JPH0351706A - Thickness measuring apparatus - Google Patents

Thickness measuring apparatus

Info

Publication number
JPH0351706A
JPH0351706A JP18665889A JP18665889A JPH0351706A JP H0351706 A JPH0351706 A JP H0351706A JP 18665889 A JP18665889 A JP 18665889A JP 18665889 A JP18665889 A JP 18665889A JP H0351706 A JPH0351706 A JP H0351706A
Authority
JP
Japan
Prior art keywords
measured
thickness
optical sensors
amount
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18665889A
Other languages
Japanese (ja)
Inventor
Hideyuki Takechi
武知 秀行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18665889A priority Critical patent/JPH0351706A/en
Publication of JPH0351706A publication Critical patent/JPH0351706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To perform highly accurate measurement of a thickness without the effect of errors in linearity of optical sensors by computing the thickness of a body to be measured based on the amount of minute displacement of the body to be measured and the amount of movement in a distance between the optical sensors. CONSTITUTION:When the thickness of a body to be measured 10 is measured, optical sensors 1 and 2 are moved with moving mechanisms 15 and 16. The body to be measured 10 is arranged between the sensors 1 and 2. The amounts of the displacements of the sensors 1 and 2 are made to be approximately zero. At this time, the moving amounts of the sensors 1 and 2 from the time when a reference body to be measured 13 is measured to the time when the body to be measured 10 is measured is operated in a first operating part 9a. The moving amounts are detected with moving amount detectors 17 and 18. The thickness of the body to be measured 10 is operated in a second operating part 9b based on the amounts of the displacements and the thickness of the body to be measured 13. When the body to be measured 13 is measured beforehand and the amounts of the displacements from the sensors 1 and 1 at this time are made to be approximately zero, the body to be measured 10 can be measured highly accurately.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光センサを用いて非接触式で被測定体の厚
さ(板厚等)を測定する厚さ測定装置に関し、特に光セ
ンサの直線性誤差による測定誤差を極力抑制することの
できる厚さ測定装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a thickness measuring device that non-contactly measures the thickness (plate thickness, etc.) of an object to be measured using an optical sensor. The present invention relates to a thickness measuring device that can suppress measurement errors due to linearity errors as much as possible.

〔従来の技術] 従来、この種の技術としては1例えば、工業技術社発行
「実例にみるプロセスセンサの使い方」1981・計測
・別冊(280頁)記載のレーザ方式変位・厚さ計があ
る。これを第4図および第5図(a)、(b)により説
明する。
[Prior Art] As a conventional technology of this kind, for example, there is a laser type displacement/thickness meter described in "How to Use Process Sensors in Practical Examples" published by Kogyo Gijutsu Sha, 1981, Measurement, Separate Volume (280 pages). This will be explained with reference to FIG. 4 and FIGS. 5(a) and (b).

第4図は従来装置を示す概略構成図、第5図(a)、(
b)はそれぞれその厚さ測定の原理を示す説明図であり
、これらの図に示すように、従来装置は、互いに対向配
置された光センサ1,2と、それぞれ配$3.4を介し
て光センサ1,2に接続されたデイスプレィユニット(
第1演算部)5゜6と、各デイスプレィユニット5,6
に配線7゜8を介して接続される両面演算器(第2演算
部)9とをそなえて構成されている。
Fig. 4 is a schematic configuration diagram showing a conventional device, Fig. 5(a), (
b) is an explanatory diagram showing the principle of thickness measurement, and as shown in these diagrams, the conventional device uses optical sensors 1 and 2 facing each other, and Display unit connected to optical sensors 1 and 2 (
1st calculation unit) 5°6 and each display unit 5, 6
The double-sided arithmetic unit (second arithmetic unit) 9 is connected to the two-sided arithmetic unit (second arithmetic unit) 9 via wiring 7.8.

次に動作について説明する。光センサ1,2間に、第4
図に示すように、厚さの測定対象である被測定体10が
位置する場合、光センサ1,2からそれぞれレーザ光1
1.12が被測定体10の各面へ照射され、その反射光
が光センサ1,2によって検出される。
Next, the operation will be explained. Between optical sensors 1 and 2, a fourth
As shown in the figure, when the object to be measured 10 whose thickness is to be measured is located, the laser beams 1 and 2 are emitted from the optical sensors 1 and 2 respectively.
1.12 is irradiated onto each surface of the object to be measured 10, and the reflected light is detected by the optical sensors 1 and 2.

この際、第5図(a)に示すように、予め、既知の厚さ
dをもつ基準被測定体13を光センサ1゜2間に配置し
、まず、基準被測定体13における反射光のビームスポ
ット(基準点)を光センサ1゜2によって検出しておき
、そのビームスポットを基準としたオフセット値を決定
しておく。
At this time, as shown in FIG. 5(a), a reference measured object 13 having a known thickness d is placed between the optical sensors 1 and 2, and first, the reflected light on the reference measured object 13 is A beam spot (reference point) is detected by the optical sensor 1.degree. 2, and an offset value based on the beam spot is determined in advance.

ついで、第5図(b)に示すように、被測定体10を光
センサ1,2間に配置して、上述と同様にレーザ光11
.12を光センサ1,2から被測定体10へ照射し、そ
の反射光を検出し、その検出点と上記基準点との変位量
から被測定体10の厚さDを測定する。
Next, as shown in FIG. 5(b), the object to be measured 10 is placed between the optical sensors 1 and 2, and the laser beam 11 is emitted in the same manner as described above.
.. 12 is irradiated onto the object to be measured 10 from the optical sensors 1 and 2, the reflected light is detected, and the thickness D of the object to be measured 10 is measured from the amount of displacement between the detection point and the reference point.

より具体的に説明すると、光センサ1,2からレーザ光
11.12を照射して得られる反射光の光センサ1,2
における検出点は、被測定体10の厚さり、配置位置に
応じて上記基準点から移動する。その移動量を電気信号
に変換し、マイクロプロセッサ(デイスプレィユニット
に内蔵)が移動量を演算処理して、基準被測定体13の
各面から被測定体10の各面への変位量Q。a、Qob
が求められる。
To explain more specifically, the optical sensors 1 and 2 emit reflected light obtained by irradiating the laser beams 11 and 12 from the optical sensors 1 and 2.
The detection point in moves from the reference point according to the thickness of the object to be measured 10 and the arrangement position. The amount of movement is converted into an electrical signal, and a microprocessor (built in the display unit) calculates the amount of movement to obtain the amount of displacement Q from each surface of the reference object to be measured 13 to each surface of the object to be measured 10. a.Qob
is required.

このようにして得られた各変位量0゜a、Q、bは、各
センサ1,2に接続されたデイスプレィユニット5,6
上にそれぞれ数値表示されるとともに。
The displacement amounts 0°a, Q, b obtained in this way are displayed on the display units 5, 6 connected to the respective sensors 1, 2.
Each value is displayed above.

両面演算器9へ入力され、下記演算式に基づいて演算処
理されて被測定体10の厚さDが算出され、被測定体1
0の厚さDの測定を終了する。
It is input to the double-sided calculator 9 and is processed based on the following calculation formula to calculate the thickness D of the object to be measured 10.
The measurement of the thickness D of 0 is completed.

D=d+Q、a+Q、b 上記演算式において、Dは被測定体10の厚さ、dは基
準被測定体13の厚さ、ΩI、aはセンサ1によって検
出された変位量、QI、bはセンサ2によって検出され
た変位量である。
D=d+Q, a+Q, b In the above equation, D is the thickness of the object to be measured 10, d is the thickness of the reference object to be measured 13, ΩI, a is the amount of displacement detected by the sensor 1, and QI, b are This is the amount of displacement detected by the sensor 2.

[発明が解決しようとする課題] ところが、光センサ1,2の特性として、光センサ1,
2の測定範囲内であっても光センサ1゜2の基準原点か
ら離れるにつれて変位量と光センサ1,2出力との関係
が直線でなくなるという。
[Problems to be Solved by the Invention] However, as the characteristics of the optical sensors 1 and 2, the optical sensors 1 and 2 have different characteristics.
Even within the measurement range of 2, the relationship between the displacement amount and the outputs of the optical sensors 1 and 2 ceases to be a straight line as the distance from the reference origin of the optical sensor 1°2 increases.

いわゆる直線性誤差が増大しく第6図の点線参照)、こ
れが厚さ測定時における変位量の測定誤差につながり、
ひいては被測定体10の厚さ誤差となって現れるという
課題があった。
The so-called linearity error increases (see the dotted line in Figure 6), which leads to a measurement error in the amount of displacement when measuring the thickness.
There is a problem in that this results in an error in the thickness of the object to be measured 10.

この発明は上記のような課題を解消するためになされた
もので、光センサの直線性誤差に影響されることなく高
精度に厚さの測定を行なえる厚さ測定装置を得ることを
目的とする。
This invention was made to solve the above-mentioned problems, and the purpose is to obtain a thickness measuring device that can measure thickness with high precision without being affected by linearity errors of optical sensors. do.

[課題を解決するための手段] この発明に係る厚さ測定装置は、被測定体の両面にそれ
ぞれレーザ光を照射しその反射光の入射位置を検出する
ように相互に対向配置された一対の光センサと、これら
の各光センサが検出した反射光の入射位置と厚さ既知の
基準被測定体の基準点との変位量を演算すべく上記の各
光センサに接続された第1演算部と、上記被測定体の厚
さを演算しうる第2演算部とをなえてなるものにおいて
[Means for Solving the Problems] A thickness measuring device according to the present invention includes a pair of devices arranged opposite to each other so as to irradiate both surfaces of a measured object with laser light and detect the incident position of the reflected light. a first calculation unit connected to each of the optical sensors to calculate the amount of displacement between the incident position of the reflected light detected by each of the optical sensors and a reference point of a reference measured object having a known thickness; and a second calculating section capable of calculating the thickness of the object to be measured.

上記の各光センサをそれぞれ上記被測定体の各面の法線
方向へ移動させる移動機構と、上記の各移動機構による
上記の各センサの移動量を検出する移動量検出器とを上
記の各光センサに付設し、上記被測定体の厚さ測定時に
は、上記の各移動機構により、上記の各光センサと上記
被測定体の各面との距離がほぼ基準原点となるよう上記
の各光センサを位置決めし、このとき上記の各移動量検
出器により検出された基準被測定体測定時から被測定体
測定時の上記の各光センサの移動量、上記第1演算部に
より演算された変位量、および上記基準被測定体の厚さ
に基づいて、上記第2演算部により上記被測定体の厚さ
を算出するものである。
A moving mechanism that moves each of the above-mentioned optical sensors in the normal direction of each surface of the above-mentioned object to be measured, and a movement amount detector that detects the amount of movement of each of the above-mentioned sensors by each of the above-mentioned moving mechanisms. Attached to the optical sensor, when measuring the thickness of the object to be measured, each of the above-mentioned light beams is moved so that the distance between each of the optical sensors and each surface of the object to be measured becomes approximately the reference origin using each of the moving mechanisms described above. The sensor is positioned, and at this time, the amount of movement of each optical sensor from the time of measurement of the reference object to the time of measurement of the object detected by each of the movement amount detectors described above, and the displacement calculated by the first calculation section. The thickness of the object to be measured is calculated by the second calculation section based on the amount and the thickness of the reference object to be measured.

[作   用] この発明における厚さ測定装置では、まず、基準被測定
体の厚さを測定する際に、対向配置された一対の光セン
サと基準被測定体の各面との距離がほぼ各光センサの基
準原点になるようにし、そのときの光センサ相互間距離
と各光センサからの変位量とに基づいて基準被測定体の
厚さを測定して記憶しておく、この後、厚さ未知の被測
定体の厚さを測定する際には、各光センサと被測定体の
各面との距離が光センサのほぼ基準原点になるように、
各光センサを移動機構により移動させてから、このとき
移動量検出器により検出された基準被測定体測定時から
被測定体測定時の各光センサの移動量、第1演算部によ
り演算された変位量。
[Function] In the thickness measuring device of the present invention, first, when measuring the thickness of a reference object to be measured, the distances between a pair of optical sensors arranged opposite to each other and each surface of the reference object to be measured are approximately the same. The thickness of the reference object to be measured is measured and stored based on the distance between the optical sensors and the amount of displacement from each optical sensor at that time. When measuring the thickness of an unknown object to be measured, set the distance between each optical sensor and each surface of the object to be approximately the reference origin of the optical sensor.
After each optical sensor is moved by the moving mechanism, the amount of movement of each optical sensor from the time of measurement of the reference object detected by the movement amount detector to the time of measurement of the object to be measured is calculated by the first calculation section. amount of displacement.

および基準被測定体の厚さに基づいて、第2演算部によ
り被測定体の厚さが演算・測定される。
The thickness of the object to be measured is calculated and measured by the second calculation section based on the thickness of the reference object to be measured.

つまり、被測定体の厚さ測定に際して、対向配置された
一対の光センサの基準原点近傍での被測定体の微小な変
位量と、各光センサ間の距離の移動量とに基づいて、被
測定体の厚さが算出されるため、各光センサがその特性
1有する直線性誤差が補正されることになる。
In other words, when measuring the thickness of an object to be measured, the thickness of the object is measured based on the minute displacement of the object near the reference origin of a pair of optical sensors arranged opposite to each other and the amount of distance movement between each optical sensor. Since the thickness of the object to be measured is calculated, the linearity error that each optical sensor has in its characteristic 1 will be corrected.

[発明の実施例] 以下、この発明の一実施例を図について説明する。[Embodiments of the invention] An embodiment of the present invention will be described below with reference to the drawings.

第1図において、1.2は被測定体10の両面にそれぞ
れレーザ光を照射しその反射光の入射位置を検出する上
下一対の光センサで、第2図(a)。
In FIG. 1, reference numeral 1.2 denotes a pair of upper and lower optical sensors that irradiate both surfaces of the object to be measured 10 with laser light and detect the incident position of the reflected light, as shown in FIG. 2(a).

(b)に示すように、各光センサ1,2は、コ字形の支
持機構14の先端部に上下方向から相互に対向して配置
されている。9は第1演算部9aと第2演算部9bとを
有して構成される演算器であり、第1演算部9aは、配
線19.20を介して光センサ1,2に接続され、これ
らの各光センサ1゜2が検出した反射光の入射位置と厚
さ既知の基準被測定体10の基準点との変位量を演算す
るものである。また、第2演算部9bは、配置i21゜
22を介して後述する上下方向移動量検出器17゜18
に接続され、後述する演算手順にて被測定体10の厚さ
を演算しうるちのである。
As shown in (b), the optical sensors 1 and 2 are arranged at the tip of the U-shaped support mechanism 14 so as to face each other from above and below. Reference numeral 9 denotes a computing unit having a first computing unit 9a and a second computing unit 9b, and the first computing unit 9a is connected to the optical sensors 1 and 2 via wiring 19. The amount of displacement between the incident position of the reflected light detected by each of the optical sensors 1.degree. 2 and the reference point of the reference measured object 10 of known thickness is calculated. Further, the second calculation unit 9b connects a vertical movement amount detector 17°18, which will be described later, via the arrangement i21°22.
The thickness of the object to be measured 10 can be calculated using the calculation procedure described later.

また、15.16はそれぞれ光センサ1,2を上下方向
(被測定体10の各面の法線方向)へ移動させる上下方
向移動機構、17.18はそれぞれ上下方向移動機構1
5.16による各光センサ1゜2の移動量を検出する上
下方向移動量検出器で。
Further, 15.16 is a vertical movement mechanism that moves the optical sensors 1 and 2 in the vertical direction (in the normal direction of each surface of the object to be measured 10), and 17.18 is a vertical movement mechanism 1, respectively.
5.16 with a vertical movement amount detector that detects the amount of movement of each optical sensor 1°2.

移動機構15.16および移動量検出器17゜18は、
第3図(a)、(b)に示すように、それぞれ光センサ
1,2の近傍に付設されている。
The moving mechanism 15.16 and the moving amount detector 17°18 are
As shown in FIGS. 3(a) and 3(b), they are attached near the optical sensors 1 and 2, respectively.

そして、厚さ測定時には、第2図(a)、(b)に示す
ように、上下一対の光センサ1,2のほぼ中間位置に、
帯状の基準被測定体13もしくは被測定体10を配置す
る。
When measuring the thickness, as shown in FIGS. 2(a) and 2(b), a
A strip-shaped reference measured object 13 or measured object 10 is arranged.

上述の構成により、厚さ測定時には、まず゛、第2図(
a)、第3図(a)に示すように、光センサ1゜2によ
り基準被測定体13の各面にレーザ光を照射してその反
射光を検出し、光センサ1,2からの変位量がほぼ零と
なるように(つまり、各光センサ1,2と基準被測定体
13の各面との距離がほぼ各光センサ1,2の基準原点
になるように)、移動機構15,16にて各光センサ1
,2を移動させて、光センサ1,2からの変位量と光セ
ンサ1.2の上下方向の移動量(移動量検出器17゜1
8にて検出される)とからオフセット値を決定する。
With the above configuration, when measuring thickness, first
a) As shown in FIG. 3(a), the optical sensors 1 and 2 irradiate each surface of the reference object 13 with laser light and detect the reflected light, and the displacement from the optical sensors 1 and 2 is detected. The moving mechanism 15, Each optical sensor 1 at 16
, 2 to detect the amount of displacement from the optical sensors 1 and 2 and the amount of vertical movement of the optical sensor 1.
8) is used to determine the offset value.

ついで、第2図(b)、第3図(b)に示すように、厚
さ未知の被測定体10の厚さを測定すべく、被測定体l
Oを光センサ1,2相互間に配置してがら、各光センサ
1,2からの変位量がほぼ零となるように(つまり、各
光センサ1,2と被測定体1oの各面との距離が光セン
サ1,2のほぼ基準原点になるように)、各光センサ1
,2を移動機構15.16により移動させる。そして、
このとき移動量検出器17.18により検出された基準
被測定体測定時から被測定体測定時の各光センサ1.2
の移動量、第1演算部9aにより演算された変位量、お
よび基準被測定体1oの厚さDllに基づいて、第2演
算部9bにより被測定体1oの厚さD□が演算・測定さ
れる。
Next, as shown in FIGS. 2(b) and 3(b), in order to measure the thickness of the measured object 10 of unknown thickness, the measured object l is
O is placed between the optical sensors 1 and 2, so that the amount of displacement from each optical sensor 1 and 2 is almost zero (that is, between each optical sensor 1 and 2 and each surface of the object to be measured 1o) (so that the distance is approximately the reference origin of optical sensors 1 and 2), and each optical sensor 1
, 2 are moved by moving mechanisms 15 and 16. and,
At this time, each optical sensor 1.2 detected by the movement amount detector 17.18 from the time of measuring the reference object to be measured to the time of measuring the object to be measured.
The thickness D□ of the object to be measured 1o is calculated and measured by the second calculation section 9b based on the amount of movement of , the amount of displacement calculated by the first calculation section 9a, and the thickness Dll of the reference object 1o. Ru.

即ち、基準被測定体13の既知の厚さをり、、各光セン
サ1,2からの変位量をほぼ零となるように光センサ1
,2を移動し配置したときの位置をそれぞれYU、、Y
L、、光センサ1,2により測定される光センサ1,2
と基準被測定体10の各面との間の距離をそれぞれSU
、、SL、、被測定体10の厚さをDl、被測定体10
に対して光センサ1,2からの変位量をほぼ零とするよ
うに各光センサ1,2を移動し配置したときの位置をそ
れぞれYU、、YLユ、光センサ1,2により測定され
る光センサ1,2と被測定体10の各面との間の距離を
それぞれSU□、SLよとすると、被測定体10の厚さ
り、は、第2演算部9bにおいて次式により算出される
That is, based on the known thickness of the reference object to be measured 13, the optical sensor 1 is adjusted such that the amount of displacement from each optical sensor 1, 2 is approximately zero.
, 2 are moved and placed, respectively, as YU, ,Y
L,, optical sensors 1, 2 measured by optical sensors 1, 2
and each surface of the reference object to be measured 10, respectively SU
,,SL,, the thickness of the object 10 to be measured is Dl, the object 10 to be measured is
The positions of the optical sensors 1 and 2 when they are moved and arranged so that the amount of displacement from the optical sensors 1 and 2 is almost zero are measured by the optical sensors 1 and 2, YU, YL, respectively. If the distances between the optical sensors 1 and 2 and each surface of the object to be measured 10 are SU□ and SL, the thickness of the object to be measured 10 is calculated by the following formula in the second calculation section 9b. .

D工=D、+((YUL−YU、)+(YL□−YL、
))−((S U、−S U、)+(S L、−S L
、))ここで、(YUニーY UJt (Y Lx  
Y Lo)は、それぞれ、基準被測定体13の測定時か
ら被測定体10の測定時に光センサ1,2の移動した量
に対応するもので、上下方向移動量検出器17゜18に
より検出されるものである。また、(SU。
D engineering=D, +((YUL-YU,)+(YL□-YL,
))-((SU,-SU,)+(SL,-SL
, )) Here, (YUneeY UJt (Y Lx
Y Lo) corresponds to the amount by which the optical sensors 1 and 2 moved from the time of measurement of the reference object 13 to the time of measurement of the object 10, and is detected by the vertical movement amount detector 17°18. It is something that Also, (SU.

−S U、)、 (S L、−5Lll)は、それぞれ
、各光センサ1,2が被測定体10に対して検出した反
射光の入射位置と厚さ既知の基準被測定体13の基準点
との変位量に対応するもので、第1演算部9aにより演
算されるものである。
-S U, ) and (S L, -5Lll) are the reference values of the reference object 13 whose thickness and incident position of the reflected light detected by the optical sensors 1 and 2 on the object 10 are known, respectively. This corresponds to the amount of displacement with respect to the point, and is calculated by the first calculation unit 9a.

このように、本実施例の装置によれば、被測定体10の
厚さ測定に際して、上下一対の光センサ1.2の基準原
点近傍での被測定体10の微小な変位量(第1演算部9
aからの出力)と、各光センサ1,2間の距離の移動量
(移動量検出器17゜18からの出力)とに基づいて、
第2演算部9bにより被測定体10の厚さD□が算出さ
れるため、各光センサ1,2がその特性1有する直線性
誤差(第6図参照)が補正されることになり、従って。
As described above, according to the apparatus of this embodiment, when measuring the thickness of the object to be measured 10, the minute displacement amount (first calculation) of the object to be measured near the reference origin of the pair of upper and lower optical sensors 1. Part 9
Based on the amount of movement of the distance between each optical sensor 1 and 2 (output from the movement amount detector 17 and 18),
Since the thickness D□ of the object to be measured 10 is calculated by the second calculation unit 9b, the linearity error (see FIG. 6) that each optical sensor 1, 2 has in its characteristic 1 is corrected, and therefore .

極めて正確に被測定体10の厚さを測定することが可能
になる。
It becomes possible to measure the thickness of the object to be measured 10 extremely accurately.

[発明の効果] 以上のように、この発明によれば、被測定体の厚さ測定
に際して、対向配置された一対の光センサの基準原点近
傍での被測定体の微小な変位量と、各光センサ間の距離
の移動量とに基づいて、被測定休の厚さを算出できるよ
うに構成したので、各光センサが本質的にもっている直
線性誤差の影響を受けることなく、極めて高精度に被測
定体の厚さを測定できる装置が得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, when measuring the thickness of an object to be measured, the amount of minute displacement of the object to be measured in the vicinity of the reference origin of a pair of optical sensors arranged opposite to each other, and each The structure is configured so that the thickness of the object to be measured can be calculated based on the amount of distance movement between the optical sensors, so it is possible to achieve extremely high accuracy without being affected by the linearity error that each optical sensor inherently has. This has the effect of providing a device that can measure the thickness of an object to be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による厚さ測定装置を示す
概略構成図、第2図(a)、(b)はそれぞれ基準被測
定体および被測定休の厚さ測定時における上記実施例の
装置の全体構成を示す斜視図、第3図(a)、(b)は
それぞれ基準被測定体および被測定体の厚さ測定時にお
ける上記実施例の装置の要部を示す側面図、第4図は従
来装置を示す概略構成図、第5図(a)、(b)はそれ
ぞれその厚さ測定の原理を示す説明図、第6図は光セン
サの直線性誤差を説明するためのグラフである。 図において、1,2−光センサ、9a・−第1演算部、
9b−第2演算部、1〇−被測定体、13−基準被測定
体、15.16−上下方向移動機構、17.18−上下
方向移動量検出器。 なお、図中、同一の符号は同一、又は相当部分を示して
いる。
FIG. 1 is a schematic configuration diagram showing a thickness measuring device according to an embodiment of the present invention, and FIGS. 2(a) and (b) show the above-mentioned embodiment when measuring the thickness of a reference object and an object to be measured, respectively. 3(a) and 3(b) are a side view and a side view showing the main parts of the apparatus of the above embodiment when measuring the thickness of a reference object and an object to be measured, respectively Figure 4 is a schematic configuration diagram showing the conventional device, Figures 5 (a) and (b) are explanatory diagrams showing the principle of thickness measurement, respectively, and Figure 6 is a graph to explain the linearity error of the optical sensor. It is. In the figure, 1, 2 - optical sensor, 9a - first calculation section,
9b-second calculation unit, 10-object to be measured, 13-reference object to be measured, 15.16-vertical movement mechanism, 17.18-vertical movement amount detector. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 被測定体の両面にそれぞれレーザ光を照射しその反射光
の入射位置を検出するように相互に対向配置された一対
の光センサと、これらの各光センサが検出した反射光の
入射位置と厚さ既知の基準被測定体の基準点との変位量
を演算すべく上記の各光センサに接続された第1演算部
と、上記被測定体の厚さを演算しうる第2演算部とをな
えてなる厚さ測定装置において、上記の各光センサをそ
れぞれ上記被測定体の各面の法線方向へ移動させる移動
機構と、上記の各移動機構による上記の各センサの移動
量を検出する移動量検出器とが上記の各光センサに付設
され、上記被測定体の厚さ測定時には、上記の各移動機
構により、上記の各光センサと上記被測定体の各面との
距離がほぼ基準原点となるよう上記の各光センサを位置
決めし、このとき上記の各移動量検出器により検出され
た基準被測定体測定時から被測定体測定時の上記の各光
センサの移動量、上記第1演算部により演算された変位
量、および上記基準被測定体の厚さに基づいて、上記第
2演算部により上記被測定体の厚さを算出することを特
徴とする厚さ測定装置。
A pair of optical sensors are placed opposite each other to irradiate both sides of the object with laser beams and detect the incident position of the reflected light, and the incident position and thickness of the reflected light detected by each of these optical sensors. a first calculation section connected to each of the optical sensors to calculate the amount of displacement with respect to a reference point of the known reference object; and a second calculation section capable of calculating the thickness of the object to be measured. The thickness measuring device of Naete includes a moving mechanism for moving each of the optical sensors in the normal direction of each surface of the object to be measured, and detecting the amount of movement of each of the sensors by each of the moving mechanisms. A movement amount detector is attached to each of the above-mentioned optical sensors, and when measuring the thickness of the above-mentioned object to be measured, the distance between each of the above-mentioned optical sensors and each surface of the above-mentioned object to be measured is approximately equal to Each of the optical sensors described above is positioned to serve as a reference origin, and at this time, the amount of movement of each of the optical sensors detected by each of the movement amount detectors from the time of measurement of the reference object to the time of measurement of the object to be measured, A thickness measuring device characterized in that the second calculation section calculates the thickness of the object to be measured based on the displacement amount calculated by the first calculation section and the thickness of the reference object to be measured.
JP18665889A 1989-07-19 1989-07-19 Thickness measuring apparatus Pending JPH0351706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18665889A JPH0351706A (en) 1989-07-19 1989-07-19 Thickness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18665889A JPH0351706A (en) 1989-07-19 1989-07-19 Thickness measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0351706A true JPH0351706A (en) 1991-03-06

Family

ID=16192419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18665889A Pending JPH0351706A (en) 1989-07-19 1989-07-19 Thickness measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0351706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030921A (en) * 2003-07-14 2005-02-03 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for measuring sheet material thickness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005030921A (en) * 2003-07-14 2005-02-03 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for measuring sheet material thickness

Similar Documents

Publication Publication Date Title
US4483618A (en) Laser measurement system, virtual detector probe and carriage yaw compensator
JPS60127403A (en) Thickness measuring apparatus
JPS63292005A (en) Detecting apparatus of amount of movement corrected from running error
JPH0351706A (en) Thickness measuring apparatus
JPH0123041B2 (en)
JPS61155803A (en) Width measuring instrument
JPH01221605A (en) Thickness measuring instrument
JPH02134505A (en) Thickness measuring apparatus
JPH0439522Y2 (en)
JPH02302606A (en) Thickness measuring apparatus
JPH051904A (en) Optical shape measuring instrument
JPH0476410A (en) Optical type configuration measuring device
JPH08304020A (en) Movement-accuracy measuring apparatus
JPS623609A (en) Range finder
JPH01320430A (en) Optical displacement detector
JPH01124703A (en) Method and device for noncontact measurement of film characteristic
JPH02115711A (en) Laser range finding and method for calibrating thickness gauge using such range finder
JPS62127604A (en) Optical position detecting device
GB2159941A (en) Coordinate measuring machine
SU1481596A1 (en) Device for measuring movements of object
JPS6283604A (en) Displacement transducer
JPS6264904A (en) Apparatus for measuring shape
JPH07181006A (en) Laser length measuring equipment
JPS63101702A (en) Optical length measuring gauge
JPH04276514A (en) Noncontact displacement measuring apparatus