USH1869H - Valve train components having an oxidation and corrosion-resistant thermal spray coating - Google Patents

Valve train components having an oxidation and corrosion-resistant thermal spray coating Download PDF

Info

Publication number
USH1869H
USH1869H US09/216,160 US21616098A USH1869H US H1869 H USH1869 H US H1869H US 21616098 A US21616098 A US 21616098A US H1869 H USH1869 H US H1869H
Authority
US
United States
Prior art keywords
valve train
engine valve
train component
depositing
making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/216,160
Inventor
Brad Beardsley
Christine K. Jones
Karen R. Raab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Caterpillar Inc
Original Assignee
Caterpillar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caterpillar Inc filed Critical Caterpillar Inc
Priority to US09/216,160 priority Critical patent/USH1869H/en
Application granted granted Critical
Publication of USH1869H publication Critical patent/USH1869H/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • F01L3/04Coated valve members or valve-seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials

Definitions

  • This invention relates generally to the field of internal combustion engines, and more particularly to improved wear resistance of valve train components.
  • Engine exhaust valves control the intake of an air-fuel mixture and the discharge of spent gas in the combustion chamber.
  • Each engine valve includes a valve head and a valve stem extending therefrom.
  • the valve head is located within the combustion chamber. Cycles of tight engagement and separation are repeated between a valve seat insert snuggly fitted in a cylinder head and a contact face on the valve head.
  • the engine valve is required to be resistant to heat, corrosion, and wear because it is exposed to elevated temperatures of 700° C. to 800° C. in a combustion chamber and subjected to repetitive collision against the valve seat insert.
  • today's engines are pushed to operate at higher temperatures, higher peak cylinder pressures, more corrosive environments and highly variable fuel types and quality.
  • the present invention is directed to overcoming one or more of the problems set forth above.
  • a method of making an engine valve train component having a protective coating comprising the steps of: grit blasting the face of the valve component; selecting an oxidation and corrosion-resistant coating material having the general formula MCrAlY; depositing the oxidation and corrosion-resistant coating material onto the face of the valve component; cooling the valve component during the deposition; thereafter grinding the face to finish dimensions; and thereby making an engine valve train component with an oxidation and corrosion-resistant coating on its face.
  • an engine valve train component having a protective coating material including: an oxidation and corrosion-resistant, thermal spray deposited coating at the face of the valve component; and said coating having the general formula MCrAlY.
  • FIG. 1 is a view, partly elevational and partly sectional, of an engine valve including a valve head seated in a valve seat;
  • FIG. 2 is a fragmentary cross-section on a larger scale than FIG. 1 and showing the protective coating on a contact face and a valve seat face.
  • An engine valve generally designated 10, includes a head 12 which has a stem 14 and a contact face 16.
  • a valve opening 18 is formed by a valve seat insert 20 fitted into the engine block 24.
  • the insert 20 has a valve seat face 22 against which the contact face 16 fits in gas-sealing engagement.
  • a relatively thin protective coating 30 is on either face 16 or 22, or both.
  • the protective coating 30 is an oxidation and corrosion-resistant coating. This coating is thermal spray deposited via a process of: degreasing the valve component 12 or 20; grit blasting a face 16 or 22 at about 100 psi using aluminum oxide having a size less than about 1.7mm; subsequently degreasing the valve component; depositing an oxidation and corrosion-resistant coating 30 at least about 0.015" thick onto the face 16 or 22; cooling the valve component 12 or 20 during the deposition using auxiliary air; thereafter finish grinding the coating 30 of the valve component to finish dimensions with about 0.010" coating thickness.
  • High Velocity Oxygen Fuel This is a combustion process where oxygen is mixed with a fuel gas in a specified ratio and ignited.
  • the exhaust gas is accelerated toward a substrate using a converging/diverging nozzle, achieving velocities of 4500 ft/s.
  • Powder metals or cermets with a particle size distribution from about 11-44 ⁇ m are injected generally axially into the gas stream, become molten and are propelled toward the contact face 16 and/or the valve seat face 22.
  • Valve seat faces 22 are sprayed at around a 90 degree angle to a thickness of approximately 0.015-0.020".
  • the high particle velocities contribute to the high mechanical bond strengths and high densities of HVOF coatings.
  • the valve component 10 and/or 20 is cooled with auxiliary air, and thereafter the coating 30 is finish ground to print dimensions, with approximately 0.010" final coating thickness, as described above.
  • Table I indicates several applicable materials for coating 30.
  • HVOF processing parameters for Sulzer Metco HVOF equipment are included in Table II.
  • Table III indicates corrosion test results compared to current production valve materials.
  • the material selected for the coating 30 has the general formula MCrAlY.
  • the NiCrAlY-A generally is about 76.17% by weight nickel; 16.80% by weight chromium; 6.25% by weight aluminum; and 0.68% by weight yttrium.
  • NiCrAlY-B generally is about 56.69% by weight nickel; 31.07% by weight chromium; 11.26% by weight aluminum; 0.01% by weight carbon; and 0.71% by weight yttrium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Today's engines are pushed to operate at higher temperatures, higher peak cylinder pressures, in more corrosive environments and with highly variable fuel types and qualities. A solution to guttering is an oxidation and corrosion-resistant coating with a general turn MCrAlY applied to the face of the engine valve train components by thermal spray coating.

Description

TECHNICAL FIELD
This invention relates generally to the field of internal combustion engines, and more particularly to improved wear resistance of valve train components.
BACKGROUND ART
Engine exhaust valves control the intake of an air-fuel mixture and the discharge of spent gas in the combustion chamber. Each engine valve includes a valve head and a valve stem extending therefrom. The valve head is located within the combustion chamber. Cycles of tight engagement and separation are repeated between a valve seat insert snuggly fitted in a cylinder head and a contact face on the valve head. The engine valve is required to be resistant to heat, corrosion, and wear because it is exposed to elevated temperatures of 700° C. to 800° C. in a combustion chamber and subjected to repetitive collision against the valve seat insert. Furthermore, today's engines are pushed to operate at higher temperatures, higher peak cylinder pressures, more corrosive environments and highly variable fuel types and quality.
Observation of the failed valves has shown that failure appears to result from two separate and distinct modes: (i) corrosive attack that leads to guttering and (ii) radial cracking along the valve face. Guttering tends to predominate in engines burning diesel fuel; whereas radial cracking is generally observed in gas-burning engines, where engine temperatures are typically higher. Guttering in diesel engines is primarily an oxidation phenomenon along the contact face that is accelerated by the presence of deposits. These deposits, which strongly adhere to the contact face, are formed by the combustion of additives in a lubrication enhancing oil. The oxidized region is inherently brittle and erodes away during repeated cyclic loading during operation. The erosion process accelerates in an avalanche effect until engine performance degrades to the point of failure.
The root cause of radial cracking of valves in gas-burning engines appears to be related in part to the residual stresses associated with a hardfacing weldment. The higher the operating temperatures vis-a-vis diesel engines suggest that high-temperature fatigue initiating at the hardfacing/head interface could also play a role.
The wear resistance problems of engine exhaust valves described above may be addressed by hardfacing or manufacturing engine exhaust valves with a base material that is comprised of the components of the present invention. However, such alternatives would be very expensive.
The present invention is directed to overcoming one or more of the problems set forth above.
DISCLOSURE OF THE INVENTION
In accordance with the present invention there is provided a method of making an engine valve train component having a protective coating, comprising the steps of: grit blasting the face of the valve component; selecting an oxidation and corrosion-resistant coating material having the general formula MCrAlY; depositing the oxidation and corrosion-resistant coating material onto the face of the valve component; cooling the valve component during the deposition; thereafter grinding the face to finish dimensions; and thereby making an engine valve train component with an oxidation and corrosion-resistant coating on its face.
In accordance with another aspect of the invention there is provided an engine valve train component having a protective coating material including: an oxidation and corrosion-resistant, thermal spray deposited coating at the face of the valve component; and said coating having the general formula MCrAlY.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a view, partly elevational and partly sectional, of an engine valve including a valve head seated in a valve seat; and
FIG. 2 is a fragmentary cross-section on a larger scale than FIG. 1 and showing the protective coating on a contact face and a valve seat face.
BEST MODE FOR CARRYING OUT THE INVENTION
An engine valve, generally designated 10, includes a head 12 which has a stem 14 and a contact face 16. A valve opening 18 is formed by a valve seat insert 20 fitted into the engine block 24. The insert 20 has a valve seat face 22 against which the contact face 16 fits in gas-sealing engagement. A relatively thin protective coating 30 is on either face 16 or 22, or both.
The protective coating 30 is an oxidation and corrosion-resistant coating. This coating is thermal spray deposited via a process of: degreasing the valve component 12 or 20; grit blasting a face 16 or 22 at about 100 psi using aluminum oxide having a size less than about 1.7mm; subsequently degreasing the valve component; depositing an oxidation and corrosion-resistant coating 30 at least about 0.015" thick onto the face 16 or 22; cooling the valve component 12 or 20 during the deposition using auxiliary air; thereafter finish grinding the coating 30 of the valve component to finish dimensions with about 0.010" coating thickness.
To achieve low porosity, the deposition is by a high particle velocity spray device. One such device is generically termed High Velocity Oxygen Fuel (HVOF). This is a combustion process where oxygen is mixed with a fuel gas in a specified ratio and ignited. In this embodiment, the exhaust gas is accelerated toward a substrate using a converging/diverging nozzle, achieving velocities of 4500 ft/s. Powder metals or cermets with a particle size distribution from about 11-44 μm are injected generally axially into the gas stream, become molten and are propelled toward the contact face 16 and/or the valve seat face 22. Valve seat faces 22 are sprayed at around a 90 degree angle to a thickness of approximately 0.015-0.020". The high particle velocities contribute to the high mechanical bond strengths and high densities of HVOF coatings. During the process, the valve component 10 and/or 20 is cooled with auxiliary air, and thereafter the coating 30 is finish ground to print dimensions, with approximately 0.010" final coating thickness, as described above.
Table I indicates several applicable materials for coating 30.
                                  TABLE I                                 
__________________________________________________________________________
Material                                                                  
       Mftr Name                                                          
               Fe Ni Cr Ti Al C  Nb Y  Co                                 
__________________________________________________________________________
NiCrAlY--B                                                                
       Amdry 961                                                          
               -- 76.17                                                   
                     16.8                                                 
                        -- 6.25                                           
                              -- -- 0.68                                  
                                       --                                 
NiCrAlY--A                                                                
        Amdry 964                                                         
                    56.69                                                 
                        31.07                                             
                         --                                               
                            11.26                                         
                                 --.01                                    
                                      0.71                                
                                            --                            
CrC--NiCr                                                                 
         Diamaloy 3006                                                    
                 --                                                       
                    41                                                    
                            --                                            
                               7      ----                                
                                        --                                
CrC--NiCr                                                                 
         Diamalloy 3007                                                   
                --                                                        
                    16                                                    
                            --                                            
                                      ---                                 
                                            --                            
TiAl          TiAl                                                        
                    -- --                                                 
                     2        47                                          
                                 --                                       
                                 2          --                            
FrCrAlY                                                                   
                70                                                        
                                           25                             
CoCrAlY                                                                   
                                             73.5                         
NiCoCrAlY                                                                 
                     18 46.2                                              
                                             23                           
__________________________________________________________________________
HVOF processing parameters for Sulzer Metco HVOF equipment are included in Table II.
                                  TABLE II                                
__________________________________________________________________________
      Oxygen                                                              
          Oxygen                                                          
               Propylene                                                  
                    Propylene                                             
                         Air Air Flow                                     
                                  Nitrogen                                
                                       Powder                             
           Flow Rate                                                      
                 Presure                                                  
                       Flow Rate                                          
                         Pressure                                         
                              Rate                                        
                                          Feed Rate                       
Material                                                                  
         (PSI)                                                            
           (SCFH)                                                         
                    (PSI)                                                 
                       (SCFH)                                             
                         (PSI)                                            
                                (SCFH)                                    
                                      (PSI)                               
                                           (3/min)                        
__________________________________________________________________________
CrC--NiCr                                                                 
      150 606  100  167  75  805  175  38                                 
NiCrAlY                                                                   
          150                                                             
           577         167                                                
                          75    631                                       
                                           70                             
TiAl                                           20                         
__________________________________________________________________________
Table III indicates corrosion test results compared to current production valve materials.
              TABLE III                                                   
______________________________________                                    
Material        Thickness of Corroded Region                              
______________________________________                                    
Nimonic 80A     100 μm                                                 
Eatonite 6            15 μm                                            
CrC--NiCr (Diamalloy 3006)                                                
                  100 μm                                               
TiAl                   coating spalled during cooling                     
NiCrAlY--A            no evidence of corrosion except small               
                       localized 10 μm region                          
NiCrAlY--B            no evidence of corrosion except small               
                       localized 10 μm regions                         
CrC--NiCr             entire thickness of coating - 350                   
______________________________________                                    
                μm                                                     
From the above results the material selected for the coating 30 has the general formula MCrAlY. In one composition the NiCrAlY-A, generally is about 76.17% by weight nickel; 16.80% by weight chromium; 6.25% by weight aluminum; and 0.68% by weight yttrium. In another composition, NiCrAlY-B generally is about 56.69% by weight nickel; 31.07% by weight chromium; 11.26% by weight aluminum; 0.01% by weight carbon; and 0.71% by weight yttrium. Of course, there may be trace elements.
Industrial Applicability
The above-described corrosion and oxidation-resistant coatings possess wear characteristics to withstand the demanding conditions present during engine operation. This precludes the guttering problem which is related to oxidation followed by micro cracking. While it is not known how guttering occurs, one possible explanation is that the exhaust gases erode the microcracks and form gas paths. Another possibility results from deposit formation on the face and subsequent spallation which removes some of the valve face material.
While preferred steps and materials have herein been described, this has been done by way of illustration and not limitation, and the invention should not be limited except as may be required by the scope of the appended claims.

Claims (20)

What is claimed is:
1. A method of making an engine valve train component for an internal combustion engine, comprising the steps of:
grit blasting a face of the engine valve train component;
depositing an oxidation and corrosion-resistant coating material having the general form MCrAlY onto the face of the engine valve train component;
cooling the engine valve train component during the deposition;
grinding the face to finish dimensions.
2. The method of making an engine valve train component as set forth in claim 1, wherein the step of depositing includes depositing said coating material having about 17-31% by weight chromium.
3. The method of making an engine valve train as set forth in claim 1, wherein the step of depositing includes depositing said coating material having about 57-76% by weight nickel; about 17-31% by weight chromium; and the remainder aluminum, yttrium and trace elements.
4. The method of making an engine valve train component as set forth in claim 1, wherein said coating is a material generally being by weight about 16-32% Cr, 4-13% Al, 0-1% Y, 0-70% Fe, 0-77% Ni, 0-74% Co and trace elements.
5. The method of making an engine valve train component as set forth in claim 1, wherein the coating material generally being by weight about 31% Cr, 11% Al, 0.5% Y, and remainder nickel and trace elements.
6. A method of making an engine valve train component for an internal combustion engine, comprising the steps of:
grit blasting a face of the engine valve train component;
depositing an oxidation and corrosion-resistant coating material onto the face of the engine valve train component to a thickness of about 0.015";
cooling the engine valve train component during the deposition; and
grinding the face to finish dimensions with about 0.010" coating thickness.
7. The method of making an engine valve train component according to claim 6, wherein said step of depositing an oxidation and corrosion-resistant coating material being depositing a material having a general form of MCrAlY.
8. The method of making an engine valve train component according to claim 6, wherein said step of depositing being depositing said coating material having about 17-31% by weight chromium.
9. The method of making an engine valve train component according to claim 6, wherein said step of depositing being depositing said coating material having about 57-76% by weight nickel; about 17-31% by weight chromium; and the remainder aluminum, yttrium and trace elements.
10. The method of making an engine valve train component according to claim 6, wherein said step of depositing said coating material having generally by weight about 17% Cr, 6% Al, 0.5% Y and remainder being Ni and trace elements.
11. The method of making an engine valve train component according to claim 6, wherein said step of depositing being depositing said coating material having generally by weight about 31% Cr, 11% Al, 0.5% Y, and remainder being Ni and trace elements.
12. The method of making an engine valve train component according to claim 6, wherein said depositing step includes applying the coating by a high velocity particle spray process.
13. The method of making an engine valve train component according to claim 12, wherein said high velocity particle spray process being a combustion process including mixing oxygen with a fuel gas stream, igniting said mixture, accelerating said mixture toward said face and injecting a powder of said coating material into said fuel gas stream.
14. The method of making an engine valve train component according to claim 13, wherein the step of injecting said powder includes injecting cermets into said fuel gas stream, said cermets becoming molten and being propelled toward said face.
15. The method of making an engine valve train component according to claim 13, wherein the step of accelerating being accelerating said mixture to a velocity of about 4500 feet per second.
16. The method of making an engine valve train component according to claim 13, wherein said powder having a particle size between about 11 μm and 44 μm.
17. An engine valve train component for an internal combustion engine comprising:
a contact face; and
a coating being applied to said contact face, said coating being applied by a thermal spray process, said coating having general form MCrAlY.
18. The engine valve train component as set forth in claim 17, wherein said coating having a thickness of about 0.010".
19. The engine valve train component according to claim 17, wherein said coating having a composition by weight of about 17% Cr, 6% Al, 0.5% Y, and a remainder being Ni and trace elements.
20. The engine valve train component according to claim 17, wherein said coating having a composition by weight of about 31% Cr, 11% Al, 0.5% Y and a remainder being Ni and trace elements.
US09/216,160 1998-12-18 1998-12-18 Valve train components having an oxidation and corrosion-resistant thermal spray coating Abandoned USH1869H (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/216,160 USH1869H (en) 1998-12-18 1998-12-18 Valve train components having an oxidation and corrosion-resistant thermal spray coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/216,160 USH1869H (en) 1998-12-18 1998-12-18 Valve train components having an oxidation and corrosion-resistant thermal spray coating

Publications (1)

Publication Number Publication Date
USH1869H true USH1869H (en) 2000-10-03

Family

ID=22805952

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/216,160 Abandoned USH1869H (en) 1998-12-18 1998-12-18 Valve train components having an oxidation and corrosion-resistant thermal spray coating

Country Status (1)

Country Link
US (1) USH1869H (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397464B1 (en) * 1999-03-23 2002-06-04 Daimlerchrysler Ag Method for producing a valve seat
US20050016512A1 (en) * 2001-08-01 2005-01-27 Gillston Lionel M. Catalytic combustion surfaces and method for creating catalytic combustion surfaces
US20100055479A1 (en) * 2008-08-29 2010-03-04 Caterpillar Inc. Coating for a combustion chamber defining component
DE102013216188A1 (en) * 2013-08-14 2015-03-12 Mahle International Gmbh Light alloy inlet valve
US9404172B2 (en) 2012-02-22 2016-08-02 Sikorsky Aircraft Corporation Erosion and fatigue resistant blade and blade coating
US10323153B2 (en) * 2014-01-31 2019-06-18 Yoshikawa Kogyo Co., Ltd. Corrosion-resistant sprayed coating, method for forming same and spraying device for forming same

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3508529A (en) * 1966-02-24 1970-04-28 Earl Thompson Mfg Co Composite valve structure
US3649380A (en) * 1969-04-14 1972-03-14 Trw Inc Method of manufacturing hard faced exhaust valves
US3795510A (en) * 1968-11-21 1974-03-05 Ford Motor Co Valve components
US3911875A (en) * 1973-03-30 1975-10-14 Semt Cooled exhaust valve for an internal combustion engine
US4073474A (en) * 1975-08-15 1978-02-14 Toyota Jidosha Kogyo Kabushiki Kaisha Poppet valve
US4075999A (en) * 1975-06-09 1978-02-28 Eaton Corporation Hard facing alloy for engine valves and the like
US4122817A (en) * 1975-05-01 1978-10-31 Trw Inc. Internal combustion valve having an iron based hard-facing alloy contact surface
US4867116A (en) * 1988-05-23 1989-09-19 Inco Alloys International, Inc. Aircraft exhaust valves
US4928645A (en) * 1989-09-14 1990-05-29 W.R. Grace & Co.-Conn. Ceramic composite valve for internal combustion engines and the like
US5040501A (en) * 1987-03-31 1991-08-20 Lemelson Jerome H Valves and valve components
US5076866A (en) * 1989-02-17 1991-12-31 Honda Giken Kogyo Kabushiki Kaisha Heat resistant slide member for internal combustion engine
US5084113A (en) * 1985-05-24 1992-01-28 Toyota Jidosha Kabushiki Kaisha Method of producing a buildup valve for use in internal combustion engines
US5249554A (en) * 1993-01-08 1993-10-05 Ford Motor Company Powertrain component with adherent film having a graded composition
US5431136A (en) * 1993-12-22 1995-07-11 Fuji Oozx Inc. Internal combustion valve having an iron based hard-facing alloy contact surface
US5495837A (en) * 1993-06-11 1996-03-05 Mitsubishi Materials Corporation Engine valve having improved high-temperature wear resistance
US5611306A (en) * 1995-08-08 1997-03-18 Fuji Oozx Inc. Internal combustion engine valve

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3508529A (en) * 1966-02-24 1970-04-28 Earl Thompson Mfg Co Composite valve structure
US3795510A (en) * 1968-11-21 1974-03-05 Ford Motor Co Valve components
US3649380A (en) * 1969-04-14 1972-03-14 Trw Inc Method of manufacturing hard faced exhaust valves
US3911875A (en) * 1973-03-30 1975-10-14 Semt Cooled exhaust valve for an internal combustion engine
US4122817A (en) * 1975-05-01 1978-10-31 Trw Inc. Internal combustion valve having an iron based hard-facing alloy contact surface
US4075999A (en) * 1975-06-09 1978-02-28 Eaton Corporation Hard facing alloy for engine valves and the like
US4073474A (en) * 1975-08-15 1978-02-14 Toyota Jidosha Kogyo Kabushiki Kaisha Poppet valve
US5084113A (en) * 1985-05-24 1992-01-28 Toyota Jidosha Kabushiki Kaisha Method of producing a buildup valve for use in internal combustion engines
US5040501A (en) * 1987-03-31 1991-08-20 Lemelson Jerome H Valves and valve components
US4867116A (en) * 1988-05-23 1989-09-19 Inco Alloys International, Inc. Aircraft exhaust valves
US5076866A (en) * 1989-02-17 1991-12-31 Honda Giken Kogyo Kabushiki Kaisha Heat resistant slide member for internal combustion engine
US4928645A (en) * 1989-09-14 1990-05-29 W.R. Grace & Co.-Conn. Ceramic composite valve for internal combustion engines and the like
US5249554A (en) * 1993-01-08 1993-10-05 Ford Motor Company Powertrain component with adherent film having a graded composition
US5495837A (en) * 1993-06-11 1996-03-05 Mitsubishi Materials Corporation Engine valve having improved high-temperature wear resistance
US5431136A (en) * 1993-12-22 1995-07-11 Fuji Oozx Inc. Internal combustion valve having an iron based hard-facing alloy contact surface
US5611306A (en) * 1995-08-08 1997-03-18 Fuji Oozx Inc. Internal combustion engine valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397464B1 (en) * 1999-03-23 2002-06-04 Daimlerchrysler Ag Method for producing a valve seat
US20050016512A1 (en) * 2001-08-01 2005-01-27 Gillston Lionel M. Catalytic combustion surfaces and method for creating catalytic combustion surfaces
US7527048B2 (en) * 2001-08-01 2009-05-05 Diesel Engine Transformation Llc Catalytic combustion surfaces and method for creating catalytic combustion surfaces
US20100055479A1 (en) * 2008-08-29 2010-03-04 Caterpillar Inc. Coating for a combustion chamber defining component
US9404172B2 (en) 2012-02-22 2016-08-02 Sikorsky Aircraft Corporation Erosion and fatigue resistant blade and blade coating
DE102013216188A1 (en) * 2013-08-14 2015-03-12 Mahle International Gmbh Light alloy inlet valve
US10323153B2 (en) * 2014-01-31 2019-06-18 Yoshikawa Kogyo Co., Ltd. Corrosion-resistant sprayed coating, method for forming same and spraying device for forming same

Similar Documents

Publication Publication Date Title
US10995661B2 (en) Thermally insulated engine components using a ceramic coating
US5384200A (en) Thermal barrier coating and method of depositing the same on combustion chamber component surfaces
EP2053141B1 (en) Alumina-based protective coating for thermal barrier coatings and process for depositing thereof
EP1829984B1 (en) Process for making a high density thermal barrier coating
US8486496B2 (en) Method of preparing wear-resistant coating layer comprising metal matrix composite and coating layer prepared thereby
US7008674B2 (en) Thermal barrier coating protected by alumina and method for preparing same
US7226668B2 (en) Thermal barrier coating containing reactive protective materials and method for preparing same
US6165628A (en) Protective coatings for metal-based substrates and related processes
CA2221229C (en) Adherently sprayed valve seats
EP2290117A1 (en) Method of depositing protective coatings on turbine combustion components
EP1852520B1 (en) Wear-resistant coating
EP2021176A2 (en) Thermal oxidation protective surface for steel pistons
US6656600B2 (en) Carbon deposit inhibiting thermal barrier coating for combustors
USH1869H (en) Valve train components having an oxidation and corrosion-resistant thermal spray coating
US20130316086A1 (en) Method of applying a wear resistant coating
US5843587A (en) Process for treating high temperature corrosion resistant composite surface
US7879459B2 (en) Metallic alloy composition and protective coating
CA2126538A1 (en) Thermal barrier coating and method of depositing the same on combustion chamber component surfaces
Frolov et al. Technological features of coating components of gas turbine engines by the HVOF method
Chattopadhyay Plasma assisted thermal processes
Verbeek High velocity oxygen fuel spraying of erosion and wear resistant coatings on jet engine parts
Meetham et al. Coatings for High Temperature Materials

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE