JPH035221B2 - - Google Patents

Info

Publication number
JPH035221B2
JPH035221B2 JP2659585A JP2659585A JPH035221B2 JP H035221 B2 JPH035221 B2 JP H035221B2 JP 2659585 A JP2659585 A JP 2659585A JP 2659585 A JP2659585 A JP 2659585A JP H035221 B2 JPH035221 B2 JP H035221B2
Authority
JP
Japan
Prior art keywords
water
cooling
heat
cathode
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2659585A
Other languages
English (en)
Other versions
JPS61187959A (ja
Inventor
Takehiro Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGATA TETSUKO KK
Original Assignee
NAGATA TETSUKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGATA TETSUKO KK filed Critical NAGATA TETSUKO KK
Priority to JP2659585A priority Critical patent/JPS61187959A/ja
Publication of JPS61187959A publication Critical patent/JPS61187959A/ja
Publication of JPH035221B2 publication Critical patent/JPH035221B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nozzles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プラズマ溶射あるいはプラズマ溶接
において用いられるプラズマトーチの陰極あるい
は陽極部位を冷却する方法に係わる。
(従来の技術とその問題点) 従来、目的部位の冷却には水(液体)を接触通
過させ除熱する方法が採られている。この方法で
は、水の流量をV〔g/分〕、入口温度をTI〔℃〕、
出口温度をTp〔℃〕、比熱をCp〔cal/g℃〕で表
わせばQ=V・Cp・(Tp−TI)〔cal/分〕なる除
熱量を得る。
ちなみに、現在実用されている最大出力レベル
の80KWプラズマ溶射トーチでは、必要除熱量は
25000Kcal/時位であるから、25℃の市水を通し
て安全な温度80℃で戻すとすれば略8/分の水
を必要とする。こうして、冷却に使用された温水
は放水するか冷水循環装置で除熱後再利用するか
の方法が採られるが、放水すれば毎日数トンの水
を棄てることになるし、再利用するには80KWプ
ラズマ溶射トーチ1台につき10KW程度の空冷式
ヒートポンプ設備と電力が新たに必要となる。
また、プラズマトーチの内部構造は複雑であ
り、放熱面上に巧妙に設けられた冷却水の通路は
かなり大きな圧力損失をもたらす。このため、冷
却水流量を確保するには圧力も高くしなければな
らずこれは漏水につながりやすい。
(発明の目的、構成、作用) 本発明は前述の事情からなされたもので、冷却
水の使用量を可能な限り少くし、経済的で信頼性
の高いプラズマトーチの冷却方法を提供すること
を目的とする。
しかして、本発明の冷却方法は、溶射あるいは
溶接に使用されるプラズマトーチの陰極あるいは
陽極部位を冷却する方法において、該冷却部位の
放熱面を囲繞する小空間を常時大気圧以下に減圧
し、該小空間内の放熱面に向い無数の沸点に達し
ていない水流を遷移流以上の速度で放出し、該水
流が該放熱面に衝突して蒸発する際に奪う主に気
化熱によつて冷却することを特徴とする。
第1図a及び第1図bは本発明を実施するため
のプラズマトーチの構成例を示す。1は陰極ホル
ダー2の先端に溶接された陰極、3は先端に噴出
口4、後部に冷却水入口5を備え、水蒸気出口6
をもつ陰極ホルダー2に挿入固定されている陰極
冷却チユーブである。7は陰極1をつつみ適当な
間隔をもつて配置されている陽極ノズル、8は陽
極ノズル7を囲繞し、表面に無数の噴出口9を有
する陽極冷却管、10は陽極ノズル7、陽極冷却
管8、後部キヤツプ11及びインシユレーター1
2で構成される小空間であり、該小空間10は、
パツキン12′、Oリング13,14,20で外
部に対し気密性が保たれている。15は陽極冷却
管8、後部キヤツプ11及び前部キヤツプ19と
で冷却水23の通路を構成するフランジで、Oリ
ング17,18で水密性が保たれている。16は
冷却水入口、21は陰極1と陽極ノズル7間に発
生したアークプラズマ炎、22は図示せぬ通路を
経て冷却水23を送るポンプ、23′はポンプ2
2の発生する圧力によつて噴出口4及び9から
各々陰極1と陰極ホルダー2及び陽極ノズル7に
向つて放出された水流である。
又、24は、圧縮空気導入管25と水(液体あ
るいは蒸気)の吸入管26及び吐出口29を有す
る減圧ノズル、30はコンプレツサー、31は図
示せぬ通路を通る圧縮空気、32はプラズマアー
ク発生用の電源で、導線33を通し電力を供給す
る。34はプラズマガス入口である。
以上の構成において、電源32の供給する電力
によつて維持されるプラズマ炎21は大量の熱を
周辺の陰極1、陰極ホルダー2及び陽極ノズル7
に与える。この熱を速かに除くことができねば受
熱した部位はたちどころに溶融破損するに至る。
従来方法は、この部位に大量の水(液体)を接融
通過させ除熱しているわけであるが、本発明によ
ればこの水使用量は格段に少なくてすむ。以下に
その作用を説明する。
ポンプ22によつて、冷却水入口5及び16を
通して送り込まれた冷却水23は、ポンプ22の
発生する圧力で陰極冷却チユーブ3及び陽極冷却
管8に設けられた無数の噴出口4及び9から各々
陰極1と陰極ホルダー2及び陽極ノズル7との放
熱面に向つて勢いよく噴出する。噴出口4,9の
穴径は、この噴出水流23′が粒状又は霧状を呈
する、いわゆる遷移流以上の速度になるようポン
プ22の発生圧力との関係で選ぶ。各々の放熱面
に衝突した水の粒子は放熱面を通してプラズマ炎
21の熱を奪い瞬間気化する。気化と同時に発生
する大量の水蒸気は、水蒸気出口6及び27から
減圧ノズル24に吸引され排出される。かくし
て、噴出口4,9から噴出する水流が遷移流以上
の速度である必要は、気化効率を高めるためと理
解される。また、小空間10を常時大気圧以下に
したおくことによつて、水の沸点を下げ気化を促
進することができる。
減圧ノズル24の減圧作用はいわゆるインジエ
クターと同一機能によるもので、コンプレツサー
30によつて圧縮空気31を圧縮空気導入管25
に吹き込むことによつて、吸入管26に接続され
る系内の水蒸気が排出されることにより生れる。
本発明の効果を先にあげた80KWプラズマ溶射
トーチを例に説明する。本発明の除熱効果は蒸気
の温度上昇を無視すれば、先の例に水の気化熱
(0℃、1atmにおき539cal/g)によるものが加
えられるから、25℃の水1gが気化することによ
り除熱量は(100−25)+539=614calとなる。従
つて、25000Kcal/時を除熱するには略0.71/分
の水を送れば良いわけで、実に従来法の1/10以下
ですむことになる。この効果は甚大である。
第2図は第2の発明の構成例を示す。第1の発
明と同一番号を付した要素は全く同じ名称、構
造、機能を有する。新たに付加された要素につい
てのみ説明するに、22−1,22−2は、温度
センサー35−1,35−2の検出温度によつて
制御電源37により働く制御装置36−1,36
−2からパワーケーブル38−1,38−2を介
して電力の供給を受け動作する水ポンプである。
以上の構成において、水蒸気出口6及び27よ
り排出される水は送り込まれる量によつて第3図
のように状態を変える。すなわち水の量が少なけ
れば(V1以下)水は完全に気化、過熱蒸気とな
るし、多ければ(V2以上)気化することなく温
水として排出される。V1とV2の間では蒸気と温
水2相状態になる。前述した本発明の第1方法の
最も望ましい利用状態は、供給された水は完全に
気化し過熱程度は少い状態であり、この状態を発
熱量や熱損失量の変動によらず常に維持するため
には排出された水の温度によつて水量をコントロ
ールすればよい。
第2図における制御装置36−1及び36−2
は、各々の温度センサー35−1及び35−2の
検出温度によつて水ポンプ22−1及び22−2
の回転数を変え流量をコントロールしている。水
ポンプ22−1及び22−2がACモーターを使
つているものであれば、インバーターによる周波
数制御でこれは容易に実現する。また、ポンプは
定数回転にしておき各々のポンプの吐出側にモー
タードライブ式の流量調整弁を設け、これを検出
温度によつて制御装置36−1,36−2を介し
て開閉する方法でもよい。
本発明が第1の発明を補充する上で極めて有用
であることは明らかである。
(実施例) プラズマスプレートーチ出力 100KW 必要除熱量 34400Kcal/時 冷却水入口温度 40℃ 冷却水出口温度 105±2℃ 冷却水流量 1±0.1/分 内部圧力 500Torr (発明の効果) 以上説明した本発明によれば、冷却水を気化さ
せるため、その除熱効果が極めて高く、少ない冷
却水量で効率的なトーチの冷却が可能となり、そ
の工業的な効果は非常に大きい。
【図面の簡単な説明】
第1図aは本発明の構成を断面で示したもの。
第1図bは第1図のA−A′断面図。第2図は第
2の発明の構成図。第3図は第2の発明の作用を
説明する図。 1……陰極、2……陰極ホルダー、3……陰極
冷却チユーブ、4……噴出口、5……冷却水入
口、6……水蒸気出口、7……陽極ノズル、8…
…陽極冷却管、9……噴出口、10……小空間、
11……後部キヤツプ、12……インシユレータ
ー、13,14,17,18,20……Oリン
グ、15……フランジ、16……冷却水入口、1
9……前部キヤツプ、21……アークプラズマ
炎、22……ポンプ、23……冷却水、23′…
…水流、24……減圧ノズル、25……圧縮空気
導入管、26……吸入管、27……水蒸気出口、
28……水蒸気、29……吐出口、30……コン
プレツサー、31……圧縮空気、32……電源、
33……導線、34……プラズマガス入口、35
−1……温度センサー、35−2……温度センサ
ー、36−1……制御装置、36−2……制御装
置。

Claims (1)

  1. 【特許請求の範囲】 1 溶射あるいは溶接に使用されるプラズマトー
    チの陰極あるいは陽極部位を冷却する方法におい
    て、該冷却部位の放熱面を囲繞する小空間を常時
    大気圧下に減圧し、該小空間内の放熱面に向い無
    数の沸点に達していない水流を遷移流以上の速度
    で放出し、該水流が該放熱面に衝突して蒸発する
    際に奪う主に気化熱によつて冷却することを特徴
    とするプラズマトーチの冷却方法。 2 小空間より排出される水の温度を検出し温度
    によつて水の流量を調節する特許請求の範囲第1
    項記載の方法。
JP2659585A 1985-02-15 1985-02-15 プラズマト−チの冷却方法 Granted JPS61187959A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2659585A JPS61187959A (ja) 1985-02-15 1985-02-15 プラズマト−チの冷却方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2659585A JPS61187959A (ja) 1985-02-15 1985-02-15 プラズマト−チの冷却方法

Publications (2)

Publication Number Publication Date
JPS61187959A JPS61187959A (ja) 1986-08-21
JPH035221B2 true JPH035221B2 (ja) 1991-01-25

Family

ID=12197881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2659585A Granted JPS61187959A (ja) 1985-02-15 1985-02-15 プラズマト−チの冷却方法

Country Status (1)

Country Link
JP (1) JPS61187959A (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247152A (en) * 1991-02-25 1993-09-21 Blankenship George D Plasma torch with improved cooling
FI20031331A (fi) * 2003-09-17 2005-03-18 Tomion Oy Jäähdytetty plasmapoltin ja menetelmä polttimen jäähdyttämiseksi
WO2007080372A1 (en) * 2006-01-11 2007-07-19 Bae Systems Plc Improvements relating to coolant delivery
FR2943209B1 (fr) * 2009-03-12 2013-03-08 Saint Gobain Ct Recherches Torche a plasma avec injecteur lateral

Also Published As

Publication number Publication date
JPS61187959A (ja) 1986-08-21

Similar Documents

Publication Publication Date Title
JPH0763033B2 (ja) 大出力プラズマジェット発生装置
US5801489A (en) Three-phase alternating current plasma generator
JP3603028B2 (ja) 溶融塩を気化させる誘導結合プラズマトーチ、並びにその方法および装置
KR0137957B1 (ko) 아아크 토치용 개스 냉각 캐소드
CN112024885A (zh) 一种等离子弧喷头及具有其的等离子发生装置和三维打印设备
JPH0357833B2 (ja)
JPH035221B2 (ja)
CN115175427A (zh) 一种水蒸气等离子体发生器及其实现方法
JPH09178368A (ja) クエンチクーラ
JP2004216246A (ja) 高周波プラズマ処理装置及び高周波プラズマ処理方法
US3243612A (en) Fuel fired thermionic engines
RU2072058C1 (ru) Газотурбинный двигатель
US4901524A (en) Staged, coaxial, multiple point fuel injection in a hot gas generator
US11504669B2 (en) Method for exhaust gas abatement under reduced pressure and apparatus therefor
CN213178302U (zh) 一种蒸汽锅炉喷水减温器
RU93030883A (ru) Газотурбинный двигатель
CN114396618A (zh) 一种基于氨气的高频等离子体燃烧喷头及应用
CN211557613U (zh) 一种热膨胀稳定型等离子体炬
CN219502711U (zh) 基于等离子体的超细粉体制备系统
CN107124813B (zh) 热解用途的等离子体喷枪
CN220229095U (zh) 一种水蒸气供给装置
JP2941528B2 (ja) 不活性ガス発生装置
SU915910A1 (ru) Ударно-турбулентный скруббер i
JP3819514B2 (ja) 誘導結合プラズマ装置
SU171338A1 (ja)