JPS62176996A - Production of aluminum nitride single crystal - Google Patents
Production of aluminum nitride single crystalInfo
- Publication number
- JPS62176996A JPS62176996A JP61019891A JP1989186A JPS62176996A JP S62176996 A JPS62176996 A JP S62176996A JP 61019891 A JP61019891 A JP 61019891A JP 1989186 A JP1989186 A JP 1989186A JP S62176996 A JPS62176996 A JP S62176996A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- aluminum nitride
- growth
- nitride single
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 35
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000002994 raw material Substances 0.000 claims abstract description 7
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 238000001947 vapour-phase growth Methods 0.000 claims description 5
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 3
- 125000002524 organometallic group Chemical group 0.000 claims description 3
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 6
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 150000002902 organometallic compounds Chemical class 0.000 abstract 1
- 239000010408 film Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/38—Nitrides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
く技術分野〉
本発明は、窒化アルミニウム(AtN)単結晶の製造方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for manufacturing aluminum nitride (AtN) single crystal.
〈従来技術〉
窒化アルミニウム(AtN)は、高音速、高電気抵抗、
高化学的安定性及び高熱伝導率を有する点で注目され酸
化亜鉛(ZnO)と共にギガヘルツ以上の周波数の表面
波デバイス材料として有望視されている。また、ワイド
バンドギャップ半導体材料としても注目されている。従
来、AtNの製造方法としては、スパッタリング法や気
相成長法(CVD法)が知られている。スパッタリング
法では、珪素(Si)、ガラス、金属等の上にC軸配向
性を有するAtN膜が得られている。またアルミニウム
の原料として塩化物あるいはトリメチルアルミニウム(
TMA)などの有機金属を用い、窒素の原料としてアン
モニアガス(NHa)を用いたCVD法では珪素若しく
はサファイア(At2ha)の基板上に単結晶窒化アル
ミニウム薄膜が得られている0気相成長法は工業的規模
での量産性に優れた製造技術であり、大面積で高品質の
単結晶AtN膜を再現性よく成長させる技術として有望
である。気相成長法で用いる有機金属とアンモニアガス
の利点としては、熱分解性に侵れており、反応ガスの混
合モル比や流量だけを調節するだけで薄膜の結晶性や成
長速度を容易に変えることができるという優れた制御性
を挙げることができる。しかしながら窒素の原料のアン
モニアガスは熱分解効率がよい反面、反応炉や廃ガス処
理設備等が他の半導体製造装置に比較して特殊でかつ大
規模なものになる0炭化珪素(SiC)は上述の窒化ア
ルミニウムと同様物理的化学的に極めて安定で放射線損
傷にも強く高温動作素子、大電力用素子、耐放射線素子
等の半導体材料として注目されている。炭化珪素には多
くの結晶多形が存在し、結晶構造により大方晶系や菱面
体晶系に属するα型炭化珪素(α−5iC)と立方晶系
に属するβ型炭化珪素(β−3iC)に分類される。<Prior art> Aluminum nitride (AtN) has high sonic velocity, high electrical resistance,
It has attracted attention for its high chemical stability and high thermal conductivity, and together with zinc oxide (ZnO), it is seen as a promising material for surface wave devices with frequencies of gigahertz or higher. It is also attracting attention as a wide bandgap semiconductor material. Conventionally, sputtering methods and vapor deposition methods (CVD methods) are known as methods for producing AtN. By the sputtering method, an AtN film having C-axis orientation has been obtained on silicon (Si), glass, metal, etc. Chloride or trimethylaluminum (
The CVD method using an organic metal such as TMA) and ammonia gas (NHa) as the nitrogen source produces a single crystal aluminum nitride thin film on a silicon or sapphire (At2ha) substrate. It is a manufacturing technology with excellent mass productivity on an industrial scale, and is promising as a technology for growing high-quality single-crystal AtN films over large areas with good reproducibility. The advantage of the organometallic and ammonia gases used in the vapor phase growth method is that they are resistant to thermal decomposition, and the crystallinity and growth rate of the thin film can be easily changed by simply adjusting the mixing molar ratio and flow rate of the reaction gas. It has excellent controllability. However, while ammonia gas, which is the raw material for nitrogen, has good thermal decomposition efficiency, silicon carbide (SiC) requires special and large-scale reactor and waste gas treatment equipment compared to other semiconductor manufacturing equipment, as mentioned above. Like aluminum nitride, it is physically and chemically extremely stable and resistant to radiation damage, and is attracting attention as a semiconductor material for high-temperature operating devices, high-power devices, radiation-resistant devices, etc. Silicon carbide has many crystal polymorphs, and depending on the crystal structure, there are α-type silicon carbide (α-5iC), which belongs to the macrogonal system or rhombohedral system, and β-type silicon carbide (β-3iC), which belongs to the cubic system. are categorized.
β型炭化珪素は、近年の半導体技術の向上に伴ない、良
質で大型の単結晶基板として入手できる珪素(Si)の
異種基板上に二温連続CVD法を用いたヘテロエピタキ
シャル技術により単結晶薄膜が得られるようになった(
特願昭58−76842号)。With the recent improvements in semiconductor technology, β-type silicon carbide is produced as a single-crystal thin film by heteroepitaxial technology using two-temperature continuous CVD on a heterogeneous substrate of silicon (Si), which is available as a high-quality, large-sized single-crystal substrate. Now you can get (
(Japanese Patent Application No. 58-76842).
窒化アルミニウムと炭化珪素は、格子定数や熱膨張係数
が非常に近いため、単結晶AtN膜をSiC基板上に作
製する上で極めて有利である。また、β型炭化珪素単結
晶を基板として用いる単結晶AtNを用いた素子は、S
i 等を基板として用りる素子と比較して熱伝導性に優
れており高温下等の耐環境性も有している。Since aluminum nitride and silicon carbide have very similar lattice constants and coefficients of thermal expansion, they are extremely advantageous in producing a single-crystal AtN film on a SiC substrate. Furthermore, an element using single-crystal AtN using a β-type silicon carbide single crystal as a substrate is S
It has superior thermal conductivity compared to elements using substrates such as i, etc., and is resistant to environments such as high temperatures.
〈発明の概要〉
本発明は、窒化アルミニウム単結晶膜を得る上で、品質
・形状とも良好なものを再現性よく製造することのでき
る結晶成長技術を提供することを目的とするものである
。<Summary of the Invention> An object of the present invention is to provide a crystal growth technique capable of producing an aluminum nitride single crystal film with good quality and shape with good reproducibility.
すなわち、気相成長法を利用することによりβ−3iC
基板上またはSi基板上のβ−8iC単結晶膜の上に単
結晶AtN膜をエピタキシャル成長させることを特徴と
する。また気相成長法で用いるアルミニウムの原料をし
て例えば有機金属ガスを用い、窒素の原料として例えば
窒素ガスを用いることによりAtN単結晶を成長させる
0
〈実施例〉
以下、β型炭化珪素単結晶を成長基板として用いて成長
させた単結晶AtN膜を例にとって図面を参照しながら
本発明の1実施例を詳細に説明する。That is, by using the vapor phase growth method, β-3iC
The method is characterized in that a single crystal AtN film is epitaxially grown on a β-8iC single crystal film on a substrate or a Si substrate. In addition, an AtN single crystal is grown by using, for example, an organometallic gas as the raw material for aluminum used in the vapor phase growth method and nitrogen gas, for example, as a raw material for nitrogen. One embodiment of the present invention will be described in detail with reference to the drawings, taking as an example a single-crystal AtN film grown using a substrate as a growth substrate.
β型炭化珪素単結晶は、二温連続CVD法にて形成され
たβ型炭化珪素単結晶を用いる。即ち、珪素基板上に1
000℃前後の低温CVD法で多結晶SiC層を形成し
た後、昇温して連続的に高温CVD法で多結晶SiC層
上に単結晶SiC層を形成する。この得られた単結晶S
iC層がβ型炭化珪素単結晶として本実施例に供される
。As the β-type silicon carbide single crystal, a β-type silicon carbide single crystal formed by a two-temperature continuous CVD method is used. That is, 1
After forming a polycrystalline SiC layer by a low temperature CVD method of around 000° C., the temperature is raised and a single crystal SiC layer is continuously formed on the polycrystalline SiC layer by a high temperature CVD method. This obtained single crystal S
The iC layer is provided in this example as a β-type silicon carbide single crystal.
添付図面は本実施例に用いられる成長装置の構成図であ
る。水冷式横型二重石英反応管l内に、黒鉛製試料台2
が載置された石英製支持台3を設置し、試料台2に対応
して反応管1の外胴部に巻回されたワークコイル4に高
周波電流を流してこの試料台2を誘導加熱する。試料台
2は水平に設置してもよく適当に傾斜させてもよい。反
応管1の片端には、ガス流入口となる枝管5が設けられ
二重石英反応管lの外側の石英管内には枝管6゜7を介
して冷却水が供給される。反応管の他端は一ステンレス
鋼製のフランジ8.止め板9.ボルト10、ナツトII
、O−リングI2にてシールされている。7ランジ8に
はガスの出口となる枝管I8が設けられている。The attached drawing is a block diagram of the growth apparatus used in this example. A graphite sample stage 2 is placed inside the water-cooled horizontal double quartz reaction tube l.
A quartz support stand 3 on which is placed is installed, and a high-frequency current is passed through a work coil 4 wound around the outer body of the reaction tube 1 corresponding to the sample stand 2 to induction heat the sample stand 2. . The sample stage 2 may be installed horizontally or may be appropriately inclined. A branch pipe 5 serving as a gas inlet is provided at one end of the reaction tube 1, and cooling water is supplied into the quartz tube outside the double quartz reaction tube 1 through a branch pipe 6.7. The other end of the reaction tube is fitted with a stainless steel flange 8. Stop plate 9. Boruto 10, Natsuto II
, sealed with an O-ring I2. 7 lange 8 is provided with a branch pipe I8 that serves as a gas outlet.
この成長装置を用いて以下の様に結晶成長を行なう。Using this growth apparatus, crystal growth is performed as follows.
試料台2の上にβ型炭化珪素単結晶基板I4を載置する
。ワークコイル4に高周波電流を流して試料台2を加熱
しβ型炭化珪素基板+4を9,00℃〜1500℃に加
熱する。次にAtNの原料としてトリメチルアルミニウ
ムを毎分0.05〜1.0cc、窒素ガスを毎分14〜
3t、トリメチルアルミニウムのキャリアガスとして水
素ガスを毎分+t〜3t、流す。反応管1内へ導入され
た各種ガスは枝管13を介して外部へ排気される。A β-type silicon carbide single crystal substrate I4 is placed on the sample stage 2. A high frequency current is passed through the work coil 4 to heat the sample stage 2 and the β-type silicon carbide substrate +4 to 9,00°C to 1500°C. Next, as raw materials for AtN, trimethylaluminum was added at a rate of 0.05 to 1.0 cc per minute, and nitrogen gas was added at a rate of 14 to 1.0 cc per minute.
3 tons, and hydrogen gas is flowed at +t to 3 tons per minute as a carrier gas for trimethylaluminum. Various gases introduced into the reaction tube 1 are exhausted to the outside via a branch pipe 13.
オージェ分光分析の結果、得られた成長膜はAtとNよ
り構成されていることが判明した。また反射電子線回折
の結果、単結晶AtN薄膜ができていることがわかった
。As a result of Auger spectroscopy, it was found that the grown film was composed of At and N. Further, as a result of reflection electron beam diffraction, it was found that a single crystal AtN thin film was formed.
CVD法により単結晶AtNが作製される。Single crystal AtN is produced by CVD method.
この製造方法は、容易に工業化できる上量産可能であり
耐環境性に優れた表面波デバイス材料。This manufacturing method can be easily industrialized, mass-produced, and provides surface wave device materials with excellent environmental resistance.
ワイドバンドギャップ材料を得る技術として技術的意義
の高いものである。This technology has high technical significance as a technology for obtaining wide bandgap materials.
添付図面は本発明のl実施例の説明に供する成長装置の
構成図である。
1・・・反応管、2・・・試料台、3・・・支持台、4
・・・ワークコイル、5,6,7.18・・・枝管、8
・・・7ランジ、14・・・珪素単結晶基板。The attached drawing is a block diagram of a growth apparatus used to explain an embodiment of the present invention. 1... Reaction tube, 2... Sample stand, 3... Support stand, 4
...Work coil, 5, 6, 7.18... Branch pipe, 8
...7 ranges, 14...silicon single crystal substrate.
Claims (1)
ム単結晶を気相成長法で成長させることを特徴とする窒
化アルミニウム単結晶の製造方法。 2、成長用下地層を珪素基板上に成長させたβ型炭化珪
素で構成した特許請求の範囲第1項記載の窒化アルミニ
ウム単結晶の製造方法。 3、気相成長の原料ガスをトリメチルアルミニウム又は
トリエチルアルミニウムの有機金属ガスと窒素ガスで構
成した特許請求の範囲第1項記載の窒化アルミニウム単
結晶の製造方法。[Scope of Claims] 1. A method for producing an aluminum nitride single crystal, which comprises growing an aluminum nitride single crystal by a vapor phase growth method using β-type silicon carbide as a growth base layer. 2. The method for producing an aluminum nitride single crystal according to claim 1, wherein the growth base layer is made of β-type silicon carbide grown on a silicon substrate. 3. The method for producing an aluminum nitride single crystal according to claim 1, wherein the raw material gas for vapor phase growth is composed of an organometallic gas such as trimethylaluminum or triethylaluminum and nitrogen gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61019891A JPS62176996A (en) | 1986-01-30 | 1986-01-30 | Production of aluminum nitride single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61019891A JPS62176996A (en) | 1986-01-30 | 1986-01-30 | Production of aluminum nitride single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62176996A true JPS62176996A (en) | 1987-08-03 |
JPH0351677B2 JPH0351677B2 (en) | 1991-08-07 |
Family
ID=12011815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61019891A Granted JPS62176996A (en) | 1986-01-30 | 1986-01-30 | Production of aluminum nitride single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62176996A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000061839A1 (en) * | 1999-04-08 | 2000-10-19 | Wayne State University | Cubic (zinc-blende) aluminum nitride and method of making same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6027699A (en) * | 1983-07-22 | 1985-02-12 | Agency Of Ind Science & Technol | Preparation of single crystal film of silicon carbide |
-
1986
- 1986-01-30 JP JP61019891A patent/JPS62176996A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6027699A (en) * | 1983-07-22 | 1985-02-12 | Agency Of Ind Science & Technol | Preparation of single crystal film of silicon carbide |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000061839A1 (en) * | 1999-04-08 | 2000-10-19 | Wayne State University | Cubic (zinc-blende) aluminum nitride and method of making same |
Also Published As
Publication number | Publication date |
---|---|
JPH0351677B2 (en) | 1991-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4421592A (en) | Plasma enhanced deposition of semiconductors | |
US4623425A (en) | Method of fabricating single-crystal substrates of silicon carbide | |
US4897149A (en) | Method of fabricating single-crystal substrates of silicon carbide | |
US5037502A (en) | Process for producing a single-crystal substrate of silicon carbide | |
US4865659A (en) | Heteroepitaxial growth of SiC on Si | |
US5653798A (en) | Method of making substrates for the growth of 3C-silicon carbide | |
JPS61243000A (en) | Production of substrate of silicon carbide single crystal | |
JPS62176996A (en) | Production of aluminum nitride single crystal | |
JPS6120514B2 (en) | ||
JPS61291495A (en) | Production of silicon carbide single crystal base | |
JPS63283014A (en) | Silicon carbide semiconductor element | |
JPS6115150B2 (en) | ||
US4172754A (en) | Synthesis of aluminum nitride | |
US4609424A (en) | Plasma enhanced deposition of semiconductors | |
JPS6230699A (en) | Production of silicon carbide single crystal substrate | |
JPS6230696A (en) | Production of semiconductor crystal havinb broad forbidden band width | |
JPS6045159B2 (en) | Method for manufacturing silicon carbide crystal layer | |
JPH0364480B2 (en) | ||
JPH0327515B2 (en) | ||
JPS5838400B2 (en) | Method for manufacturing silicon carbide crystal layer | |
JPS61242998A (en) | Production of semiconductor single crystal of silicon carbide | |
JPS6152119B2 (en) | ||
JPS63252998A (en) | Hetero-junction structure | |
JPS5830280B2 (en) | Method for manufacturing silicon carbide crystal layer | |
Takahashi et al. | Epitaxial Growth of Cubic SiC Using Various Alkyl-Silicon Compounds by Chemical Vapor Deposition |