JPH04124205A - Metal member having high accuracy and high specific gravity and manufacture thereof - Google Patents

Metal member having high accuracy and high specific gravity and manufacture thereof

Info

Publication number
JPH04124205A
JPH04124205A JP24306890A JP24306890A JPH04124205A JP H04124205 A JPH04124205 A JP H04124205A JP 24306890 A JP24306890 A JP 24306890A JP 24306890 A JP24306890 A JP 24306890A JP H04124205 A JPH04124205 A JP H04124205A
Authority
JP
Japan
Prior art keywords
specific gravity
metal
precision
heavy
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24306890A
Other languages
Japanese (ja)
Other versions
JP2591855B2 (en
Inventor
Yasunao Kai
安直 甲斐
Chiaki Yamazaki
千秋 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2243068A priority Critical patent/JP2591855B2/en
Publication of JPH04124205A publication Critical patent/JPH04124205A/en
Application granted granted Critical
Publication of JP2591855B2 publication Critical patent/JP2591855B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a metal member with high sp.gr. having accurate shape without requiring finish working such as grinding and machining, after sintering over the whole surface or a part thereof by infiltrating packed metal on a temporarily sintered body of high sp. gr. metal basis powder compact body. CONSTITUTION:The high accurate and high sp. gr. composite member is composed of 5-10mum particle diameter of middle particles and 1-3mum particle diameter of small particles and the high sp. gr. basis powder of W, etc., has particle size composition of 10-40wt.% blending ratio of the above middle particles. The packing assist agent, such as Ni, is added to the heavy sp. gr. basis powder of W, etc., at < 10wt.%, desirably 0.05-0.5wt.%. The mixture abtd. in such way is packed into a compacting die at 50--75% packing ratio and infiltrating the packed material of Cu, etc., into the temporarily-sintering at 1000-1200 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、小型で且つ高精度の形状が必要とされる高比
重金属部材およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high specific gravity metal member that is small and requires a highly accurate shape, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来から、各種の用途に用いるバランスウェイト材とし
て高比重のW−系焼結合金が知られている。
BACKGROUND ART Conventionally, high specific gravity W-based sintered alloys have been known as balance weight materials used for various purposes.

ところが、かかる焼結合金は焼結過程での収縮が大きく
、ポケットベル用振動子のバランサーのように小型でし
かも精密な形状が要求される部分にこのような焼結重合
金を適用するためには、型枠として削り代を見込んだ型
を使用して成形焼結し、焼結後の形状を調整するための
研削又は切削等の仕上げ加工を行っている。
However, such sintered alloys shrink significantly during the sintering process, and it is difficult to apply such sintered heavy alloys to parts that require small and precise shapes, such as balancers for pager vibrators. In this method, molding and sintering is performed using a mold that allows for cutting allowance, and finishing processing such as grinding or cutting is performed to adjust the shape after sintering.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明において解決すべき課題は、焼結後の研削又は切
削等の仕上げ加工を全面又は一部分必要としない精密な
形状を有する高重量金属の部材を提供することにある。
The problem to be solved by the present invention is to provide a heavy metal member having a precise shape that does not require finishing processing such as grinding or cutting after sintering on the entire surface or in part.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の高精度高比重複合部材は、重比重金属基材粉末
成形体の仮焼結体に、充填金属を溶浸せしめたことを特
徴とする。
The high-precision, high-specific-gravity composite member of the present invention is characterized in that a pre-sintered body of a high-specific gravity metal base powder compact is infiltrated with a filling metal.

重比重金属基材として、高比重であって、機器構成部材
としての強度と表面硬さを有するW。
W has a high specific gravity as a heavy specific gravity metal base material, and has the strength and surface hardness as a device component.

Re、Ta、Os、rr等の焼結可能な金属を任意に使
用することができる。
Any sinterable metal such as Re, Ta, Os, rr, etc. can be used.

また、溶浸用金属としては、比較的高比重で、仮焼結体
中への充填性が良く、しかも、使用雰囲気に対する耐食
性において優れた金属が好適に使用できる。この充填金
属としては、Cu、 Δg。
Further, as the metal for infiltration, a metal that has a relatively high specific gravity, can be easily filled into the temporary sintered body, and has excellent corrosion resistance against the atmosphere in which it is used can be suitably used. This filling metal is Cu, Δg.

Auの様に融点が重比重金属基材よりかなり低い融点を
持つ金属を使用できる。
A metal such as Au having a melting point considerably lower than that of the heavy specific gravity metal base material can be used.

本発明の高精度高比重複合部材は、粒径が5〜10μm
の中粒子と1〜3μmの小粒子とからなり前記中粒子の
配合割合が重量比で10〜40重量%を占める粒度組成
を有する重比重基材粉末に1.0重量%まで、好ましく
は0.05〜0.5重量%のNr のような充填助剤を
含有せしめたものを成形型中に充填し、圧縮成形後、1
000〜1200℃の温度で仮焼結したのち、充填材料
を仮焼結体中に溶浸することによって得られる。
The high precision high specific gravity composite member of the present invention has a particle size of 5 to 10 μm.
Up to 1.0% by weight, preferably 0% by weight, is added to the heavy specific gravity base material powder, which has a particle size composition consisting of medium particles and small particles of 1 to 3 μm, and the proportion of the medium particles is 10 to 40% by weight. A material containing a filling aid such as .05 to 0.5% by weight of Nr was filled into a mold, and after compression molding, 1
It is obtained by pre-sintering at a temperature of 000 to 1200°C and then infiltrating the filler material into the pre-sintered body.

〔作用〕[Effect]

本発明の高精度高比重複合部材は高い比重基材粉末の成
形密度が比較高く、しかも焼結が通常の焼結温度よりも
低温で行われるので焼結に際しての収縮の程度を0,5
%以下に抑えることができる。
The high-precision, high-specific gravity composite member of the present invention has a relatively high compacting density of the high-specific gravity base material powder, and since sintering is performed at a lower temperature than the normal sintering temperature, the degree of shrinkage during sintering can be reduced to 0.5.
% or less.

しかも、溶浸温度は仮焼結体基材の寸法に全く影響を与
えない条件下で行われ、その仮焼結過程では中粒子の間
に存在する小粒子表面に溶浸助剤が部分的に付着し、こ
れが溶浸材への積極的な吸着作用を有し、溶浸材の充填
率は90%以上となり、理論密度の98%の15.5〜
!6.5g/cm’  の密度のものが製出できる。
Moreover, the infiltration temperature is carried out under conditions that do not affect the dimensions of the pre-sintered base material at all, and during the pre-sintering process, the infiltration aid is partially applied to the surface of the small particles that exist between the medium particles. This has an active adsorption effect on the infiltrant, and the filling rate of the infiltrant is 90% or more, which is 15.5 to 98% of the theoretical density.
! A material with a density of 6.5 g/cm' can be produced.

〔実施例〕〔Example〕

平均粒子径が1μmの粉末が30重量%と、平均粒子径
が8μmの粉末が70重量%とからなる粒度組成を有す
るW粒子を、溶浸助剤としてNi 粉末の含有量を0か
ら1.5重量%まで変化させて製品と同一の内容サイズ
を有する超硬製型材に充填して、3トンの圧力の下でプ
レスし成形して、gJ1図に示す形状を有し、各部分の
サイズが製品と同一のポケットベル用振動子のバランサ
ー1を成形した。
W particles having a particle size composition of 30% by weight of powder with an average particle diameter of 1 μm and 70% by weight of powder with an average particle diameter of 8 μm were used as an infiltration aid, with the content of Ni powder ranging from 0 to 1. Fill a carbide mold material with the same content size as the product with a change of up to 5% by weight, press and mold it under a pressure of 3 tons, and have the shape shown in Figure gJ1, and the size of each part. molded a balancer 1 for a pager vibrator that was the same as the product.

この成形体をH2雰囲気下、1100℃の温度で仮焼結
体を得た。
A pre-sintered body was obtained from this molded body at a temperature of 1100° C. under an H2 atmosphere.

それぞれの仮焼結体を、H2雰囲気下、1100℃の温
度で、純度99.9%の純銅を仮焼結体中に溶浸した。
Pure copper with a purity of 99.9% was infiltrated into each of the temporary sintered bodies at a temperature of 1100° C. in an H2 atmosphere.

第1表に、各状態の態様を示す。Table 1 shows the aspects of each state.

〈以下、この頁余白) 〔試験結果〕 上記表から次のことが言える。(Hereafter, the margins of this page) 〔Test results〕 From the above table, the following can be said.

Ni を添加しない場合の仮焼結体は強度不足によって
ハンドリング性に劣ると共に、溶浸性が炉内雰囲気によ
って左右されるが、溶浸性において劣るものであった。
The pre-sintered body without the addition of Ni had poor handling properties due to insufficient strength, and was also poor in infiltration properties, although the infiltration properties were affected by the atmosphere in the furnace.

Ni をW粉末に対して0.05〜0.5重量%配合し
たものは仮焼結体自体のハンドリング性において優れて
いた。溶浸性も良好であって、溶浸炉の雰囲気には左程
左右されない。成形体に対する収縮率は0.01〜0.
05であってポケットベル振動子のバランス材としての
形状精密性は充分であった。
Those containing 0.05 to 0.5% by weight of Ni based on the W powder had excellent handling properties of the pre-sintered body itself. The infiltration property is also good and is not affected by the atmosphere of the infiltration furnace. The shrinkage rate for the molded product is 0.01 to 0.
05, the shape precision as a balance material for a pager vibrator was sufficient.

さらに、Ni をW粉末に対して0.5重量%以上配合
したものは、溶浸時にNi−Cu合金が生成して、溶浸
材の融点が上昇し、W仮焼結体との濡れ角が低下し、C
uの溶浸性が低下すると共に、NiのWへの活性化によ
って生成体の収縮度合が増大する。
Furthermore, when 0.5% by weight or more of Ni is added to the W powder, a Ni-Cu alloy is formed during infiltration, the melting point of the infiltrant increases, and the wetting angle with the W pre-sintered body increases. decreases, C
As the infiltration of u decreases, the degree of shrinkage of the product increases due to the activation of Ni to W.

以上のように、本発明によって得られた高比重体は、形
状精密性も良く、サイズを調整するための研削又は切削
等による外周部の後加工を必要としなかった。
As described above, the high specific gravity body obtained by the present invention had good shape precision and did not require post-processing of the outer periphery by grinding or cutting to adjust the size.

〔発明の効果〕〔Effect of the invention〕

本発明によって以下の効果を奏することができる。 The following effects can be achieved by the present invention.

〔1)均質で成形体に対して、殆ど収縮のない焼結重合
金部材を安価に得ることができる。
[1) A sintered heavy alloy member that is homogeneous and exhibits almost no shrinkage in a molded body can be obtained at a low cost.

(2)殆ど収縮がないため、高精度かつサイズバラツキ
のない焼結重合金部材を得ることができる。
(2) Since there is almost no shrinkage, it is possible to obtain a sintered heavy alloy member with high precision and no size variation.

(3)収縮を考慮した金型の設計が不必要である。(3) It is unnecessary to design a mold that takes shrinkage into account.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を適用したポケットベル用振動子のバ
ランサー形状を示す図である。 1:ポケットベル用振動子のバランサー特許出願人  
日本タングステン株式会社代  理  人   小  
堀   益第 図
FIG. 1 is a diagram showing the shape of a balancer of a pager vibrator to which the present invention is applied. 1: Patent applicant for pager vibrator balancer
Representative of Nippon Tungsten Co., Ltd.
Masu Hori Diagram

Claims (1)

【特許請求の範囲】 1、含浸材との親和材を0.05〜0.5重量%含有量
する重比重金属基材の仮焼結体に、充填金属を溶浸せし
めてなる高精度高比重金属部材。 2、請求項1の記載において、重比重金属材がW,Re
,Ta,Os,Irからなる群から選択された1種以上
であり、また充填金属がCu,Ag,Pt,Auからな
る群から選択された単一金属または2種以上の合金であ
る高精度高比重金属部材。 3、請求項1の記載において、含浸材との親和材がNi
である高精度高比重金属部材。 4、粒径が5〜10μmの中粒子と1〜3μmの小粒子
とからなり、前記中粒子の配合割合が重量比で10〜4
0重量%を占める粒度組成を有する重比重金属基材粉末
に含浸材との親和材を0.05〜1.0重量%含有せし
めてなる混合物粉末を成形型中に充填し、圧縮成形後、
1000〜1200℃の温度で仮焼結したのち、充填材
料を前記仮焼結体に溶浸する高精度高比重金属部材の製
造方法。 5、請求項4の記載において、重比重金属基材がW,R
e,Ta,Os,Irからなる群から選択された1種以
上であり、また、充填金属がCu,Ag,Auからなる
群から選択された単一金属また2種以上の合金である高
精度高比重金属部材の製造方法。 6、請求項4の記載において、重比重金属基材がWであ
り、溶浸助剤がNiであり、溶浸材がCuであって、成
形後の充填率が50〜75%であり、焼結温度が100
0〜1200℃であり、溶浸材の溶浸温度が1100〜
1200℃である高精度高比重金属部材の製造方法。
[Claims] 1. A high-precision high-precision product made by infiltrating a filling metal into a pre-sintered body of a heavy metal base material containing 0.05 to 0.5% by weight of a material compatible with the impregnating material. Specific gravity metal parts. 2. In the description of claim 1, the heavy specific gravity metal material is W, Re.
, Ta, Os, Ir, and the filling metal is a single metal or an alloy of two or more selected from the group consisting of Cu, Ag, Pt, and Au. High specific gravity metal parts. 3. In the description of claim 1, the compatible material with the impregnating material is Ni.
High precision, high specific gravity metal parts. 4. Consists of medium particles with a particle size of 5 to 10 μm and small particles of 1 to 3 μm, and the blending ratio of the medium particles is 10 to 4 by weight.
A mixture powder made by containing 0.05 to 1.0 weight % of a material compatible with the impregnating material in a heavy specific gravity metal base powder having a particle size composition of 0 weight % is filled into a mold, and after compression molding,
A method for manufacturing a high-precision, high-density metal member, which comprises pre-sintering at a temperature of 1000 to 1200°C, and then infiltrating the pre-sintered body with a filling material. 5. In the description of claim 4, the heavy specific gravity metal base material is W, R.
High precision, in which one or more metals are selected from the group consisting of e, Ta, Os, and Ir, and the filling metal is a single metal selected from the group consisting of Cu, Ag, and Au, or an alloy of two or more types. A method for manufacturing a high specific gravity metal member. 6. In the description of claim 4, the heavy specific gravity metal base material is W, the infiltration aid is Ni, the infiltrant is Cu, and the filling rate after molding is 50 to 75%, Sintering temperature is 100
0~1200℃, and the infiltration temperature of the infiltrant material is 1100~1100℃.
A method for manufacturing a high-precision, high-density metal member at 1200°C.
JP2243068A 1990-09-12 1990-09-12 High-precision weight parts and their manufacturing method Expired - Lifetime JP2591855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243068A JP2591855B2 (en) 1990-09-12 1990-09-12 High-precision weight parts and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243068A JP2591855B2 (en) 1990-09-12 1990-09-12 High-precision weight parts and their manufacturing method

Publications (2)

Publication Number Publication Date
JPH04124205A true JPH04124205A (en) 1992-04-24
JP2591855B2 JP2591855B2 (en) 1997-03-19

Family

ID=17098320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243068A Expired - Lifetime JP2591855B2 (en) 1990-09-12 1990-09-12 High-precision weight parts and their manufacturing method

Country Status (1)

Country Link
JP (1) JP2591855B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509352A (en) * 2008-01-10 2011-03-24 エシコン・インコーポレイテッド Tungsten alloy suture needle
CN102667557A (en) * 2009-11-25 2012-09-12 住友电气工业株式会社 Reinforcing member and reinforcing method for fusion spliced portions of optical fibers
US9358000B2 (en) 2006-12-15 2016-06-07 Ethicon, Inc. Tungsten alloy suture needles
CN110976889A (en) * 2019-12-30 2020-04-10 西安理工大学 Preparation method of high-W-content W-Cu composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505206A (en) * 1973-05-19 1975-01-20
JPS59143346A (en) * 1983-02-03 1984-08-16 Sumitomo Electric Ind Ltd Manufacture of material for semiconductor substrate
JPS59143347A (en) * 1983-02-03 1984-08-16 Sumitomo Electric Ind Ltd Manufacture of material for semiconductor substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505206A (en) * 1973-05-19 1975-01-20
JPS59143346A (en) * 1983-02-03 1984-08-16 Sumitomo Electric Ind Ltd Manufacture of material for semiconductor substrate
JPS59143347A (en) * 1983-02-03 1984-08-16 Sumitomo Electric Ind Ltd Manufacture of material for semiconductor substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9358000B2 (en) 2006-12-15 2016-06-07 Ethicon, Inc. Tungsten alloy suture needles
JP2011509352A (en) * 2008-01-10 2011-03-24 エシコン・インコーポレイテッド Tungsten alloy suture needle
CN102667557A (en) * 2009-11-25 2012-09-12 住友电气工业株式会社 Reinforcing member and reinforcing method for fusion spliced portions of optical fibers
CN110976889A (en) * 2019-12-30 2020-04-10 西安理工大学 Preparation method of high-W-content W-Cu composite material

Also Published As

Publication number Publication date
JP2591855B2 (en) 1997-03-19

Similar Documents

Publication Publication Date Title
US5778301A (en) Cemented carbide
US4626516A (en) Infiltration of Mo-containing material with silicon
US4491559A (en) Flowable composition adapted for sintering and method of making
JP5456948B2 (en) Method for producing polycrystalline cubic boron nitride cutting tool insert
CN1335191A (en) Golf-club with weighing block made of many kinds of materials
US6399018B1 (en) Powdered material rapid production tooling method and objects produced therefrom
JPH04124205A (en) Metal member having high accuracy and high specific gravity and manufacture thereof
US4432795A (en) Sintered powdered titanium alloy and method of producing same
JP3113144B2 (en) Method for producing high density sintered titanium alloy
GB2148270A (en) Cermet materials
JP2864564B2 (en) Manufacturing method of alloy for molding bullet
JP2012511629A (en) Semi-finished product for producing a sintered metal member, semi-finished product production method and member production
JP2863829B2 (en) High toughness, high strength, high hardness alumina-based composite material
RU2062812C1 (en) Charge of solid alloy on the base of tungsten carbide
JPS6043423B2 (en) Method for manufacturing tool alloy with composite structure
JP3066571B2 (en) WC-Fe alloy using iron-carbon as binder and method for producing the same
JPS6046170B2 (en) Copper alloy used for liquid phase sintering of iron powder
JPS6043894B2 (en) Process for manufacturing composite metals consisting of tungsten, silver and copper
JPH05320814A (en) Composite member and its production
JP3865816B2 (en) Manufacturing method of laminated structural material
JPH07316686A (en) Oxidation-resistant high-specific gravity metallic member and its production
JPH0359122B2 (en)
JPS62127449A (en) Electrode material for electric discharge machining and its production
JPH03153831A (en) Production of cu-w sintered alloy member
JPH08288436A (en) Material for semiconductor substrate and its manufacture