a relatively small number of relatively large primary chromium carbide particles distributed in a matrix of martensite and having a relatively large number of relatively small precipitated chromium carbide particles distributed throughout the matrix between the large primary carbide particles.
6. A valve for an internal combustion engine comprising in combination an integrally cast stem and head, at least a part of the head being cast of a first metal, and at least part of the stern being cast of a second and different metal, the first and second metals being autogenously joined by a connecting zone composed of a mixture of the two metals in which mixture the properties of the first metal diminish toward the second metal and the properties of the second metal diminish toward the first metal, the first metal being an iron alloy containing from about 1.3% to about 3.1% carbon and from about 15% to about 35% chromium with the rest iron, the remaining metal being an iron alloy containing from about 1.7% to about 2.85 carbon and from about 15 to about 27% chromium with the rest iron, each of the iron alloys having a minimum hardness of about 61 Rockwell C and having a relatively small number of relatively large primary chromium carbide particles distributed in a matrix of martensite and having a relatively large number of relatively small precipitated chromium carbide particles distributed throughout the matrix between the large primary carbide particles.
References Cited UNITED STATES PATENTS 1,245,552 11/1917 Becket -126 1,393,726 10/1921 Pfanstiehl 123188 1,582,883 4/1926 Rich 123-90 1,956,014 4/1934 Fink et a1 123188 2,015,991 10/1935 Breeler 123188 2,127,245 8/1938 Breeler 123188 2,199,096 4/1940 Berglund 148-35 X 2,773,761 12/1956 Fugua et al 14835 X OTHER REFERENCES Chromium in Cast Iron, Electro-Metallurgical C0., 1939, relied on pages 29-37 and 42.
Alloys of Iron and Chromium, vol. H, Kinzel et al., 1940, McGraw-Hill Co., Inc., New York, relied on pages 182, 183, 230235, 244-249 and 258.
Metal Progress, October 1940, Reference Issue, p. 470.
CHARLES N. LOVELL, Primary Examiner
US529830A 1966-02-24 1966-02-24 Composite valve structure Expired - Lifetime US3508529A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US52983066A 1966-02-24 1966-02-24

Publications (1)

Publication Number Publication Date
US3508529A true US3508529A (en) 1970-04-28

Family

ID=24111413

Family Applications (1)

Application Number Title Priority Date Filing Date
US529830A Expired - Lifetime US3508529A (en) 1966-02-24 1966-02-24 Composite valve structure

Country Status (1)

Country Link
US (1) US3508529A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0233405A1 (en) * 1985-12-24 1987-08-26 Ford Motor Company Limited Method of making titanium engine valves
USH1869H (en) * 1998-12-18 2000-10-03 Caterpillar Inc. Valve train components having an oxidation and corrosion-resistant thermal spray coating

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1245552A (en) * 1916-04-10 1917-11-06 Electro Metallurg Co Alloy.
US1393726A (en) * 1917-02-08 1921-10-11 Pfanstiehl Company Inc Puppet-valve
US1582883A (en) * 1925-06-08 1926-04-27 George R Rich Valve tappet and like article
US1956014A (en) * 1924-11-22 1934-04-24 Chemical Treat Company Inc Wearing part for internal combustion engines
US2015991A (en) * 1935-01-04 1935-10-01 Ludlum Steel Co Alloy steel for internal combustion engine valves and associated parts
US2127245A (en) * 1935-07-19 1938-08-16 Ludlum Steel Co Alloy
US2199096A (en) * 1937-04-30 1940-04-30 Sandvikens Jernverks Ab Alloy steel
US2773761A (en) * 1954-01-08 1956-12-11 Calumet Steel Castings Corp Ferrous chrome alloy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1245552A (en) * 1916-04-10 1917-11-06 Electro Metallurg Co Alloy.
US1393726A (en) * 1917-02-08 1921-10-11 Pfanstiehl Company Inc Puppet-valve
US1956014A (en) * 1924-11-22 1934-04-24 Chemical Treat Company Inc Wearing part for internal combustion engines
US1582883A (en) * 1925-06-08 1926-04-27 George R Rich Valve tappet and like article
US2015991A (en) * 1935-01-04 1935-10-01 Ludlum Steel Co Alloy steel for internal combustion engine valves and associated parts
US2127245A (en) * 1935-07-19 1938-08-16 Ludlum Steel Co Alloy
US2199096A (en) * 1937-04-30 1940-04-30 Sandvikens Jernverks Ab Alloy steel
US2773761A (en) * 1954-01-08 1956-12-11 Calumet Steel Castings Corp Ferrous chrome alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0233405A1 (en) * 1985-12-24 1987-08-26 Ford Motor Company Limited Method of making titanium engine valves
USH1869H (en) * 1998-12-18 2000-10-03 Caterpillar Inc. Valve train components having an oxidation and corrosion-resistant thermal spray coating

Similar Documents

Publication Publication Date Title
US3502058A (en) Rocker arm
US3926622A (en) Pitting resisting alloy steels
JPS63303030A (en) Locker arm
US3690958A (en) Rocker arm
US7628870B2 (en) Heat treated valve guide and method of making
KR19990007370A (en) Composite Rolling Roll with Excellent Thermal Shock Resistance
US3690957A (en) Camshaft
US3508529A (en) Composite valve structure
US3384515A (en) Process of preparing improved cast iron articles
US4395284A (en) Abrasion resistant machinable white cast iron
US3690956A (en) Valve
KR890002609B1 (en) Method for making pitting resistant cast iron product
JP3381812B2 (en) Casting mold or molten metal material with excellent erosion resistance
US3690959A (en) Alloy,article of manufacture,and process
US3502057A (en) Alloy,article of manufacture,and process
US3853545A (en) Cast alloy for valve seat insert
US1941648A (en) Ferrous alloy
US3501976A (en) Camshaft
KR0138010B1 (en) Cast iron slide member
US4853049A (en) Nitriding grade alloy steel article
JPH03254342A (en) Manufacture of raw material for bearing having excellent service life to rolling fatigue
US4032334A (en) Tappet metallurgy
JPS6164804A (en) Sliding member for valve system and its production
US2214652A (en) Iron alloy
KR930006291B1 (en) Manufacture of sliding member made or cast iron