JPH0351677B2 - - Google Patents

Info

Publication number
JPH0351677B2
JPH0351677B2 JP61019891A JP1989186A JPH0351677B2 JP H0351677 B2 JPH0351677 B2 JP H0351677B2 JP 61019891 A JP61019891 A JP 61019891A JP 1989186 A JP1989186 A JP 1989186A JP H0351677 B2 JPH0351677 B2 JP H0351677B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
crystal
type silicon
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61019891A
Other languages
Japanese (ja)
Other versions
JPS62176996A (en
Inventor
Mitsuhiro Shigeta
Atsuko Uemoto
Masaki Furukawa
Akira Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61019891A priority Critical patent/JPS62176996A/en
Publication of JPS62176996A publication Critical patent/JPS62176996A/en
Publication of JPH0351677B2 publication Critical patent/JPH0351677B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides

Description

【発明の詳細な説明】 <技術分野> 本発明は、窒化アルミニウム(AlN)単結晶
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Technical Field> The present invention relates to a method for manufacturing aluminum nitride (AlN) single crystal.

<従来技術> 窒化アルミニウム(AlN)は、高音速、高電
気抵抗、高化学的安定性及び高熱伝導率を有する
点で注目され酸化亜鉛(ZnO)と共にギガヘルツ
以上の周波数の表面波デバイス材料として有望視
さている。また、ワイドバンドギヤツプ半導体材
料としても注目されている。従来、AlNの製造
方法としては、スパツタリング法や気相成長法
(CVD法)が知られている。スパツタリング法で
は、珪素Si、ガラス、金属等の上にC軸配向性を
有するAlN膜が得られている。またアルミニウ
ムの原料として塩化物あるいはトリメチルアルミ
ニウム(TMA)などの有機金属を用い、窒素の
原料としてアンモニアガス(NH3)を用いた
CVD法では珪素若しくはサフアイア(Al2O3)の
基板上に単結晶窒化アルミニウム薄膜が得られて
いる。気相成長法は工業的規模での量産性に優れ
た製造技術であり、大面積で高品質の単結晶
AlN膜を再現性よく成長される技術として有望
である。気相成長法で用いる有機金属とアンモニ
アガスの利点としては、熱分解性に優れており、
反応ガスの混合モル比や流量だけを調節するだけ
で薄膜の結晶性や成長速度を容易に変えることが
できるという優れた制御性を挙げることができ
る。しかしながら窒素の原料のアンモニアガスは
熱分解効率がよい反面、反応炉や廃ガス処理設備
等が他の半導体製造装置に比較して特殊でかつ大
規模なものになる。
<Prior art> Aluminum nitride (AlN) has attracted attention for its high sound velocity, high electrical resistance, high chemical stability, and high thermal conductivity, and, together with zinc oxide (ZnO), is a promising material for surface wave devices with frequencies above gigahertz. I'm watching. It is also attracting attention as a wide band gap semiconductor material. Conventionally, sputtering method and vapor phase growth method (CVD method) are known as methods for producing AlN. By the sputtering method, an AlN film having C-axis orientation has been obtained on silicon, glass, metal, etc. In addition, chloride or organic metals such as trimethylaluminum (TMA) were used as raw materials for aluminum, and ammonia gas (NH 3 ) was used as a raw material for nitrogen.
The CVD method produces single-crystal aluminum nitride thin films on silicon or sapphire (Al 2 O 3 ) substrates. The vapor phase growth method is a manufacturing technology with excellent mass production on an industrial scale, and it produces large-area, high-quality single crystals.
This is a promising technique for growing AlN films with good reproducibility. The advantages of organic metals and ammonia gas used in the vapor phase growth method are that they have excellent thermal decomposition properties;
It has excellent controllability in that the crystallinity and growth rate of the thin film can be easily changed by simply adjusting the mixing molar ratio and flow rate of the reactant gas. However, although ammonia gas, which is the raw material for nitrogen, has good thermal decomposition efficiency, the reactor, waste gas processing equipment, etc. are special and large-scale compared to other semiconductor manufacturing equipment.

炭化珪素(SiC)は上述の窒化アルミニウムと
同様物理的化学的に極めて安定で放射線損傷にも
強く高温動作素子、大電力用素子、耐放射線素子
等の半導体材料として注目されている。炭化珪素
には多くの結晶多形が存在し、結晶構造により六
方晶系や菱面体晶系に属するα型炭化珪素(α−
SiC)と立方晶系に属するβ型炭化珪素(β−
SiC)に分類される。
Silicon carbide (SiC), like the above-mentioned aluminum nitride, is extremely stable physically and chemically, is resistant to radiation damage, and is attracting attention as a semiconductor material for high-temperature operating devices, high-power devices, radiation-resistant devices, and the like. Silicon carbide has many crystal polymorphs, and depending on the crystal structure, α-type silicon carbide (α-
SiC) and β-type silicon carbide (β-
It is classified as SiC).

β型炭化珪素は、近年の半導体技術の向上に伴
ない、良質で大型の単結晶基板として入手できる
珪素(Si)の異種基板上に二温連続CVD法を用
いたヘテロエピタキシヤル技術により単結晶薄膜
が得られるようになつた(特願昭58−76842号)。
With recent improvements in semiconductor technology, β-type silicon carbide is produced as a single crystal by heteroepitaxial technology using two-temperature continuous CVD on a heterogeneous substrate of silicon (Si), which is available as a high-quality, large-sized single-crystal substrate. It became possible to obtain thin films (Japanese Patent Application No. 76842/1983).

<発明の概要> 本発明は、窒化アルミニウム単結晶膜を得る上
で、品質・形状とも良好なものを再現性よく簡単
に製造することのできる結晶成長技術を提供する
ことを目的とするものである。
<Summary of the Invention> The purpose of the present invention is to provide a crystal growth technique that can easily produce an aluminum nitride single crystal film with good quality and shape with good reproducibility. be.

すなわち、気相成長法を利用することによりβ
−SiC基板上またはSi基板上のβ−SiC単結晶膜
の上に単結晶AlN膜をエピタキシヤル成長させ
ることを特徴とする。さらに、アルミニウムの原
料としてトリメチルアルミニウム又はトリエチル
アルミニウムを用い、窒素の原料として窒素ガス
を用いることを特徴とする。
In other words, by using the vapor phase growth method, β
- A single-crystal AlN film is epitaxially grown on a SiC substrate or a β-SiC single-crystal film on a Si substrate. Furthermore, it is characterized in that trimethylaluminum or triethylaluminum is used as a raw material for aluminum, and nitrogen gas is used as a raw material for nitrogen.

<実施例> 以下、β型炭化珪素単結晶を成長基板として用
いて成長させた単結晶AlN膜に例にとつて図面
を参照しながら本発明の1実施例を詳細に説明す
る。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings, taking as an example a single crystal AlN film grown using a β-type silicon carbide single crystal as a growth substrate.

β型炭化珪素単結晶は、二温連続CVD法にて
形成されたβ型炭化珪素単結晶を用いる。即ち、
珪素基板上に1000℃前後の低温CVD法で多結晶
SiC層を形成した後、昇温して連続的に高温CVD
法で多結晶SiC層上に単結晶SiC層を形成する。
この得られた単結晶SiC層がβ型炭化珪素単結晶
として本実地例に供される。
As the β-type silicon carbide single crystal, a β-type silicon carbide single crystal formed by a two-temperature continuous CVD method is used. That is,
Polycrystals are formed on a silicon substrate by low-temperature CVD at around 1000°C.
After forming the SiC layer, the temperature is raised and continuous high-temperature CVD is performed.
A single crystal SiC layer is formed on a polycrystalline SiC layer using a method.
The obtained single-crystal SiC layer is used as a β-type silicon carbide single crystal in this practical example.

添付図面は本実施例に用いられる成長装置の構
成図である。水冷式横型二重石英反応管1内に、
黒鉛製試料台2が載置された石英製支持台3を設
置し、試料台2に対応して反応管1の外胴部に巻
回されたワークコイル4に高周波電流を流してこ
の試料台2を誘導加熱する。試料台2は水平に設
置してもよく適当に傾斜させてもよい。反応管1
の片端には、ガス流入口となる枝管5が設けられ
二重石英反応管1の外側の石英管内には枝管6,
7を介して冷却水が供給される。反応管の他端は
ステンレス鋼製のフランジ8、止め板9、ボルト
10、ナツト11、O−リング12にてシールさ
れている。フランジ8にはガスの出口となる枝管
13が設けられている。
The attached drawing is a block diagram of the growth apparatus used in this example. Inside the water-cooled horizontal double quartz reaction tube 1,
A quartz support stand 3 on which a graphite sample stand 2 is mounted is installed, and a high-frequency current is applied to the work coil 4 wound around the outer body of the reaction tube 1 in correspondence with the sample stand 2. 2 is heated by induction. The sample stage 2 may be installed horizontally or may be appropriately inclined. Reaction tube 1
A branch pipe 5 serving as a gas inflow port is provided at one end of the double quartz reaction tube 1, and a branch pipe 6,
Cooling water is supplied via 7. The other end of the reaction tube is sealed with a flange 8, a stop plate 9, a bolt 10, a nut 11, and an O-ring 12 made of stainless steel. The flange 8 is provided with a branch pipe 13 that serves as a gas outlet.

この成長装置を用いて以下の様に結晶成長を行
なう。
Using this growth apparatus, crystal growth is performed as follows.

試料台2の上にβ型炭化珪素単結晶基板14を
載置する。ワークコイル4に高周波電流を流して
試料台2を加熱しβ型炭化珪素基板14をを900
℃〜1500℃に加熱する。次にAlNの原料として
トリメチルアルミニウムを毎分0.05〜1.0c.c.、窒
素ガスを毎分1〜3、トリメチルアルミニウ
ムのキヤリアガスとして水素ガスを毎分1〜3
流す。反応管1内へ導入された各種ガスは枝管
13を介して外部へ排気される。
A β-type silicon carbide single crystal substrate 14 is placed on the sample stage 2 . A high-frequency current is applied to the work coil 4 to heat the sample stage 2 and heat the β-type silicon carbide substrate 14 to 900℃.
Heat to 1500°C. Next, as raw materials for AlN, trimethylaluminum is added at 0.05 to 1.0 cc/min, nitrogen gas is added at 1 to 3 cc/min, and hydrogen gas is added at 1 to 3 cc/min as a carrier gas for trimethylaluminum.
Flow. Various gases introduced into the reaction tube 1 are exhausted to the outside via a branch pipe 13.

オージエ分光分析の結果、得られた成長膜は
AlとNより構成されていることが判明した。ま
た反射電子線回折の結果、単結晶AlN薄膜がで
きていることがわかつた。
As a result of Augier spectroscopy, the grown film obtained was
It was found that it is composed of Al and N. In addition, reflection electron diffraction revealed that a single-crystal AlN thin film was formed.

以上の如くβ型炭化珪素単結晶を成長用基板と
して利用し、有機金属と窒素ガスを原料とした
CVD法により単結晶AlNが作製される。
As described above, β-type silicon carbide single crystal was used as a growth substrate, and organic metal and nitrogen gas were used as raw materials.
Single crystal AlN is produced by CVD method.

<発明の効果> 本発明によれば、高品質の窒化アルミニウム単
結晶が再現性良く得られ、熱に強い炭化珪素基板
を用いているのでより耐環境性を向上できる。
<Effects of the Invention> According to the present invention, high-quality aluminum nitride single crystals can be obtained with good reproducibility, and since a heat-resistant silicon carbide substrate is used, environmental resistance can be further improved.

また、この製造方法は、扱い易い窒素ガスを用
い、良質で大型の単結晶の得られるβ型炭化珪素
基板を用いているので、容易に工業化、量産化で
きる。
Furthermore, this manufacturing method uses nitrogen gas, which is easy to handle, and a β-type silicon carbide substrate from which a high-quality, large-sized single crystal can be obtained, so that it can be easily industrialized and mass-produced.

本発明は、耐環境性に優れた表面波デバイス材
料、ワイドバンドギヤツプ材料を得る技術として
技術的意義の高いものである。
The present invention has high technical significance as a technique for obtaining surface wave device materials and wideband gap materials with excellent environmental resistance.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の1実施例の説明に供する成
長装置の構成図である。 1……反応管、2……試料台、3……支持台、
4……ワークコイル、5,6,7,13……枝
管、8……フランジ、14……珪素単結晶基板。
The accompanying drawing is a configuration diagram of a growth apparatus used to explain one embodiment of the present invention. 1...Reaction tube, 2...Sample stand, 3...Support stand,
4... Work coil, 5, 6, 7, 13... Branch pipe, 8... Flange, 14... Silicon single crystal substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 β型炭化珪素単結晶を成長用下地層とし、ト
リメチルアルミニウム又はトリエチルアルミニウ
ム、及び窒素ガスを原料ガスとして用いて、窒化
アルミニウム単結晶を気相成長法で成長させるこ
とを特徴とする窒化アルミニウム単結晶の製造方
法。
1 An aluminum nitride single crystal is grown by a vapor phase growth method using a β-type silicon carbide single crystal as a growth base layer and using trimethylaluminum or triethylaluminum and nitrogen gas as source gases. Method of manufacturing crystals.
JP61019891A 1986-01-30 1986-01-30 Production of aluminum nitride single crystal Granted JPS62176996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61019891A JPS62176996A (en) 1986-01-30 1986-01-30 Production of aluminum nitride single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61019891A JPS62176996A (en) 1986-01-30 1986-01-30 Production of aluminum nitride single crystal

Publications (2)

Publication Number Publication Date
JPS62176996A JPS62176996A (en) 1987-08-03
JPH0351677B2 true JPH0351677B2 (en) 1991-08-07

Family

ID=12011815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61019891A Granted JPS62176996A (en) 1986-01-30 1986-01-30 Production of aluminum nitride single crystal

Country Status (1)

Country Link
JP (1) JPS62176996A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061839A1 (en) * 1999-04-08 2000-10-19 Wayne State University Cubic (zinc-blende) aluminum nitride and method of making same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027699A (en) * 1983-07-22 1985-02-12 Agency Of Ind Science & Technol Preparation of single crystal film of silicon carbide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027699A (en) * 1983-07-22 1985-02-12 Agency Of Ind Science & Technol Preparation of single crystal film of silicon carbide

Also Published As

Publication number Publication date
JPS62176996A (en) 1987-08-03

Similar Documents

Publication Publication Date Title
US4421592A (en) Plasma enhanced deposition of semiconductors
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
US4897149A (en) Method of fabricating single-crystal substrates of silicon carbide
US4865659A (en) Heteroepitaxial growth of SiC on Si
JPS60145992A (en) Preparation of silicon carbide single crystal base
EP0216932A4 (en) Rhombohedral polycrystalline boron nitride and process for its production.
US5492752A (en) Substrates for the growth of 3C-silicon carbide
JPH0351677B2 (en)
JPS6120514B2 (en)
JPS63283014A (en) Silicon carbide semiconductor element
US4172754A (en) Synthesis of aluminum nitride
JPS6115150B2 (en)
JPS61291495A (en) Production of silicon carbide single crystal base
US4609424A (en) Plasma enhanced deposition of semiconductors
JPS6230699A (en) Production of silicon carbide single crystal substrate
JPS63176393A (en) Production of aluminum nitride thin film
JPH0364480B2 (en)
JPH0443879B2 (en)
JPS6230696A (en) Production of semiconductor crystal havinb broad forbidden band width
JPS5838400B2 (en) Method for manufacturing silicon carbide crystal layer
JPH0327515B2 (en)
JPS61222992A (en) Production of single crystal substrate of silicon carbide
JPS63252998A (en) Hetero-junction structure
JPS61242998A (en) Production of semiconductor single crystal of silicon carbide
CN114214605A (en) Novel two-dimensional boron nitride material based on silicon substrate and sapphire substrate and preparation method thereof