JPH0353001A - Manufacture of sintered alloy having corrosion resistant film - Google Patents

Manufacture of sintered alloy having corrosion resistant film

Info

Publication number
JPH0353001A
JPH0353001A JP18807189A JP18807189A JPH0353001A JP H0353001 A JPH0353001 A JP H0353001A JP 18807189 A JP18807189 A JP 18807189A JP 18807189 A JP18807189 A JP 18807189A JP H0353001 A JPH0353001 A JP H0353001A
Authority
JP
Japan
Prior art keywords
green compact
sintered
alloy
powder
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18807189A
Other languages
Japanese (ja)
Inventor
Hideaki Abe
英明 阿部
Toshihiko Nagano
俊彦 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Original Assignee
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd filed Critical Seiko Electronic Components Ltd
Priority to JP18807189A priority Critical patent/JPH0353001A/en
Publication of JPH0353001A publication Critical patent/JPH0353001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a sintered alloy having difficult-to-stripping and high reliable corrosion resistant film without any defect by compacting alloy composition powder to form a green compact and also sintering after applying a material having corrosion resistance on the surface thereof. CONSTITUTION:The alloy composition powder is compacted to obtain the green compact. Then, at the same time of forming the above green compact or after forming the green compact, the material having corrosion resistance is applied on the surface of green compact. As this material, Al, Ti, Cr, Ni, Cu, Zn, Pd, Ag, Sn, Pt, Au, etc., or compound containing these, is effective. After that, the above coated green compact is sintered. By this sintering treatment, the green compact is sintered, and also the above film is diffused and shrunk to obtain the sintered alloy having high difficult-to-stripping and extremely high reliable corrosion resistant film.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は、超硬合金、磁性合金、その他粉末冶金法によ
る合金の製造方法に関する. 〔従来の技術] 従来、填結合金表面に耐食性被膜を生成する方法として
、焼結後に,湿式メッキ,乾式メッキ、または、塗装を
付加する工程がとられていた。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a method for producing cemented carbide, magnetic alloy, and other alloys by powder metallurgy. [Prior Art] Conventionally, as a method for forming a corrosion-resistant film on the surface of a filler metal, a process of adding wet plating, dry plating, or painting after sintering has been used.

[発明が解決しようとする課題1 ところが、これら方法は、湿式メッキにおいては,前洗
浄で錆易いこと、乾式メッキにおいては蒸着ムラやビン
ホールが出易いこと、塗装においては、剥離強度が弱い
こと等の問題があり、完全な耐食性改善になっていない
. [課題を解決するための手段] 上記課題を解決するために本発明では、合金組成粉末の
粉末成形時に、耐食性を有する材料を表面に被覆した合
金組或粉末の圧粉体を成形し、ちしくは、合金組成粉末
の粉末成形上がりの圧粉体の表面に耐食性を有する材料
を被覆し、その後、焼結することにより,焼結合金に耐
食性を付与するものである. [作用1 本発明によれば、焼結前に耐食性を有する材料を圧粉体
表面に被覆しており、墳結処理によって該ii1食性を
有する材料は、拡散処理され、全く欠陥の無い、且つ,
極めて剥離強度の高い耐食性被膜が得られるものである
. 耐食性を有する材料としては、AI2、Ti、Cr.N
i.Cu.Zn.Pd.Ag.Sn.Pt.Au等、又
は、それらを含む化合物が有効である. 更に、粉末成形→予備焼結一填結の様な焼結合金の製造
方法においては、予備填結した圧粉体の表面に耐食性を
有する材料を被覆した後、本墳結を実施することも、本
発明の焼結合金の製造方法の一例であることは、云うま
でもないことである. [実施例1 以下,本発明の実施例について説明する.(第一実施例
] 第一は,本発明の焼結合金の製造方法の一実施例を示す
工程図である. まづ,市販の粒径0.5ミクロンのWC扮末と粒径lミ
クロンのCO粉末を重量比9:1の割合でボールミルに
て72時間混合粉砕し、混合粉砕された粉末を乾燥2の
工程で乾燥し、乾燥した原料粉末を内径20mmのゴム
型に詰め、4ton/ c m ”の圧力で液圧成形し
、外径1 3mmで高さ7mmの成形体を得た. 次に、成形体を機械加工で形状を整え、スパッタ装置に
おいてNiとWCとを交互に3:7の膜厚比で、3Nづ
つ計10ミクロンの膜厚でコーティングを施して、形状
を整えた成形体表面に耐食性材料を被覆した後.165
0℃で真空填結を行ない、1 620℃l00気圧のA
rガス中で加圧焼結し、その後、ポリッシングで光沢処
理をほどこした. こうして出来たサンプルlOコについて、填結〜研削加
工後に80Wt%WC−20Wt%Ni合金の10ミク
ロンパックを行なったものlOコと耐食性について比較
した結果,第一表に示す通り,サビ発生までの平均日数
が、本発明品は46倍とすぐれた副食性を示した. 尚、硬度は同等で、衝撃による剥離強度も約3倍の高特
性が得られた. 第  l 表 (第2実施例) 第2図は、本発明の焼結合金の製造方法の他の実施例を
示す工程図である. ダイ内径3mmでクリアランス片側30ミクロンの非磁
性超硬金型をNu場プレス装置内に、パンチがT度ダイ
の中心になるように慎重にセットし,グイ内面と上下パ
ンチ表面に粘度1 0000センチボアズのシリコンオ
イルをナイロンのはけを用いて均一に且つ薄く塗った。
[Problem to be Solved by the Invention 1] However, with these methods, wet plating is prone to rust due to pre-cleaning, dry plating is prone to uneven deposition and bottle holes, and painting is weak in peel strength, etc. Due to this problem, corrosion resistance has not been completely improved. [Means for Solving the Problems] In order to solve the above problems, in the present invention, a green compact of alloy composition or powder whose surface is coated with a material having corrosion resistance is formed during powder compaction of alloy composition powder, and More specifically, the surface of the green compact after compacting the alloy composition powder is coated with a material having corrosion resistance, and then sintered to impart corrosion resistance to the sintered alloy. [Effect 1] According to the present invention, the surface of the green compact is coated with a material having corrosion resistance before sintering, and the material having corrosion resistance is diffused by the embedding process, and has no defects at all. ,
A corrosion-resistant coating with extremely high peel strength can be obtained. Materials with corrosion resistance include AI2, Ti, Cr. N
i. Cu. Zn. Pd. Ag. Sn. Pt. Au, etc., or compounds containing them are effective. Furthermore, in the manufacturing method of sintered alloys such as powder compaction → pre-sintering and filling, the main sintering may be carried out after coating the surface of the pre-filled green compact with a corrosion-resistant material. It goes without saying that this is an example of the method for manufacturing the sintered alloy of the present invention. [Example 1 An example of the present invention will be described below. (First Example) The first is a process diagram showing an example of the method for producing a sintered alloy of the present invention. First, commercially available WC powder with a particle size of 0.5 microns and a particle size of 1 micron. CO powder was mixed and pulverized in a ball mill for 72 hours at a weight ratio of 9:1, the mixed and pulverized powder was dried in the drying step 2, the dried raw material powder was packed into a rubber mold with an inner diameter of 20 mm, and 4 tons/ Hydroforming was carried out at a pressure of 1.5 cm to obtain a molded body with an outer diameter of 13 mm and a height of 7 mm. Next, the molded body was shaped by machining, and Ni and WC were alternately applied to : After applying a coating with a total thickness of 10 microns in 3N increments at a film thickness ratio of 7:165.
Vacuum sealing was carried out at 0°C, and A of 1,620°C and 100 atm.
It was sintered under pressure in R gas, and then polished to give it a glossy finish. As a result of comparing the corrosion resistance of the sample 1O produced in this way with that of the sample 1O which was packed with 10 micron pack of 80Wt%WC-20Wt%Ni alloy after filling and grinding, as shown in Table 1, it was found that The average number of days was 46 times longer for the product of the present invention, showing superior applicability as a side dish. In addition, the hardness was the same, and the peel strength due to impact was about three times higher. Table 1 (Second Example) FIG. 2 is a process diagram showing another example of the method for producing a sintered alloy of the present invention. Carefully set a non-magnetic carbide mold with a die inner diameter of 3 mm and a clearance of 30 microns on one side in a Nu field press machine so that the punch is in the center of the T-degree die. A thin layer of silicone oil was applied evenly and thinly using a nylon brush.

次に、粘度100センチポアズのシリコンオイル20W
t%添加して充分に練っておいたNi超微粉末をダイ内
面と上下パンチに20ミクロン〜30ミクロンの厚みで
出来るだけ均一に塗布し、成形型内面に耐食性材料を被
覆した. その後、at%でNdl7%、B6,5%、残りFeの
組成から成り、不活性ガス中で溶解10〜粗粉砕11〜
微粉砕l2の工程を経て製造された3.0ミクロン粒径
の合金微粉末0.1グラムを耐食性材料を被覆したダイ
内に充填し,150000eの平行磁界中で2.5to
n/cm”の圧力を付加し磁場成形し、外径3.1mm
で高さ2.5mmの、表面にNiが被覆された成形体を
得た. そして,その成形体を300℃、600℃で2段の真空
脱ガス後、1 000℃真空.1050℃Ar 1 0
0気圧で填結し、その後Arを3気圧まで下げ、100
0℃〜600℃の間で徐冷時効後急冷し,外径2.7m
m.高さ2.2mmのNdFeB焼結m石を得た. こうして出来たサンプル20コについて、焼結時効後に
無電界Niメッキ4ミクロンを行なったもの20コと、
耐食性について比較した結果、第2表に示す通り、サビ
発生までの平均時間が、本発明品は3倍から13倍とす
ぐれた耐食性を示した. 尚,M1気特性は同等であった. 第  2  表 [発明の効果] 以上、本発明は,Ma結合金に対して、高温での微粉末
の拡散収縮作用で耐食性を持った材料の被覆を行なう為
,欠陥が殆どなく、且つ、剥離に強く,極めて高い信頼
性を持った耐食性被膜を生成する効果を持つ.
Next, use 20W silicone oil with a viscosity of 100 centipoise.
Ultrafine Ni powder, which had been sufficiently kneaded with t% addition, was applied as uniformly as possible to the inner surface of the die and the upper and lower punches to a thickness of 20 to 30 microns, and the inner surface of the mold was coated with a corrosion-resistant material. After that, the composition was composed of 7% Ndl, 6.5% B, and the rest Fe in at%, and it was dissolved in an inert gas from 10 to coarsely pulverized to 11 to
0.1 g of alloy fine powder with a particle size of 3.0 microns manufactured through the process of pulverization 12 was filled into a die coated with a corrosion-resistant material, and 2.5 to
Formed in a magnetic field by applying a pressure of "n/cm" to an outer diameter of 3.1 mm.
A molded body having a height of 2.5 mm and whose surface was coated with Ni was obtained. The molded body was degassed under vacuum at 300°C and 600°C in two stages, and then heated at 1000°C under vacuum. 1050℃Ar 10
Filling was carried out at 0 atm, then the Ar was lowered to 3 atm, and 100
After slowly cooling and aging between 0℃ and 600℃, the outer diameter is 2.7m.
m. A NdFeB sintered stone with a height of 2.2 mm was obtained. Of the 20 samples thus made, 20 were subjected to electroless Ni plating of 4 microns after sintering and aging.
As a result of comparing the corrosion resistance, as shown in Table 2, the products of the present invention exhibited excellent corrosion resistance, with the average time until rusting occurring 3 to 13 times. Furthermore, the M1 characteristics were the same. Table 2 [Effects of the Invention] As described above, the present invention coats the Ma alloy with a corrosion-resistant material through the diffusion and shrinkage action of fine powder at high temperatures. It has the effect of producing a corrosion-resistant coating that is resistant to corrosion and has extremely high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の填結合金の製造方法の一実施例を示
す工程図、第2図は,本発明の焼結合金の製造方法の他
の実施例を示す工程図である.5・・・耐食性材料被覆 9・・・成形型内面への耐食性材料の被覆以 上
FIG. 1 is a process diagram showing one embodiment of the method for producing a filler metal according to the present invention, and FIG. 2 is a process diagram showing another embodiment of the method for producing a sintered alloy according to the present invention. 5... Corrosion resistant material coating 9... Corrosion resistant material coating or more on the inner surface of the mold

Claims (2)

【特許請求の範囲】[Claims] (1)合金組成粉末を粉末成形した後焼結する合金の製
造方法において、粉末成形工程により、合金組成の圧粉
体を成形するとともに、該圧粉体の表面に耐食性を有す
る材料を被覆することを特徴とする焼結合金の製造方法
(1) In a method for manufacturing an alloy in which alloy composition powder is powder compacted and then sintered, a powder compact of the alloy composition is formed in a powder compacting step, and the surface of the compact is coated with a material having corrosion resistance. A method for producing a sintered alloy, characterized by:
(2)合金組成粉末を粉末成形した後焼結する合金の製
造方法において、粉末成形により合金組成粉末の圧粉体
を成形した後、該圧粉体の表面に、耐食性を有する材料
を被膜することを特徴とする焼結合金の製造方法。
(2) In the method for producing an alloy in which alloy composition powder is powder-molded and then sintered, after a green compact of alloy composition powder is formed by powder compaction, the surface of the green compact is coated with a material having corrosion resistance. A method for producing a sintered alloy, characterized by:
JP18807189A 1989-07-20 1989-07-20 Manufacture of sintered alloy having corrosion resistant film Pending JPH0353001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18807189A JPH0353001A (en) 1989-07-20 1989-07-20 Manufacture of sintered alloy having corrosion resistant film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18807189A JPH0353001A (en) 1989-07-20 1989-07-20 Manufacture of sintered alloy having corrosion resistant film

Publications (1)

Publication Number Publication Date
JPH0353001A true JPH0353001A (en) 1991-03-07

Family

ID=16217200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18807189A Pending JPH0353001A (en) 1989-07-20 1989-07-20 Manufacture of sintered alloy having corrosion resistant film

Country Status (1)

Country Link
JP (1) JPH0353001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152778A1 (en) * 2015-03-20 2016-09-29 日立化成株式会社 Method for forming molded article by press molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152778A1 (en) * 2015-03-20 2016-09-29 日立化成株式会社 Method for forming molded article by press molding

Similar Documents

Publication Publication Date Title
US3879901A (en) Metal-coated diamonds in a metal alloy matrix
AU2011244998B2 (en) Method for the manufacture of a shaped body as well as green compact
US5453242A (en) Process for producing sintered-iron molded parts with pore-free zones
US7976596B2 (en) High density abrasive compacts
JP2010189769A (en) Method of preparing iron-based component by compaction with elevated pressure
US4849163A (en) Production of flat products from particulate material
JP4668620B2 (en) Powder composition and method for producing high-density green compact
JPH0353001A (en) Manufacture of sintered alloy having corrosion resistant film
TW200426226A (en) Powder metal composition and method for producing components thereof
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
JP3113144B2 (en) Method for producing high density sintered titanium alloy
JP2932538B2 (en) Manufacturing method of alloy material for molding bullets
JPS6410561B2 (en)
JP2012511629A (en) Semi-finished product for producing a sintered metal member, semi-finished product production method and member production
JPH04124205A (en) Metal member having high accuracy and high specific gravity and manufacture thereof
JPS6043894B2 (en) Process for manufacturing composite metals consisting of tungsten, silver and copper
JP2731857B2 (en) Alloy for forming bullet and method for producing the same
JPH01165706A (en) Sintered compact having double phase structure and manufacture thereof
JPS6227545A (en) Manufacture of sintered soft-magnetic parts
JP2002289418A (en) High-density sintered body granulating powder and sintered body using the same
JP3135555B2 (en) High speed tool steel sintered body
JPH03100104A (en) Manufacture of iron-copper series powder metallurgical product
JPH01287203A (en) Method for compacting powder and mold for compacting powder
JPH0397826A (en) Alloy for formed bullet and its production
JPH07278693A (en) Production of tungsten-based sintered heavy alloy