JPH0352337B2 - - Google Patents
Info
- Publication number
- JPH0352337B2 JPH0352337B2 JP59133992A JP13399284A JPH0352337B2 JP H0352337 B2 JPH0352337 B2 JP H0352337B2 JP 59133992 A JP59133992 A JP 59133992A JP 13399284 A JP13399284 A JP 13399284A JP H0352337 B2 JPH0352337 B2 JP H0352337B2
- Authority
- JP
- Japan
- Prior art keywords
- molecular weight
- ultra
- polyethylene resin
- high molecular
- weight polyethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011347 resin Substances 0.000 claims description 33
- 229920005989 resin Polymers 0.000 claims description 33
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 claims description 28
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 claims description 28
- 230000001070 adhesive effect Effects 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 239000000853 adhesive Substances 0.000 claims description 19
- 229920000098 polyolefin Polymers 0.000 claims description 12
- 239000012943 hotmelt Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 6
- 238000003825 pressing Methods 0.000 claims description 6
- 238000005304 joining Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000906 Bronze Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/12—Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
- C08J5/124—Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives using adhesives based on a macromolecular component
- C08J5/128—Adhesives without diluent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は超高分子量ポリエチレン樹脂と金属と
の接合方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for joining ultra-high molecular weight polyethylene resin and metal.
(従来の技術)
超高分子量ポリエチレン樹脂は、一般の高密度
ポリエチレン樹脂よりも著しく大きな分子量を有
するものであり、滑り性、耐衝撃性、耐摩耗性、
耐寒性、耐薬品性等の各種特性が優れていること
から、一般機械、化学工業、輸送・搬送機器等の
多くの分野において使用されている。例えば、粉
体の輸送、貯蔵装置においては、摩耗,閉塞現象
を防止するために、ホツパー、シユート等の表面
に超高分子量ポリエチレン樹脂シートのライニン
グが施されている。この場合、金属と超高分子量
ポリエチレン樹脂との接着が困難なことから、樹
脂シートをボルト等の機械的接合手段によつて金
属表面に取付けるのが普通である。(Prior art) Ultra-high molecular weight polyethylene resin has a significantly larger molecular weight than general high-density polyethylene resin, and has excellent slipperiness, impact resistance, abrasion resistance,
Due to its excellent properties such as cold resistance and chemical resistance, it is used in many fields such as general machinery, chemical industry, and transportation and conveyance equipment. For example, in powder transportation and storage equipment, the surfaces of hoppers, chute, etc. are lined with ultra-high molecular weight polyethylene resin sheets in order to prevent wear and blockage phenomena. In this case, since it is difficult to adhere the metal and the ultra-high molecular weight polyethylene resin, the resin sheet is usually attached to the metal surface by mechanical joining means such as bolts.
(発明が解決しようとする問題点)
ところで上記のように、超高分子量ポリエチレ
ン樹脂シートを機械的接合手段によつて金属表面
に取付けた場合には、ライニング表面が平滑には
ならないために、粉体等の輸送に支障をきたし、
またその取付作業に手数を要するという問題があ
る。さらにライニングの全面が貼着されている訳
ではないので、その剥離強度も満足し得るもので
もない。(Problems to be Solved by the Invention) As mentioned above, when an ultra-high molecular weight polyethylene resin sheet is attached to a metal surface by mechanical bonding means, the lining surface is not smooth and powder This may hinder the transportation of bodies, etc.
Further, there is a problem in that the installation work requires a lot of effort. Furthermore, since the entire surface of the lining is not adhered, its peel strength is also not satisfactory.
本発明は上記の短所を解決しようとするもので
あり、即ち金属と超高分子量ポリエチレン樹脂と
を特定の方法で接合させることにより、強固な接
着力を発現させ、上記のようなライニングに応用
した場合には、その表面が平滑で剥離強度の高い
ライニングを高能率に施すことのできる方法を提
供しようとするものであつて、更に本発明によつ
て、これまでより広範囲な用途、例えば舶用プロ
ペラの耐キヤビテーシヨンエロージヨンや船底の
粗面化防止のための被覆への適用なども期待でき
る。 The present invention aims to solve the above-mentioned disadvantages, namely, by bonding metal and ultra-high molecular weight polyethylene resin using a specific method, a strong adhesive force is developed, which can be applied to the above-mentioned lining. It is an object of the present invention to provide a method that can efficiently apply a lining with a smooth surface and high peel strength in cases where the lining has a smooth surface and has a high peel strength. It is also expected to be used as a coating to prevent cavitation erosion and the roughening of ship bottoms.
(問題点を解決するための手段)
即ち、本発明は超高分子量ポリエチレン樹脂と
金属との間に熱溶融型ポリオレフイン系接着剤を
挟み、次いで140〜170℃の温度での加熱状態にお
いて、10Kgf/cm2を越えない圧力での加圧を施す
ことを特徴とする超高分子量ポリエチレン樹脂と
金属との接合方法に関するものである。(Means for Solving the Problems) That is, the present invention involves sandwiching a hot-melt polyolefin adhesive between an ultra-high molecular weight polyethylene resin and a metal, and then heating it at a temperature of 140 to 170° C. The present invention relates to a method for joining ultra-high molecular weight polyethylene resin and metal, which is characterized by applying pressure at a pressure not exceeding /cm 2 .
本発明に用いる超高分子量ポリエチレン樹脂と
は、分子量100万以上、好ましくは300万〜600万
程度のものをいい、通常一般的に言われるポリエ
チレン樹脂の数十倍〜数百倍の分子量を有する。
超高分子量ポリエチレン樹脂は、比重が0.94前後
と軽く、耐寒性(−100℃以下で使用可能)、電気
絶縁性に優れ、吸水・透水せず耐油,耐酸,耐有
機溶剤性に優れ、さらに振動や音を吸収する性質
がある。更に強度、剛性が大きく、割れを生じに
くく、また耐候性も良好な材料である。 The ultra-high molecular weight polyethylene resin used in the present invention refers to one with a molecular weight of 1 million or more, preferably about 3 million to 6 million, and has a molecular weight several tens to hundreds of times that of commonly used polyethylene resins. .
Ultra-high molecular weight polyethylene resin has a light specific gravity of around 0.94, has excellent cold resistance (can be used below -100℃), excellent electrical insulation, does not absorb or permeate water, has excellent resistance to oil, acid, and organic solvents, and is resistant to vibration. It has the property of absorbing sound. Furthermore, it is a material that has high strength and rigidity, is resistant to cracking, and has good weather resistance.
本発明者等は、のような特性を有する超高分子
量ポリエチレン樹脂を金属表面に接合することを
試したが、種々のテストの結果、熱溶融型ポリオ
レフイン系接着剤を用いて特定の条件で接合すれ
ば、非常に大きな接着力が得られることを見出し
た。これは従来の高密度ポリエチレン樹脂では軟
化温度が低いために、熱溶融型ポリオレフイン系
接着剤の性能を充分に生かせず、不満足な接着強
度しか得られなかつたのに対し、本発明は超高分
子量ポリエチレン樹脂の高い軟化温度と熱溶融性
ポリオレフイン系接着剤の最適使用温度とを組み
合わせる事により、強力な接着が可能であること
を見出したものである。 The inventors of the present invention attempted to bond an ultra-high molecular weight polyethylene resin with the following characteristics to a metal surface, but as a result of various tests, it was found that bonding under specific conditions using a hot-melt polyolefin adhesive was not possible. It has been found that a very high adhesive force can be obtained by doing so. This is because conventional high-density polyethylene resins have a low softening temperature and cannot fully utilize the performance of hot-melt polyolefin adhesives, resulting in unsatisfactory adhesive strength. It was discovered that strong adhesion is possible by combining the high softening temperature of polyethylene resin and the optimum operating temperature of the heat-melting polyolefin adhesive.
本発明では上記した超高分子量ポリエチレン樹
脂と金属との間に熱溶融型ポリオレフイン系接着
剤を挟み、加熱及び加圧を施し接合する。加熱は
超高分子量ポリエチレン樹脂が熱的な影響、例え
ば変形、溶融、劣化、損傷等を受けることがな
く、かつ熱溶融型ポリオレフイン系接着剤が良好
な接着性を呈するような条件でなければならな
い。すなわち加熱温度範囲は、140〜170℃とする
訳であるが、これは加熱温度が140℃未満では充
分な剥離及び剪断強度が得られず、また170℃を
越えると接着剤が変質を起こし、充分な剥離及び
剪断強度が得られないためである。また加圧につ
いても同様で超高分子量ポリエチレン樹脂が充分
に密着し、熱溶融型ポリオレフイン系接着剤が良
好な接着性を発揮し得る程度でなければならい。
すなわち10Kgf/cm2以下の加圧を行う訳である
が、これは加圧力が10Kgf/cm2を越えると、剥
離、剪断強度共に低下する傾向がみられるためで
ある。 In the present invention, a hot-melt polyolefin adhesive is sandwiched between the above-mentioned ultra-high molecular weight polyethylene resin and metal, and they are bonded by applying heat and pressure. The heating conditions must be such that the ultra-high molecular weight polyethylene resin is not affected by thermal effects such as deformation, melting, deterioration, damage, etc., and the hot-melt polyolefin adhesive exhibits good adhesive properties. . In other words, the heating temperature range is 140 to 170°C, but this is because if the heating temperature is less than 140°C, sufficient peeling and shear strength will not be obtained, and if it exceeds 170°C, the adhesive will deteriorate. This is because sufficient peeling and shear strength cannot be obtained. Similarly, the pressure must be such that the ultra-high molecular weight polyethylene resin adheres sufficiently and the heat-melting polyolefin adhesive exhibits good adhesion.
That is, a pressure of 10 Kgf/cm 2 or less is applied, because if the pressure exceeds 10 Kgf/cm 2 , both peeling and shear strength tend to decrease.
(作用及び発明の効果)
本発明によれば特異な性質を持つ超高分子量ポ
リエチレン樹脂を熱溶融型ポリオレフイン系接着
剤で、かつ特定の接着条件で金属に接合すること
により、強固な接着力が得られ、樹脂と金属との
剥離強度を著しく向上させることができる。(Operations and Effects of the Invention) According to the present invention, strong adhesive strength is achieved by bonding an ultra-high molecular weight polyethylene resin with unique properties to metal using a hot-melt polyolefin adhesive under specific bonding conditions. As a result, the peel strength between the resin and the metal can be significantly improved.
(実施例)
実施例
分子量300万〜600万の超高分子量ポリエチレン
樹脂シートを500mm×500mmの大きさに切断しタイ
ル状とし、その被接合面をサンダーもしくはブラ
スト機により粗面(表面粗さ10〜50μm)とし、
次いでこの面を有機溶剤により脱脂した。その
後、濃硫酸1500g、水120g、重クロム酸カリウ
ム75gから成る液に処理したタイル状の超高分子
量ポリエチレン樹脂を1時間以上浸漬し、超高分
子量ポリエチレン樹脂表面の活性化を行つた。こ
の後超高分子量ポリエチレン樹脂を水洗、常温乾
燥した。(Example) Example An ultra-high molecular weight polyethylene resin sheet with a molecular weight of 3 million to 6 million is cut into a tile shape of 500 mm x 500 mm, and the surface to be joined is roughened (surface roughness 10 ~50 μm),
This surface was then degreased with an organic solvent. Thereafter, the treated ultra-high molecular weight polyethylene resin tiles were immersed in a solution containing 1500 g of concentrated sulfuric acid, 120 g of water, and 75 g of potassium dichromate for over 1 hour to activate the surface of the ultra-high molecular weight polyethylene resin. Thereafter, the ultra-high molecular weight polyethylene resin was washed with water and dried at room temperature.
このようにして得られたタイル状の超高分子量
ポリエチレン樹脂の被接合面に、感熱接着性ポリ
オフイン樹脂フイルム(ここでは出光石油化学(株)
製、出光ポリタツクを用いた)を、温度160℃、
圧力10Kgf/cm2、時間約1分の条件下で圧着し
た。 A heat-sensitive adhesive polyoffine resin film (here, manufactured by Idemitsu Petrochemical Co., Ltd.
manufactured using Idemitsu Polytac) at a temperature of 160°C.
Pressure bonding was carried out under conditions of a pressure of 10 Kgf/cm 2 and a time of about 1 minute.
一方、アルミニウム青銅の表面もサンダー等に
より粗面化(表面粗さ10〜50μm)した後、脱脂
した。この被接合面に、前記の予め接着剤の圧着
されたタイル状の超高分子量ポリエチレン樹脂を
接合した。接合条件は、温度140〜170℃、圧力2
〜10Kgf/cm2、時間約1分であり、その後加圧下
で冷却した。 On the other hand, the surface of the aluminum bronze was also roughened using a sander or the like (to a surface roughness of 10 to 50 μm), and then degreased. The above-mentioned tile-shaped ultra-high molecular weight polyethylene resin, onto which the adhesive had been pressed in advance, was bonded to this surface to be bonded. The bonding conditions are temperature 140~170℃, pressure 2
~10 Kgf/cm 2 for about 1 minute, and then cooled under pressure.
さらに必要に応じて目地をポリエチレン溶融肉
盛により埋め、余盛を平滑にし、被覆面が滑らか
になるようにする。 Furthermore, if necessary, the joints are filled with polyethylene melt build-up, and the excess build-up is smoothed so that the covered surface becomes smooth.
比較例
実施例で用いた熱溶融型ポリオレフイン系接着
剤に代えて2液性常温硬化型エポキシ系接着剤
(ここでは住友スリーエム(株)製、スコツチウエル
ド1838B/Aを用いた)を用いた。接着条件を常
温、圧力1.6Kgf/cm2、時間48時間とした以外は
実施例と同様にして超高分子量ポリエチレン樹脂
を金属表面に接合した。Comparative Example A two-component cold-curing epoxy adhesive (Scotchiweld 1838B/A manufactured by Sumitomo 3M Ltd. was used here) was used instead of the hot-melting polyolefin adhesive used in the example. . The ultra-high molecular weight polyethylene resin was bonded to the metal surface in the same manner as in the example except that the bonding conditions were room temperature, pressure 1.6 kgf/cm 2 , and time 48 hours.
以上の実施例及び比較例で得られた超高分子量
ポリエチレン樹脂の剥離強度を第1図として示
す。この結果からも明らかな通り、本発明の方法
により超高分子量ポリエチレン樹脂と金属とを接
合すると、著しく大きい剥離強度が得られる。な
お金属としてアルミニウム青銅だけでなく鉄系材
料を用いた場合にも、上記と同様の結果の得られ
ることを確認している。 The peel strength of the ultra-high molecular weight polyethylene resins obtained in the above Examples and Comparative Examples is shown in FIG. As is clear from this result, extremely high peel strength can be obtained when ultra-high molecular weight polyethylene resin and metal are bonded by the method of the present invention. It has been confirmed that results similar to those described above can be obtained when not only aluminum bronze but also iron-based materials are used as the metal.
上記実施例において、圧力一定(10Kgf/cm2)、
の下に加熱温度を広範囲(120℃〜170℃)に変化
させた場合の剪断及び剥離強度のデータを第2図
に示すが、図のように加熱温度が140℃未満にな
ると、両強度共に大幅に低下していることが明ら
かである。また加熱温度が170℃を越える場合に
は、出光ポリタツクが熱劣化を起こすので好まし
くなく、したがつて実施例に開示した加熱温度が
最適である。 In the above example, the pressure is constant (10Kgf/cm 2 ),
Figure 2 shows data on shear and peel strength when the heating temperature is varied over a wide range (120℃ to 170℃).As shown in the figure, when the heating temperature is less than 140℃, both strengths decrease. It is clear that there has been a significant decline. Further, if the heating temperature exceeds 170°C, it is not preferable because the Idemitsu Polytack will undergo thermal deterioration, and therefore the heating temperature disclosed in the Examples is optimal.
さらに上記実施例において、加熱温度一定
(160℃)の下に、加圧力を広範囲(2Kgf/cm2〜
20Kgf/cm2)に変化させた場合の剪断及び剥離強
度のデータを第3図に示す。図のように加圧力が
高い場合(20Kgf/cm2)には、両強度共に大幅に
低下することが明らかである。したがつて加圧力
を10Kgf/cm2以下とするのが適している。 Furthermore, in the above example, the pressing force was varied over a wide range (2 Kgf/cm 2 ~
Figure 3 shows data on shear and peel strength when the strength was changed to 20 Kgf/cm 2 ). It is clear that when the pressing force is high (20 Kgf/cm 2 ) as shown in the figure, both strengths are significantly reduced. Therefore, it is suitable that the pressing force be 10 Kgf/cm 2 or less.
第1図は実施例及び比較例で得られた金属表面
の超高分子量ポリエチレン樹脂の剥離強度を図に
したもので、横軸は実施例及び比較例、縦軸は剥
離強度を示しており、第2図は超高分子量ポリエ
チレン樹脂と金属とを熱溶融型ポリオレフイン系
接着剤で接合する際の剥離強度及び剪断強度と加
熱温度との関係を示すグラフ、第3図は超高分子
量ポリエチレン樹脂と金属とを熱溶融型ポリオレ
フイン系接着剤で接合する際の剥離強度及び剪断
強度と加圧力との関係を示すグラフである。
FIG. 1 is a graph showing the peel strength of the ultra-high molecular weight polyethylene resin on the metal surface obtained in Examples and Comparative Examples, where the horizontal axis shows the Examples and Comparative Examples, and the vertical axis shows the peel strength. Figure 2 is a graph showing the relationship between peel strength and shear strength and heating temperature when ultra-high molecular weight polyethylene resin and metal are bonded using a hot-melt polyolefin adhesive, and Figure 3 is a graph showing the relationship between ultra-high molecular weight polyethylene resin and metal. It is a graph showing the relationship between peel strength, shear strength, and pressing force when joining metal with a hot-melt polyolefin adhesive.
Claims (1)
に、熱溶融型ポリオレフイン系接着剤を挟み、次
いで140〜170℃の温度での加熱状態において、10
Kgf/cm2を越えない圧力での加圧を施すことを特
徴とする超高分子量ポリエチレン樹脂と金属との
接合方法。1. A hot-melt polyolefin adhesive is sandwiched between an ultra-high molecular weight polyethylene resin and a metal, and then heated at a temperature of 140 to 170°C for 10 minutes.
A method for joining ultra-high molecular weight polyethylene resin and metal, characterized by applying pressure at a pressure not exceeding Kgf/ cm2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59133992A JPS6111230A (en) | 1984-06-27 | 1984-06-27 | Bonding of metal with superhigh molecular weight polyethylene resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59133992A JPS6111230A (en) | 1984-06-27 | 1984-06-27 | Bonding of metal with superhigh molecular weight polyethylene resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6111230A JPS6111230A (en) | 1986-01-18 |
JPH0352337B2 true JPH0352337B2 (en) | 1991-08-09 |
Family
ID=15117852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59133992A Granted JPS6111230A (en) | 1984-06-27 | 1984-06-27 | Bonding of metal with superhigh molecular weight polyethylene resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6111230A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6333590A (en) * | 1986-07-28 | 1988-02-13 | Akita Seiren Kk | Method for insulating and coating peripheral edge part of electrolytic cathode |
DE3911958C2 (en) * | 1989-04-12 | 1994-03-17 | Hueck Eduard Gmbh Co Kg | Use of a light metal sheet, which is coated on both sides with ultra high molecular weight polyethylene, as a press plate and method for producing the press plate |
AT395722B (en) * | 1990-04-23 | 1993-02-25 | Austria Metall | ALUMINUM CATHODE SHEETS FOR ELECTROLYTIC PRODUCTION OF ZINC |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5457540A (en) * | 1977-10-15 | 1979-05-09 | Nippon Telegr & Teleph Corp <Ntt> | Method of adhesion between lead material and polyolefin material |
-
1984
- 1984-06-27 JP JP59133992A patent/JPS6111230A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5457540A (en) * | 1977-10-15 | 1979-05-09 | Nippon Telegr & Teleph Corp <Ntt> | Method of adhesion between lead material and polyolefin material |
Also Published As
Publication number | Publication date |
---|---|
JPS6111230A (en) | 1986-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4162726B2 (en) | Adhesive fixing member | |
US4213486A (en) | Coated pipe and process for making same | |
EP0665782B1 (en) | Pressure-sensitive structural adhesive | |
JPS6367258B2 (en) | ||
US5205895A (en) | Method of forming bonded joints | |
JPH0352337B2 (en) | ||
JPS585253A (en) | Multilayer plane-shaped reinforcing body | |
JPH05340058A (en) | Method for bonding construction member and adhesive sheet to be used therefor | |
JPH0565468A (en) | Heat curable adhesive agent | |
JPS6111231A (en) | Bonding of metal with superhigh molecular weight polyethylene resin | |
JPS5874336A (en) | Manufacture of coated steel pipe | |
EP0740606B1 (en) | Composite articles | |
JPS637881A (en) | Formation of heat-meltable fluorocarbon resin layer on surface of metal | |
JPS62269781A (en) | Formation of hot melt fluoroplastic layer onto metallic surface | |
JP2020122082A (en) | Composite body | |
Lees | Modified epoxides; practical aspects of toughening | |
JPH0232184A (en) | Hot melt adhesive and adhering method | |
JP2699157B2 (en) | Rust prevention tape for welding groove | |
JPH0519458B2 (en) | ||
JPH0257158B2 (en) | ||
JPH0720575B2 (en) | Method for forming heat fusible fluorine resin layer on metal surface | |
JPS58108128A (en) | Method of joining honeycomb core | |
JPH0248939A (en) | Anti-corrosive protective layer of metallic material and method for making anti-corrosive protective layer | |
JPH0519459B2 (en) | ||
JPS63178041A (en) | Water, acid or alkali aqueous solution housing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |