JPH03100104A - Manufacture of iron-copper series powder metallurgical product - Google Patents

Manufacture of iron-copper series powder metallurgical product

Info

Publication number
JPH03100104A
JPH03100104A JP23477689A JP23477689A JPH03100104A JP H03100104 A JPH03100104 A JP H03100104A JP 23477689 A JP23477689 A JP 23477689A JP 23477689 A JP23477689 A JP 23477689A JP H03100104 A JPH03100104 A JP H03100104A
Authority
JP
Japan
Prior art keywords
powder
infiltrant
iron
mold
infiltration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23477689A
Other languages
Japanese (ja)
Inventor
Shigeaki Takagi
高城 重彰
Masaki Kono
正樹 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23477689A priority Critical patent/JPH03100104A/en
Publication of JPH03100104A publication Critical patent/JPH03100104A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a large scale Fe-Cu series powder metallurgical product having excellent strength at low cost by sintering together with a molding mold after packing ferrous powder into the molding mold under non-pressurizing and successively, infiltrating the specific composition of Cu series infiltrant. CONSTITUTION:The fine powder of pure iron or alloy steel is packed into the compacting mold having the prescribed shape while vibrating under non- pressurizing and sintered under inert gas atmosphere or reducing atmosphere. The Cu series infiltrative material obtd. by adding and containing <= 8 wt.% infiltration improving agent of Mn, Zn, etc., to and in mixed material having composition composed of 2-9 wt.% Fe, 3-13 wt.% one or more kinds of Ni, Cr and Mo in total and the balance Cu, is infiltrated to the sintered product. As the other way, the above compositionof infiltrant is laid on the feerous powder green compact and heated under non-oxidizing atmosphere to execute the sinter of green compact and the infiltration of infiltrant at the same time. The sintered product having excellent strength can be manufacture in the simple process at low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野j 本発明は金型などの大型焼結部材の製造方法に関し、特
に、部材の高強度化を主目的とする製造方法である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing large sintered members such as molds, and particularly to a method for manufacturing large-sized sintered members such as molds, and in particular, the main objective is to increase the strength of the members.

【従来の技術l 粉末冶金法の適用により、金型などの大型焼結部材の製
造がなされている。この方法により、短期間で複雑形状
部材が製造できることを、本発明者らは特願昭62−3
22869号公報及び同62−322870号公報に開
示した。
[Prior Art 1] Large sintered members such as molds are manufactured by applying powder metallurgy. The inventors of the present invention discovered in Japanese Patent Application No. 62-3 that complex-shaped parts can be manufactured in a short period of time by this method.
It was disclosed in Japanese Patent No. 22869 and Japanese Patent No. 62-322870.

これ等は、鉄系粉末を成形型に無加圧充填し、成形型と
共に焼結して大型部材を得る方法で、焼結体の機械的特
性を高めるため、焼結に引き続いて銅系溶浸材を溶浸し
て空隙を埋める製造方法である。
These methods involve filling a mold with iron-based powder without pressure and sintering it together with the mold to obtain a large component. This is a manufacturing method that fills the voids by infiltrating with an infiltrating material.

[発明が解決しようとする課題l しかしながら、上記の方法は無加圧充填のため鉄系粉末
の充填密度は比較的小さく、空隙を溶浸剤で埋めても、
いまだ焼結体の強度が不十分である問題が生じることが
多かった。
[Problems to be Solved by the Invention] However, since the above method is filled without pressure, the packing density of the iron-based powder is relatively small, and even if the voids are filled with an infiltrant,
The problem still often arises that the strength of the sintered body is insufficient.

強度を向上するには、第1に鉄系粉末としてNi、Cr
、Moなどを含有する合金銅粉を使用する方法がある。
In order to improve the strength, the first step is to use Ni and Cr as iron-based powders.
There is a method of using alloyed copper powder containing , Mo, etc.

しかし、鉄系粉末の充填密度を少しでも上昇させるため
には粒度構成が重要であり、特殊な粒度の合金鋼粉は低
価格で入手することが困難であり、コスト上の問題が生
じる。
However, in order to increase the packing density of iron-based powder even a little, the particle size structure is important, and alloy steel powder with a special particle size is difficult to obtain at a low price, resulting in cost problems.

第2に、鉄系粉末として、鉄粉にNi、Cr、Moなど
の粉末を添加した混合粉末を用いる方法が考えられる。
Second, a method using a mixed powder in which powders such as Ni, Cr, and Mo are added to iron powder is considered as the iron-based powder.

しかしこの場合も、混合粉末の粒度構成が重要であり、
充填密度を確保するためにNiなとの粉末の粒度を限定
すると、コスト上昇の問題が生じる。
However, in this case as well, the particle size structure of the mixed powder is important;
If the particle size of the Ni powder is limited in order to ensure the packing density, the problem of increased cost arises.

第3は、銅系溶浸剤としてCuのほかに、Niなどを含
有させる方法がある1例えば、特公昭56−13763
号公報には、15〜30重量%のNi、25〜35重量
%のMn、残部Cuからなる溶浸剤を容器内で溶解し、
鉄系粉末の充填体に注いで溶浸する方法を開示している
。この方法では、溶浸剤を容器内で溶解してから鉄系粉
末の充填体に注いでおり、通常の溶浸とは異なる方法を
用いているため、鉄系粉末の充填体に寸法を合致させた
溶浸剤を鉄系粉末に接触させて溶浸する方法に比べて均
一な溶浸が行われにくく、設備も複雑な付帯機構を有し
てコスト高になる問題がある。
Thirdly, there is a method of containing Ni etc. in addition to Cu as a copper-based infiltrant.
In the publication, an infiltrant consisting of 15 to 30% by weight of Ni, 25 to 35% by weight of Mn, and the balance Cu is dissolved in a container,
Discloses a method of pouring and infiltrating a packed body of iron-based powder. In this method, the infiltrant is melted in a container and then poured into the iron-based powder filling, which is a different method from normal infiltration, so the dimensions are matched to the iron-based powder filling. Compared to a method in which iron-based powder is infiltrated with an infiltrant that is brought into contact with the iron powder, uniform infiltration is difficult to achieve, and the equipment also has complicated ancillary mechanisms, resulting in high costs.

また、鉄系粉末の充填体に溶浸剤を接触させて溶浸させ
る方法では上記組成の溶浸剤が十分に鉄系粉末中に浸透
しない問題点がある。
Further, in the method of bringing an infiltrant into contact with a filler of iron-based powder to infiltrate it, there is a problem that the infiltrant having the above composition does not sufficiently penetrate into the iron-based powder.

このように、従来技術及びそれから類推される技術によ
っては、無加圧充填体の溶浸によって十分な強度を得る
方法が無いのが現状である。
As described above, there is currently no method of obtaining sufficient strength by infiltration of a non-pressurized filler, depending on the prior art and the technology analogous to it.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上記課題を解決するため鋭意研究を進めた
結果、本発明を完成させたもので、本発明は鉄系粉末を
成形型に無加圧充填して、成形型と共に加熱して焼結し
、次いで該焼結体にFe:2〜9重量% Ni%Cr及びMo: 1種以上の合計量3〜13重量% Cu及び不可避不純物:残部 よりなる銅系溶浸材を溶浸させることを特徴とする鉄−
銅系粉末冶金製品の製造方法を提供するもので、銅系溶
浸剤に該溶浸剤の8重量%以下の溶浸助剤を含有させる
ことができる。
The present inventors have completed the present invention as a result of intensive research to solve the above problems.The present invention involves filling iron-based powder into a mold without pressure and heating it together with the mold. Sintered, and then infiltrated into the sintered body with a copper-based infiltration material consisting of Fe: 2 to 9% by weight, Ni% Cr and Mo: 3 to 13% by weight in total of one or more types, Cu and unavoidable impurities: the balance. Iron characterized by
A method for manufacturing a copper-based powder metallurgy product is provided, in which the copper-based infiltrant can contain an infiltration aid of 8% by weight or less of the infiltrant.

本発明法によれば、鉄系粉末として安価な鉄粉を用いる
ことができ、溶浸剤の作製もきわめて容易で、コスト上
の利点が大きく、しかも高強度化の効果が優れている。
According to the method of the present invention, inexpensive iron powder can be used as the iron-based powder, the preparation of the infiltrant is extremely easy, there are great cost advantages, and the effect of increasing strength is excellent.

[作用] 以下、本発明方法の作用につき詳細に述べる。[Effect] Hereinafter, the operation of the method of the present invention will be described in detail.

溶浸剤中のFe量を2〜9重量%とする。これは、無加
圧充填した鉄系粉末がCuの融液によって侵食され充填
の均一性が劣化したり、空孔が減ったり、溶浸が途中で
中断したりして、強度が低下するのを防止する効果を持
つ、Feが2重量%未満ではその効果が不十分である一
方、9重量%を越えるとかえって溶浸性が低下する。
The amount of Fe in the infiltrant is 2 to 9% by weight. This is because the iron-based powder filled without pressure is eroded by the Cu melt and the filling uniformity deteriorates, pores are reduced, and infiltration is interrupted midway, resulting in a decrease in strength. If Fe is less than 2% by weight, this effect will be insufficient, while if it exceeds 9% by weight, the infiltration property will deteriorate.

溶浸剤中にNi、Cr、Moの1種以上を含有させる。One or more of Ni, Cr, and Mo is contained in the infiltrant.

これらの元素は、いずれもFeに固溶して強度を高める
と共に、粉末として人手しやすいため溶浸剤を作製する
のが容易である。Ni、Cr、Moの1種以上の合計量
を3〜13重量%とする。3重量%未満であると強化作
用が不十分であり、逆に13重量%を越えると溶浸性が
劣化すると共にFeを強化する効果が飽和し1強度がか
えって低下する。
All of these elements are dissolved in Fe to increase the strength, and since they can be easily handled by hand in the form of powder, it is easy to prepare an infiltration agent. The total amount of one or more of Ni, Cr, and Mo is 3 to 13% by weight. If it is less than 3% by weight, the reinforcing effect will be insufficient, and if it exceeds 13% by weight, the infiltration properties will deteriorate and the effect of reinforcing Fe will be saturated, resulting in a decrease in strength.

溶浸剤の上記各成分以外の残部は銅及び不可避不純物よ
りなる。不可避不純物としてはSi1.1.Cなどが考
えられる。これらの原料中の通常量の存在は、本発明方
法の効果に本質的に悪影響を及ぼすことはない。
The remainder of the infiltrant other than the above-mentioned components consists of copper and unavoidable impurities. Unavoidable impurities include Si1.1. Possible examples include C. The presence of these materials in conventional amounts does not inherently adversely affect the effectiveness of the process.

本発明の溶浸剤には8重量%以下の溶浸助剤を含有する
ことができる。溶浸助剤としてはMn、Znなどが用い
られ、これ等により溶浸はきわめて順調に行われ、これ
らを含有しても焼結部材の強度は低下しない。
The infiltrant of the present invention can contain up to 8% by weight of an infiltration aid. Mn, Zn, etc. are used as infiltration aids, and infiltration is carried out very smoothly, and even if these are contained, the strength of the sintered member is not reduced.

本発明法において、鉄系粉末としてはコスト上は純鉄粉
を用いることが好ましいが、合金鋼粉も使用でき、充填
体の密度と焼結体の表面平滑性を高めるため1例えば、
最大粒径が500LLmで、粒径10gm以下の微粉を
含有するものが好適に用いられる。
In the method of the present invention, it is preferable to use pure iron powder as the iron-based powder in terms of cost, but alloy steel powder can also be used.
A material having a maximum particle size of 500 LLm and containing fine powder with a particle size of 10 gm or less is preferably used.

上記鉄系粉末を予め用意された成形型に充填する。成形
型は粉末が焼結により強度が向上し成形型の形状を正し
く転写する温度まで強度が十分であり、粉末との著しい
反応により成形をの転写を損なわないものであれば良い
。通常、高温まで強度を保つことのできるセラミックス
型を用いる。
The iron-based powder is filled into a mold prepared in advance. The mold may have sufficient strength up to the temperature at which the powder improves its strength through sintering and correctly transfers the shape of the mold, and does not impair the transfer of the molding due to significant reaction with the powder. Usually, a ceramic mold is used because it can maintain its strength up to high temperatures.

成形型の形状は焼結処理後、焼結体がそのままの形状で
、あるいは著しい加工を施さずに金型などとして機能で
きる形状とする。その製作方法は機械加工によっても良
いし、精密鋳造で用いられるセラミックス型の製造方法
によっても良く、要は転写面の粗さが小さ(、かつ強度
的にも優れたものであれば、いかなる製法によっても良
い。
The shape of the mold is such that the sintered body can function as a mold or the like after the sintering process, either as it is or without significant processing. The production method may be by machining or by the production method of ceramic molds used in precision casting. It's also good.

充填は乾式で行い、振動を加えることにより充填密度を
向上させることができる。振動の方法は、電磁振動、機
械振動などいかなる方法によっても良い。
Filling is done in a dry manner, and the packing density can be improved by adding vibration. The vibration method may be any method such as electromagnetic vibration or mechanical vibration.

また、振動中に、従来の加圧成形方法よりも極めて低い
圧力を施すことにより、より充填性を向上することがで
きる。この圧力は通常1kg/crn”以下でよ(、加
圧により充填性を向上させるだけでなく、成形型のエツ
ジ部分の転写性が向上するという利点がある。このよう
な充填方法を用いることにより、大型形状品の成形が通
常の粉末冶金で使用する高価なプレス機を用いずに、安
価にしかも容易にできるため、lmX1mにもおよぶ射
出成形用金型の製造などには非常に適している。
In addition, by applying extremely lower pressure during vibration than in conventional pressure molding methods, filling properties can be further improved. This pressure is usually 1 kg/crn'' or less (applying pressure not only improves the filling property but also has the advantage of improving the transferability of the edge portion of the mold. By using such a filling method, , it is possible to mold large-sized products easily and inexpensively without using the expensive press machines used in normal powder metallurgy, making it extremely suitable for manufacturing injection molds as large as 1m x 1m. .

次に粉末が充填された成形型を炉に装入して焼結を行う
。焼結は還元性雰囲気、不活性雰囲気。
Next, the mold filled with powder is placed in a furnace and sintered. Sintering is done in a reducing atmosphere, an inert atmosphere.

または真空で行い焼結後は型ばらしなする。Or do it in a vacuum and do not break the mold after sintering.

得られた焼結体はそれだけでは、金型などとしての強度
が不十分であるため、焼結体に残留する空孔な前述の組
成の銅系溶浸材で溶浸して強度を増大させる。溶浸は還
元性雰囲気、不活性雰囲気または真空で行うことが可能
である。
Since the obtained sintered body alone does not have sufficient strength as a mold, etc., it is infiltrated with a copper-based infiltrant having the above-mentioned composition in the pores remaining in the sintered body to increase its strength. Infiltration can be carried out in a reducing atmosphere, inert atmosphere or vacuum.

なお、焼結と溶浸の工程を1工程、即ちlヒートサイク
ルで行っても、得られる効果に変りはない、l工程にす
ることにより、製造工程を短縮できるという利点がある
Incidentally, even if the sintering and infiltration steps are performed in one step, that is, in one heat cycle, the effect obtained remains the same.By using one step, there is an advantage that the manufacturing process can be shortened.

以上のように本発明により、高強度の大型粉末冶金製品
を低コストで製造することができる。
As described above, according to the present invention, large-sized powder metallurgy products with high strength can be manufactured at low cost.

〔実施例] 実施例1 鉄系粉末として、平均粒径230μm(粒度範囲150
〜500μm)のアトマイズ純鉄粉35重量部、平均粒
径29μm(粒度範囲15〜63μm)のアトマイズ純
鉄粉35重量部、平均粒径4.8μm(粒度範囲10μ
m以下)のカーボニル鉄粉30重量部を混合して粒度構
成を調整した鉄粉を用いた。
[Example] Example 1 As iron-based powder, average particle size 230 μm (particle size range 150 μm)
35 parts by weight of atomized pure iron powder with an average particle size of 29 μm (particle size range 15 to 63 μm), 35 parts by weight of atomized pure iron powder with an average particle size of 4.8 μm (particle size range 10 μm)
An iron powder whose particle size structure was adjusted by mixing 30 parts by weight of carbonyl iron powder (less than m) was used.

成形型として表面粗さ(Ra値)0.3μmのセラミッ
クス製モールドを用い、混合粉末を振動充填した。充填
体表面に、後述する粉末をプレス成形して成型体とした
銅系溶浸材をのせ、セラミックスのモールド、粉末充填
体、溶浸材を炉に装入して、窒素ガス雰囲気中、101
0℃で70分間加熱し充填体を焼結させたのち、2時間
かけて1180℃に昇温し溶浸材を溶かして溶浸を進行
させた。1180℃における保持時間は100分間とし
、そののち炉冷を行った。
A ceramic mold with a surface roughness (Ra value) of 0.3 μm was used as a mold, and the mixed powder was filled by vibration. A copper-based infiltrant material formed by press-molding the powder described later into a molded body was placed on the surface of the filling body, and the ceramic mold, the powder filling body, and the infiltration material were placed in a furnace, and heated in a nitrogen gas atmosphere for 10 minutes.
After heating at 0°C for 70 minutes to sinter the filler, the temperature was raised to 1180°C over 2 hours to melt the infiltrant and advance infiltration. The holding time at 1180°C was 100 minutes, and then the furnace was cooled.

冷却後、溶浸された焼結体をセラミックスのモールドか
ら取出し、6(高さ)XIOC幅)×35(長さ)mm
の試験片を切出して抗折力を求めた。
After cooling, the infiltrated sintered body is taken out from the ceramic mold and is 6 (height) x IOC width) x 35 (length) mm.
A test piece was cut out and the transverse rupture strength was determined.

銅系溶浸剤としては、Cuとして一150μmのアトマ
イズ銅粉、Niとして一150μmの電解ニッケル粉、
Cr及びFeとして一150μmの65%Cr含有フェ
ロクロム(Fe−Crl搗砕粉砕粉oとして一60μm
の還元モリブデン粉、Feとして一100μmのアトマ
イズ鉄粉を用い、第1表の配合で混合し、さらに、溶浸
助剤としてZnをアトマイズ亜鉛粉末の形で混合し、潤
滑剤としてステアリン酸亜鉛を混合物に対して0.8重
量%添加してから、4t/crn’の圧力で成形して用
いた。
As the copper-based infiltrant, atomized copper powder of -150 μm as Cu, electrolytic nickel powder of -150 μm as Ni,
65% Cr-containing ferrochrome (Fe-Crl crushed powder o) -150 μm as Cr and Fe
Using reduced molybdenum powder of After adding 0.8% by weight to the mixture, it was molded at a pressure of 4t/crn' and used.

各試験片の抗折力を第1表に示した。The transverse rupture strength of each test piece is shown in Table 1.

第1表から明らかなように、Fe、Ni、Cr、Moの
いずれも含まれないNo、 lに対し、本発明法による
に3.4.5.9.1O513,14,15,18,1
9,20,22,23、24.25.26.27は、い
ずれも抗折力が150 k g f/mrn”と高強度
が得られている。これに対し、No、 2.7%8.1
2.17は、Fe。
As is clear from Table 1, for No. 1, which does not contain any of Fe, Ni, Cr, or Mo, 3.4.5.9.1O513,14,15,18,1 was obtained by the method of the present invention.
No. 9, 20, 22, 23, and 24.25.26.27 all have high strength with a transverse rupture strength of 150 kg f/mrn. On the other hand, No. 2.7%8 .1
2.17 is Fe.

Ni、Cr、Moのいずれかが不足するため強度が十分
でなく、一方、動、6.11.16.21は、いずれか
が過剰のため、かえって強度が低下している。
The strength is insufficient due to the lack of any one of Ni, Cr, and Mo, while the strength of Dynamic 6.11.16.21 is actually reduced due to an excess of any one of them.

〔発明の効果〕〔Effect of the invention〕

本発明により、高強度の大型粉末冶金材料が、低コスト
で製造できる。
With the present invention, large-sized powder metallurgy materials with high strength can be produced at low cost.

Claims (1)

【特許請求の範囲】 1 鉄系粉末を成形型に無加圧充填して成形型と共に加
熱して焼結し、次いで該焼結体に Fe:2〜9重量% Ni、Cr及びMo: 1種以上の合計量3〜13重量% Cu及び不可避不純物:残部 よりなる銅系溶浸剤を溶浸させることを特徴とする鉄−
銅系粉末冶金製品の製造方法。 2 銅系溶浸剤が該溶浸剤の8重量%以下の溶浸助剤を
含有する請求項1記載の鉄−銅系粉末冶金製品の製造方
法。
[Claims] 1. Iron-based powder is filled into a mold without pressure, heated and sintered together with the mold, and then the sintered body is coated with Fe: 2 to 9% by weight, Ni, Cr, and Mo: 1 The total amount of 3 to 13% by weight of Cu and unavoidable impurities: the iron is infiltrated with a copper-based infiltrant consisting of the balance.
A method for producing copper-based powder metallurgy products. 2. The method for manufacturing an iron-copper powder metallurgy product according to claim 1, wherein the copper-based infiltrant contains an infiltration aid in an amount of 8% by weight or less of the infiltrant.
JP23477689A 1989-09-12 1989-09-12 Manufacture of iron-copper series powder metallurgical product Pending JPH03100104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23477689A JPH03100104A (en) 1989-09-12 1989-09-12 Manufacture of iron-copper series powder metallurgical product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23477689A JPH03100104A (en) 1989-09-12 1989-09-12 Manufacture of iron-copper series powder metallurgical product

Publications (1)

Publication Number Publication Date
JPH03100104A true JPH03100104A (en) 1991-04-25

Family

ID=16976193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23477689A Pending JPH03100104A (en) 1989-09-12 1989-09-12 Manufacture of iron-copper series powder metallurgical product

Country Status (1)

Country Link
JP (1) JPH03100104A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599784A (en) * 2020-12-16 2021-04-02 南京邮电大学 Porous aluminum alloy current collector and preparation method thereof, and porous aluminum alloy composite sodium negative electrode and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599784A (en) * 2020-12-16 2021-04-02 南京邮电大学 Porous aluminum alloy current collector and preparation method thereof, and porous aluminum alloy composite sodium negative electrode and preparation method thereof

Similar Documents

Publication Publication Date Title
US20020106297A1 (en) Co-base target and method of producing the same
EP1395383B1 (en) Method for the preparation of high density stainless steel products
US6761852B2 (en) Forming complex-shaped aluminum components
JP2009544841A (en) Iron-based powder
US4343650A (en) Metal binder in compaction of metal powders
TW200426226A (en) Powder metal composition and method for producing components thereof
JPH03100104A (en) Manufacture of iron-copper series powder metallurgical product
JP2572053B2 (en) Manufacturing method of iron alloy moldings
US3859085A (en) Method for producing iron-base sintered alloys with high density
JPS6046170B2 (en) Copper alloy used for liquid phase sintering of iron powder
JPH02259029A (en) Manufacture of aluminide
JPS6312133B2 (en)
KR100262488B1 (en) Method of manufacturing sintered fe-si type soft magnets
JPH01165706A (en) Sintered compact having double phase structure and manufacture thereof
JPH0436428A (en) Manufacture of high toughness tungsten sintered alloy
JPH04259302A (en) Production of iron-copper powder metallurgical product
JPS59190338A (en) Manufacture of alnico type permanent magnet alloy
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPS6119703A (en) Preparation of copper infiltrated ferrous sintered body
JPH03229832A (en) Manufacture of nb-al intermetallic compound
JPH02270932A (en) Manufacture of iron-copper series powder metallurgical product
JPH01129903A (en) Production of green compact sintered body of metal
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
JPS61130436A (en) Manufacture of rare earth metal magnet