JPH035314A - Method for synthesizing diamond powder - Google Patents

Method for synthesizing diamond powder

Info

Publication number
JPH035314A
JPH035314A JP1135864A JP13586489A JPH035314A JP H035314 A JPH035314 A JP H035314A JP 1135864 A JP1135864 A JP 1135864A JP 13586489 A JP13586489 A JP 13586489A JP H035314 A JPH035314 A JP H035314A
Authority
JP
Japan
Prior art keywords
plasma
gas
cooling body
diamond
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1135864A
Other languages
Japanese (ja)
Other versions
JP2766668B2 (en
Inventor
Takeshi Naganami
武 長南
Shoji Futaki
昌次 二木
Mikio Uemura
植村 美喜男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP1135864A priority Critical patent/JP2766668B2/en
Publication of JPH035314A publication Critical patent/JPH035314A/en
Application granted granted Critical
Publication of JP2766668B2 publication Critical patent/JP2766668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To synthesize high purity diamond with high productivity by introducing a carbon source into a plasma flame and carrying out rapid cooling by contact with a moving solid cooling body. CONSTITUTION:A pressure in a reaction chamber is regulated to a reduced pressure of 0.1-600torr, preferably 10-400torr, and hydrogen gas, argon, etc., are introduced into the above reaction chamber to produce plasma by using direct current, high frequency waves, microwaves, etc. Subsequently, a carbon source (in which the ratio of the number of carbon atoms to the number of hydrogen atoms is regulated to 0.0001-10), such as acetylene, is introduced to the above plasma, which is brought into contact with a cooling body (400-1400 deg.C surface temp.) rotating (1-20000rpm) by an external motor or vibrating (>=0.01Hz) by means of an ultrasonic vibrator, etc. By this method, the diamond powder is precipitated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、研磨や研削用に加工するダイヤモンド焼結体
に用いられる純度の良いダイヤモンド粉末を効率的に製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for efficiently producing diamond powder of high purity used for diamond sintered bodies processed for polishing and grinding.

〔従来技術〕[Prior art]

従来、気相法によるダイヤモンド粉末の合成方法として
は次の方法が知られている。
Conventionally, the following method is known as a method for synthesizing diamond powder using a gas phase method.

(1)  特開昭63−158195に示されるように
有機化合物または炭素材を用い高温のプラズマ中に導入
し、分解または蒸発させてダイヤモンドを析出させる、
熱プラズマCVD法。
(1) As shown in JP-A No. 63-158195, an organic compound or carbon material is introduced into a high-temperature plasma and decomposed or evaporated to precipitate diamond.
Thermal plasma CVD method.

(2)(特開昭63−156009)有機化合物、水素
及びダイヤモンド生成のための核を用い、核の上にダイ
ヤモンドを析出させる高周波またはマイクロ波プラズマ
CVD法。
(2) (JP-A-63-156009) A high-frequency or microwave plasma CVD method that uses an organic compound, hydrogen, and a nucleus for producing diamond, and deposits diamond on the nucleus.

しかし、これらの方法には次のような欠点がある。すな
わち(1)の方法では、プラズマ尾炎の空間部に冷却用
ガスを吹き込むことにより、プラズマ中の活性種を含む
反応混合物を急冷しダイヤモンドを析出させるものであ
るために、プラズマ尾炎と冷却ガスが衝突しダイヤモン
ドが析出する領域や反応領域の温度コントロールが非常
に難しい。
However, these methods have the following drawbacks. In other words, in method (1), cooling gas is injected into the space of the plasma tail flame to rapidly cool the reaction mixture containing active species in the plasma and precipitate diamond. It is extremely difficult to control the temperature in the reaction region and the region where gases collide and diamond precipitates.

そのため再現性が取りに<<、また反応領域内に温度分
布が生じ易いため非ダイヤモンド状炭素の混入が起こり
易い、ダイヤモンド生成の過飽和度が上げにくくダイヤ
モンド粉末の生成量に限界がある、といった欠点を持つ
。(2)の方法では、ダイヤモンドが析出し易くするた
めに核として異物質を入れるために、生成する粉末は核
としていれた異物質との複合粉末になってしまう。また
無電極型の高周波あるいはマイクロ波放電を用いるため
原料濃度に限界があり、ダイヤモンド粉末の生成量を上
げれないという欠点を持つ。
As a result, reproducibility is poor, temperature distribution tends to occur in the reaction region, which makes it easy for non-diamond-like carbon to be mixed in, and it is difficult to increase the supersaturation degree of diamond formation, which limits the amount of diamond powder produced. have. In method (2), a foreign substance is added as a nucleus to facilitate the precipitation of diamond, and the resulting powder becomes a composite powder with the foreign substance that was used as a nucleus. Furthermore, since it uses electrodeless high frequency or microwave discharge, there is a limit to the concentration of raw materials, and it has the disadvantage that it is not possible to increase the amount of diamond powder produced.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで本発明の目的は、上記欠点を解消し純度の良いダ
イヤモンド粉末を高い生産性で合成する方法を提供する
ことにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for solving the above-mentioned drawbacks and synthesizing diamond powder of good purity with high productivity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは鋭意研究の結果冷却体を機械的または電気
的に運動させることにより純度の良いダイヤモンド粉末
の生産性が向上することを見いだし、本発明を完成する
に至った。すなわち本発明は、上記目的を達成するため
に減圧下、放電により発生したプラズマ中に炭素源を導
入し、このプラズマ炎を固体からなる冷却体に接触させ
急冷することによりダイヤモンドを生成させる方法であ
って、前記冷却体を機械的および/または電気的に運動
させる点に特徴がある。
As a result of extensive research, the present inventors have discovered that the productivity of diamond powder with good purity can be improved by mechanically or electrically moving the cooling body, and have completed the present invention. That is, in order to achieve the above object, the present invention provides a method for producing diamond by introducing a carbon source into plasma generated by electric discharge under reduced pressure, and bringing this plasma flame into contact with a solid cooling body to rapidly cool it. The cooling body is characterized in that the cooling body is moved mechanically and/or electrically.

〔作用〕[Effect]

本発明で用いる放電は特に限定されず、例えば直流、高
周波、マイクロ波、低周波交流のいずれか、もしくはこ
れらの重畳したもの、あるいは磁場や電場を印加したも
のであってもよい。
The discharge used in the present invention is not particularly limited, and may be, for example, any one of direct current, high frequency, microwave, low frequency alternating current, or a combination thereof, or the application of a magnetic field or electric field.

本発明でプラズマに使用するガスとしては、水素ガス及
びアルゴン、ヘリウム、ネオン、キセノン等の不活性ガ
ス、窒素、酸素ガスを単独もしくは二種類以上の混合ガ
スとして使用できる。これにアンモニア、二酸化炭素、
−酸化炭素等が共存してもかまわない。
As the gas used for the plasma in the present invention, hydrogen gas, inert gases such as argon, helium, neon, and xenon, nitrogen gas, and oxygen gas can be used alone or in a mixture of two or more gases. This includes ammonia, carbon dioxide,
- Carbon oxide etc. may coexist.

本研究で用いる炭素源は、プラズマ中で解離して炭素を
含むイオン種、ラジカル種等の活性種を生成するもので
有れば、気体、液体または固体のいずれであってもよい
。炭素源としては例えばメタン、エタン、プロパン等の
飽和炭化水素、エチレン、プロピレン、アセチレン等の
不飽和炭化水素、ベンゼン等の芳香属炭化水素、シクロ
ヘキサン、シクロプロパン等の脂環式炭化水素、エタノ
ール、プロパツール、tert−ブチルアルコール等の
アルコール類、ジメチルエーテル、ジエチルエーテル等
のエーテル類、ホルムアルデヒド、アセトアルデヒド等
のアルデヒド類、アセトン等のケトン類、塩化メチル、
臭化アセチル等のハロゲン化物、ギ酸、酢酸、シュウ酸
、マロン酸、等のカルボン酸、ギ酸メチル、ギ酸エステ
ル等のエステル類、酢酸アミド等の酸アミド類、メチル
アミン、トリメチルアミン等のアミン類、ポリエチレン
、ボロプロピレン等の高分子化合物、チオフェン等のイ
オウを含む有機化合物、ホスフィン等のリンを含む有機
化合物、−酸化炭素、二酸化炭素、黒鉛等が挙げられる
The carbon source used in this study may be gas, liquid, or solid as long as it dissociates in plasma to generate active species such as carbon-containing ionic species and radical species. Examples of carbon sources include saturated hydrocarbons such as methane, ethane, and propane; unsaturated hydrocarbons such as ethylene, propylene, and acetylene; aromatic hydrocarbons such as benzene; alicyclic hydrocarbons such as cyclohexane and cyclopropane; ethanol; Alcohols such as propatool, tert-butyl alcohol, ethers such as dimethyl ether and diethyl ether, aldehydes such as formaldehyde and acetaldehyde, ketones such as acetone, methyl chloride,
Halides such as acetyl bromide, carboxylic acids such as formic acid, acetic acid, oxalic acid, malonic acid, esters such as methyl formate and formate esters, acid amides such as acetate amide, amines such as methylamine and trimethylamine, Examples include polymer compounds such as polyethylene and boropropylene, organic compounds containing sulfur such as thiophene, organic compounds containing phosphorus such as phosphine, carbon oxide, carbon dioxide, and graphite.

これらの炭素源となる物質は、一種類または二種類以上
の混合物であってもよい、炭素源が液体または固体の場
合にはアルゴン、ヘリウム等の不活性ガスもしくは水素
ガスをキャリアーガスとしてプラズマ中に供給する。
These carbon source substances may be one type or a mixture of two or more types. When the carbon source is liquid or solid, it is used in the plasma using an inert gas such as argon or helium or hydrogen gas as a carrier gas. supply to.

本発明の方法においては、炭素源のプラズマ中での反応
は水素の存在下で行われるが、この水素ガスは、プラズ
マ発生用のガスとして反応系に導入されてもよいし、あ
るいはシースガス、キャリアーガス等として導入されて
もよい。また炭素源のプラズマへの導入方法に関しても
なんら制限されるものではない。
In the method of the present invention, the reaction of the carbon source in the plasma is carried out in the presence of hydrogen, but this hydrogen gas may be introduced into the reaction system as a gas for plasma generation, or as a sheath gas or carrier. It may also be introduced as a gas or the like. Furthermore, there are no restrictions on the method of introducing the carbon source into the plasma.

本発明の方法においては、反応系に導入される水素ガス
と炭素源の量比は、炭素源中の炭素原子数/水素原子数
の比率が0.0001〜10となる範囲が好ましい。こ
の比率が大きすぎると黒鉛が析出し易−くなり、低すぎ
るとダイヤモンドの生成が余りにも少ない。
In the method of the present invention, the quantitative ratio of the hydrogen gas introduced into the reaction system to the carbon source is preferably such that the ratio of the number of carbon atoms/the number of hydrogen atoms in the carbon source is 0.0001 to 10. If this ratio is too large, graphite tends to precipitate, and if this ratio is too low, too little diamond is produced.

本発明において冷却体を機械的および/または電気的に
運動させる方法としては、外部モータにより冷却を回転
させる方法及び超音波振動子、電磁石、モーター等を用
いて冷却体を振動させる方法がある。回転速度としては
1〜20000 rpmの範囲がよい。それより遅いと
回転させる効果がなくなり、それより回転が速くなると
、冷却体表面でのガスの乱れが大きくなり冷却効果がな
くなり、逆にダイヤモンドの析出速度が遅(なるととも
に、装置コストが高くなる。与える振動としては、0.
01Hz以上が好ましい。それ以下では振動させる効果
がなくなる。
In the present invention, methods for mechanically and/or electrically moving the cooling body include a method of rotating the cooling body with an external motor, and a method of vibrating the cooling body using an ultrasonic vibrator, an electromagnet, a motor, etc. The rotation speed is preferably in the range of 1 to 20,000 rpm. If it is slower than that, there will be no effect of rotating it, and if it is faster than that, the gas turbulence on the surface of the cooling body will become large and the cooling effect will be lost, and on the contrary, the diamond precipitation rate will be slow (and the equipment cost will increase). .The vibration given is 0.
The frequency is preferably 0.01 Hz or higher. Below that, the vibrating effect is lost.

本発明で用いられる反応圧力は、0.1〜600tor
rの範囲、好ましくは10〜400 torrめ範囲が
よい。Q、 l torrより低い圧力ではダイヤモン
ドの析出は極めて遅く、600 torrより高い圧力
ではガス温度が高くなり黒鉛あるいは無定型炭素が混入
し易くなる。
The reaction pressure used in the present invention is 0.1 to 600 torr.
The range of r is preferably 10 to 400 torr. At a pressure lower than Q, l torr, diamond precipitation is extremely slow, and at a pressure higher than 600 torr, the gas temperature becomes high and graphite or amorphous carbon tends to be mixed in.

本発明で用いられる冷却体の材質としては、周期律表m
a〜■、Ib〜IVbに属する単体あるいはこれらの化
合物が挙げられる。例えば綱、タングステン、モリブデ
ン、シリコン、タンタル、黒鉛等の単体、ステンレス、
石英ガラス、アルミナ、炭化珪素、窒化珪素、炭化ホウ
素、窒化ホウ素、窒化アルミニウム等の化合物が挙げら
れる。この冷却体は、水等の冷媒で冷却され、冷却体の
表面温度は400〜1400℃であるようにする。
The material of the cooling body used in the present invention is m in the periodic table.
Examples include simple substances or compounds belonging to groups a to ■, Ib to IVb. For example, steel, tungsten, molybdenum, silicon, tantalum, graphite, etc., stainless steel,
Examples include compounds such as quartz glass, alumina, silicon carbide, silicon nitride, boron carbide, boron nitride, and aluminum nitride. This cooling body is cooled with a refrigerant such as water, and the surface temperature of the cooling body is set to be 400 to 1400°C.

本発明の実施方法について概略図を用いて説明する。第
1図に直流放電を用いてダイヤモンド粉末を合成する装
置を示す。第2図に高周波放電を用いてダイヤモンド粉
末を合成する装置を示す。
A method of implementing the present invention will be explained using schematic diagrams. FIG. 1 shows an apparatus for synthesizing diamond powder using direct current discharge. Figure 2 shows an apparatus for synthesizing diamond powder using high frequency discharge.

第1図において、1は直流プラズマトーチ、2は直流電
源、3は水冷反応容器、4は上下動及び回転可能な冷却
用の冷却体、5は水冷光は皿、6はプラズマ発生ガス導
入口、7は原料ガス導入口、8はシースガス(水冷反応
容器内壁に沿って螺旋状に流すガス)導入口、9はガス
供給装置、10は反応容器内の圧力調製機能を持った真
空排気装置を示す。
In Fig. 1, 1 is a DC plasma torch, 2 is a DC power source, 3 is a water-cooled reaction vessel, 4 is a vertically movable and rotatable cooling body, 5 is a water-cooled light plate, and 6 is a plasma generation gas inlet. , 7 is a raw material gas inlet, 8 is a sheath gas (gas flowing spirally along the inner wall of the water-cooled reaction vessel) inlet, 9 is a gas supply device, and 10 is a vacuum exhaust device with a pressure adjustment function inside the reaction vessel. show.

反応に際しては反応容器内を0.01 torr以上の
真空度まで真空引きした後、プラズマ発生ガス導入口6
よりアルゴンを流し、放電させてプラズマを発生し、プ
ラズマが安定した後、導入口8よりシースガス、この場
合雰囲気調製ガス及び反応ガスとして水素または不活性
ガスと水素ガスの混合ガスを流す。4の冷却体及び水冷
光は皿5を所定位置(表面温度が400から1400℃
に成る位置)に設置した後、10の排気装置により反応
容器内を所定圧に調製し、4の冷却体を回転させる。
During the reaction, after evacuating the inside of the reaction vessel to a vacuum level of 0.01 torr or more, the plasma generating gas inlet 6 is opened.
After the plasma is stabilized, a sheath gas, in this case an atmosphere conditioning gas and a reaction gas, hydrogen or a mixture of an inert gas and hydrogen gas, is flowed through the inlet 8. The cooling body 4 and the water cooling light are used to place the plate 5 in a predetermined position (with a surface temperature of 400 to 1400°C).
After the reactor is installed at a position of 10, the inside of the reaction vessel is adjusted to a predetermined pressure using the exhaust device 10, and the cooling body 4 is rotated.

次に、炭素源を導入ロアより導入し、プラズマ中で分解
または励起し活性種を生成させることにより、ダイヤモ
ンド粉末が析出し、水冷反応容器内壁3及び水冷光は皿
5に堆積する。
Next, a carbon source is introduced from the introduction lower and is decomposed or excited in the plasma to generate active species, whereby diamond powder is precipitated and deposited on the inner wall 3 of the water-cooled reaction vessel and the water-cooled light on the dish 5.

第2図において、11は振動装置、12は高周波発生用
ワークコイル、13は高周波電源であり、その他は第1
図と同じである。反応に際しては、直流放電の場合と同
様に、反応容器内を0.01torr以上の真空度まで
真空引きした後、プラズマ発生ガス導入口6及びシース
ガス導入口8よりアルゴンを流し、放電させてプラズマ
を発生し、プラズマが安定した後、シースガス導入口8
より雰囲気調製ガス及び反応ガスとしてさらに水素ガス
を流す。水冷光は皿5を所定位置に設置した後、10の
排気装置により反応容器内を所定圧に調製し、4の冷却
体を振動させる。次に、炭素源を導入ロアより導入し、
プラズマ中で分解または励起し活性種を生成させること
により、ダイヤモンド粉末が析出し、水冷反応容器内壁
3及び水冷光は皿5に堆積する。
In Fig. 2, 11 is a vibration device, 12 is a work coil for high frequency generation, 13 is a high frequency power source, and the others are the first
Same as the figure. During the reaction, as in the case of direct current discharge, after evacuating the inside of the reaction vessel to a vacuum level of 0.01 torr or more, argon is flowed through the plasma generating gas inlet 6 and the sheath gas inlet 8 to cause discharge and generate plasma. After the plasma is generated and stabilized, the sheath gas inlet 8
Hydrogen gas is further supplied as an atmosphere conditioning gas and a reaction gas. After placing the dish 5 in a predetermined position, the water cooling light adjusts the inside of the reaction vessel to a predetermined pressure using an exhaust device 10, and vibrates the cooling body 4. Next, a carbon source is introduced through the introduction lower,
Diamond powder is precipitated by decomposition or excitation in the plasma to generate active species, and the diamond powder is deposited on the inner wall 3 of the water-cooled reaction vessel and the water-cooled light plate 5.

〔実施例〕〔Example〕

実施例1 第1図に示した装置を用い、反応容器内を0.01to
rrまで真空排気後、プラズマ発生用ガスとしてアルゴ
ン201/minを流して直流プラズマを発生させ、シ
ースガス導入口8より水素41/minを流した。つい
で反応容器内の圧力を50 torrに調製し、銅製の
冷却体を表面温度が約800°Cに成る位置まで上昇さ
せ、2500rpmで回転させた後、原料ガス導入口よ
りアセチレン0.41/minを流し、直流電源人力8
kwで1時間反応を行なった。なお表面温度は放射温度
計により測定した。
Example 1 Using the apparatus shown in Fig. 1, the inside of the reaction vessel was 0.01 to
After evacuation to rr, argon was flowed at 201/min as a plasma generation gas to generate DC plasma, and hydrogen was flowed through the sheath gas inlet 8 at 41/min. Next, the pressure inside the reaction vessel was adjusted to 50 torr, the copper cooling body was raised to a position where the surface temperature was about 800°C, and after rotating at 2500 rpm, acetylene was injected at 0.41/min from the raw material gas inlet. DC power source 8
The reaction was carried out for 1 hour at kW. Note that the surface temperature was measured using a radiation thermometer.

その結果、水冷反応管内壁及び水冷光は皿より、約6g
の粉末が得られた。得られた粉末はX線回折及びラマン
散乱スペクトル測定結果より、立方晶ダイヤモンドであ
ることが解った。また走査電子顕微鏡(SEM)観察よ
り、得られた粉末は約0、3μmの球状粉末であること
が解った。
As a result, the inner wall of the water-cooled reaction tube and the water-cooled light weighed about 6g from the dish.
of powder was obtained. The obtained powder was found to be cubic diamond from the results of X-ray diffraction and Raman scattering spectroscopy. Furthermore, observation using a scanning electron microscope (SEM) revealed that the obtained powder was a spherical powder with a diameter of about 0.3 μm.

実施例2 図2に示した装置を用い、反応容器内を0.01tor
rまで真空引き後、プラズマ発生用ガス導入口6よりア
ルゴンを181/min及びシースガス導入口8よりア
ルゴンガスを301/min流して高周波プラズマを発
生させた。ついでシースガスに水素1017m1nを添
加し、反応容器内の圧力を300 torrに調製した
。プラズマ安定化後、タングステン製冷却体を表面温度
が約900℃になる位置に設置し、振動周波数26GH
z、定格出力300Wの超音波振動子により振動させた
。さらに原料ガス導入ロアよりメタン71/minを流
し、高周波電源人力30kwで1時間反応を行なった。
Example 2 Using the apparatus shown in Figure 2, the inside of the reaction vessel was heated to 0.01 torr.
After evacuation to r, argon gas was flowed at 181/min through the plasma generation gas inlet 6 and argon gas was flowed through the sheath gas inlet 8 at 301/min to generate high frequency plasma. Next, 1017 ml of hydrogen was added to the sheath gas, and the pressure inside the reaction vessel was adjusted to 300 torr. After stabilizing the plasma, the tungsten cooling body was installed at a position where the surface temperature was approximately 900℃, and the vibration frequency was set to 26GH.
z, it was vibrated by an ultrasonic vibrator with a rated output of 300W. Furthermore, methane was flowed at 71/min from the raw material gas introduction lower, and reaction was carried out for 1 hour using a high-frequency power source with manual power of 30 kW.

その結果、水冷反応管内壁及び水冷光は皿より、約8g
の粉末が得られた。得られた粉末は>1回折及びラマン
散乱スペクトル測定結果より、立方晶ダイヤモンドであ
ることが解った。またSEM観察より、得られた粉末は
約0.2μmの球状粉末であることが解った。
As a result, the inner wall of the water-cooled reaction tube and the water-cooled light weighed approximately 8 g from the dish.
of powder was obtained. The obtained powder was found to be cubic diamond based on >1 diffraction and Raman scattering spectrum measurements. Furthermore, SEM observation revealed that the obtained powder was a spherical powder with a diameter of about 0.2 μm.

比較例1 実施例1の装置を用い、冷却体を回転させないで、それ
以外の条件は実施例と同様にして反応を1時間行なった
ところ、水冷反応管内壁及び水冷光は皿より約3gの粉
末を得た。X線回折およびラマン散乱スペクトル、SE
Mより約0.3μmの立方晶ダイヤモンド粉末であるこ
とが解った。
Comparative Example 1 Using the apparatus of Example 1, the reaction was carried out for 1 hour under the same conditions as in Example without rotating the cooling body. When the inner wall of the water-cooled reaction tube and the water-cooled light were A powder was obtained. X-ray diffraction and Raman scattering spectra, SE
It was found that it was cubic diamond powder with a diameter of about 0.3 μm.

比較例2 実施例2の装置を用い、冷却体を振動させずにそれ以外
の条件は実施例2と同様にして反応を1時間行なったと
ころ、水冷反応管内壁及び水冷光は皿より約4gの粉末
を得た。X線回折およびラマン散乱スペクトル、SEM
より約0.2μmの立方晶ダイヤモンド粉末であること
が解った。
Comparative Example 2 Using the apparatus of Example 2, the reaction was carried out for 1 hour under the same conditions as Example 2 without vibrating the cooling body, and the inner wall of the water-cooled reaction tube and the water-cooled light were approximately 4 g powder was obtained. X-ray diffraction and Raman scattering spectra, SEM
It was found that the powder was cubic diamond powder with a diameter of about 0.2 μm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、純度の良いダイヤモンド粉末を効率よ
く高い生産性で合成することが出来る。
According to the present invention, diamond powder with good purity can be synthesized efficiently and with high productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は直流放電、第2図は高周波放電をそれぞれ用い
てダイヤモンド粉末を合成する装置の縦断面図を示す。 1・・・直流プラズマトーチ、2・・・直流電源、3・
・・水冷反応容器、4・・・冷却体、5・・・水冷光は
皿、6・・・プラズマ発生ガス導入口、7・・・原料ガ
ス導入口、8・・・シースガス導入口、9・・・ガス供
給装置、10・・・真空排気装置、II・・・振動装置
、12・・・ワークコイル、13・・・高周波電源。 第1図
FIG. 1 shows a longitudinal cross-sectional view of an apparatus for synthesizing diamond powder using a direct current discharge and FIG. 2 a high-frequency discharge. 1... DC plasma torch, 2... DC power supply, 3...
... Water-cooled reaction vessel, 4... Cooling body, 5... Water-cooled light plate, 6... Plasma generation gas inlet, 7... Raw material gas inlet, 8... Sheath gas inlet, 9 ... Gas supply device, 10... Vacuum exhaust device, II... Vibration device, 12... Work coil, 13... High frequency power supply. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 減圧下、放電により発生したプラズマ中に炭素源を導入
し、このプラズマ炎を固体からなる冷却体に接触させて
急冷することによりダイヤモンド粉末を析出させる方法
であって、前記冷却体を機械的および/または電気的に
運動させることを特徴とするダイヤモンド粉末の合成方
法。
A method of precipitating diamond powder by introducing a carbon source into plasma generated by electric discharge under reduced pressure and rapidly cooling the plasma flame by bringing it into contact with a cooling body made of a solid material, the method comprising: A method for synthesizing diamond powder characterized by electrically moving the powder.
JP1135864A 1989-05-31 1989-05-31 Synthesis method without diamond powder Expired - Fee Related JP2766668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1135864A JP2766668B2 (en) 1989-05-31 1989-05-31 Synthesis method without diamond powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1135864A JP2766668B2 (en) 1989-05-31 1989-05-31 Synthesis method without diamond powder

Publications (2)

Publication Number Publication Date
JPH035314A true JPH035314A (en) 1991-01-11
JP2766668B2 JP2766668B2 (en) 1998-06-18

Family

ID=15161548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1135864A Expired - Fee Related JP2766668B2 (en) 1989-05-31 1989-05-31 Synthesis method without diamond powder

Country Status (1)

Country Link
JP (1) JP2766668B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067671A (en) * 1992-06-29 1994-01-18 Sansha Electric Mfg Co Ltd Method for extracting transformed material by induction plasma spraying
KR100411710B1 (en) * 2001-06-28 2003-12-18 한국과학기술연구원 Apparatus and method for the synthesis of the diamond with powder shape by chemical vapor deposition (cvd) method
CN112372522A (en) * 2020-11-17 2021-02-19 云南光电辅料有限公司 Grinding wheel for thinning sapphire substrate and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067671A (en) * 1992-06-29 1994-01-18 Sansha Electric Mfg Co Ltd Method for extracting transformed material by induction plasma spraying
KR100411710B1 (en) * 2001-06-28 2003-12-18 한국과학기술연구원 Apparatus and method for the synthesis of the diamond with powder shape by chemical vapor deposition (cvd) method
CN112372522A (en) * 2020-11-17 2021-02-19 云南光电辅料有限公司 Grinding wheel for thinning sapphire substrate and preparation method thereof

Also Published As

Publication number Publication date
JP2766668B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
US4816286A (en) Process for synthesis of diamond by CVD
JPH0346436B2 (en)
JPH02141494A (en) Vapor phase synthetic device of diamond
JPH04958B2 (en)
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPS61286299A (en) Preparation of diamond
JPS61163195A (en) Synthesizing method for diamond in gas phase and its apparatus
JP2766668B2 (en) Synthesis method without diamond powder
JPH059735A (en) Vapor synthesis of diamond
JPS60127293A (en) Production of diamond
JPH0372038B2 (en)
JPS6221757B2 (en)
JP2706492B2 (en) Method of synthesizing diamond powder
JPS62120B2 (en)
JP2962631B2 (en) Method for producing diamond-like carbon thin film
JPH0665744A (en) Production of diamond-like carbon thin film
JPH01261298A (en) Synthesis of diamond
JPS63117993A (en) Device for synthesizing diamond in vapor phase
JPH0226894A (en) Method and device for synthesizing diamond in vapor phase
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPH02192415A (en) Syntheses of diamond powder
JPH01203297A (en) Method for synthesizing diamond with combustion flame
JPS593098A (en) Synthesizing method of diamond
JP4480192B2 (en) Method for synthesizing high purity diamond
JPS6265997A (en) Method and apparatus for synthesizing diamond

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees