JPH0350767A - Bipolar cmos gate array semiconductor device - Google Patents

Bipolar cmos gate array semiconductor device

Info

Publication number
JPH0350767A
JPH0350767A JP18670289A JP18670289A JPH0350767A JP H0350767 A JPH0350767 A JP H0350767A JP 18670289 A JP18670289 A JP 18670289A JP 18670289 A JP18670289 A JP 18670289A JP H0350767 A JPH0350767 A JP H0350767A
Authority
JP
Japan
Prior art keywords
type
mosfets
bipolar
gate array
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18670289A
Other languages
Japanese (ja)
Inventor
Taketo Yoshida
健人 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18670289A priority Critical patent/JPH0350767A/en
Publication of JPH0350767A publication Critical patent/JPH0350767A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11896Masterslice integrated circuits using combined field effect/bipolar technology

Abstract

PURPOSE:To improve the activity ratio of an element while enhancing the degree of integration by forming a plurality of pairs of P-type and N-type MOSFETs one bipolar and a resistor into one fundamental internal cell. CONSTITUTION:One bipolar transistor 12, two pairs of P-type MOSFETs 13a, 13b and N-type MOSFETs 14a, 14b and a resistor 11 are shaped into one fundamental internal cell 20. The P-type MOSFETs 13a, 13b are formed of P-type source-drain diffusion layers 3 shaped onto an N well 1 and gate wiring layers 5a, 5b. The N-type MOSFETs, 14a, 14b are formed of N-type source-drain diffusion layers 4 shaped onto a P well 2 and gate wiring layers 5c, 5d. Accordingly, since the MOSFETs and the bipolar transistor can be used efficiently, the activity ratio of an element can be improved, thus enhancing the degree of integration.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はバイポーラCMOSゲートアレイ半導体装置に
関し、特に同一基板上にバイポーラトランジスタと相補
型MOS F ETを含む基本内部セルを備えたバイポ
ーラCMOSゲートアレイ半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bipolar CMOS gate array semiconductor device, and more particularly to a bipolar CMOS gate array having basic internal cells including bipolar transistors and complementary MOS FETs on the same substrate. Related to semiconductor devices.

〔従来の技術〕[Conventional technology]

従来、この種のバイポーラCMOSゲートアレイ半導体
装置は、内部回路においてバイポーラトランジスタを2
個使ったトーテムポール型の出力段を形成することが多
いために、1つの基本内部セル内に最低2個のバイポー
ラトランジスタを含んでいた。このためバイポーラトラ
ンジスタの使用効率を上げるために、2個1組のバイポ
ーラトランジスタに対して、P型とN型のMOSFET
の組を最低でも3組あるいは4組含んでいた。
Conventionally, this type of bipolar CMOS gate array semiconductor device has two bipolar transistors in its internal circuit.
In order to often form a totem-pole type output stage using two bipolar transistors, one basic internal cell contained at least two bipolar transistors. Therefore, in order to increase the usage efficiency of bipolar transistors, P-type and N-type MOSFETs are used for each pair of bipolar transistors.
It included at least three or four pairs.

ここで、MOSFETの使用効率を上げるために、P型
、N型のMOSFETの組の数を減らすと逆に今度はバ
イポーラトランジスタの未使用となる割合が増え、この
ため現状の方式ではバイポーラ出力段1に対し、MOS
FETの組の数は3〜4が最適となる。
In order to increase MOSFET usage efficiency, if the number of pairs of P-type and N-type MOSFETs is reduced, the proportion of unused bipolar transistors increases, and for this reason, in the current system, the bipolar output stage 1, MOS
The optimum number of FET pairs is 3 to 4.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のバイポーラCMOSゲートアレイ半導体
装置は、基本内部セル内に1.バイポーラトランジスタ
を2個1組とP型及びN型のMOSFETを3〜4組と
を備えた構成となっているので、実際の機能回路を形成
した場合、特にひんばんに使用されるインバータや2人
カゲート回路等のブロックを形成する際に、使用しない
MOSFETが多くなり、−殻内には素子使用率からみ
ても、CMOSゲートアレイに比べると集積度が低くな
るという欠点がある。
The conventional bipolar CMOS gate array semiconductor device described above has 1. It has a configuration that includes one set of two bipolar transistors and three to four sets of P-type and N-type MOSFETs, so when forming an actual functional circuit, it can be used especially for frequently used inverters and When forming a block such as a gate circuit, there are many MOSFETs that are not used, and there is a disadvantage that the degree of integration is lower than that of a CMOS gate array, even in terms of element usage rate inside the shell.

本発明の目的は、素子使用率を上げることができ、集積
度を高くすることができるバイポーラCMOSゲートア
レイ半導体装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a bipolar CMOS gate array semiconductor device that can increase the element usage rate and increase the degree of integration.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のバイポーラCMOSゲートアレイ半導体装置は
、同一基板上に、それぞれ1つのバイポーラトランジス
タと、複数組のP型MO3FET及びN型MO3FET
とを備えた複数の基本内部セルを有している。
The bipolar CMOS gate array semiconductor device of the present invention includes one bipolar transistor and multiple sets of P-type MO3FET and N-type MO3FET on the same substrate.
It has a plurality of basic internal cells.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の基本内部セルの平面レイア
ウト図である。
FIG. 1 is a plan layout diagram of a basic internal cell according to an embodiment of the present invention.

この実施例は、1つの基本内部セル内に、1つのバイポ
ーラトランジスタ12と、2組のP型MOSFET(1
3a、13b)及びN型MO3FET (14a、14
b)と、抵抗11とを備えた構成となっている。
In this embodiment, one bipolar transistor 12 and two sets of P-type MOSFETs (1
3a, 13b) and N-type MO3FET (14a, 14
b) and a resistor 11.

P型MOSFET13a、13bは、Nウェル1上に設
けられたP型ソース・ドレイン拡散層3及びゲート配線
層5a、5bにより形成されている。
The P-type MOSFETs 13a and 13b are formed of a P-type source/drain diffusion layer 3 provided on the N well 1 and gate wiring layers 5a and 5b.

また、N型MO3FET1.4a、14bは、Pウェル
2上に設けられたN型ソース・ドレイン拡散層4及びゲ
ート配線層5c、5dにより形成されている。
Further, the N-type MO3FETs 1.4a and 14b are formed of an N-type source/drain diffusion layer 4 provided on the P well 2 and gate wiring layers 5c and 5d.

第2図はこの実施例の等価回路図である。FIG. 2 is an equivalent circuit diagram of this embodiment.

このように本発明の基本内部セル2o内には、1つのバ
イポーラトランジスタ12と、2組のP型MOSFET
13a、13b及びN型MOSFET14a、14bと
、抵抗11とが設けられている6 第3図は本発明の第2の実施例の基本内部セルの平面レ
イアウト図である。
In this way, the basic internal cell 2o of the present invention includes one bipolar transistor 12 and two sets of P-type MOSFETs.
13a, 13b, N-type MOSFETs 14a, 14b, and a resistor 11 are provided.6 FIG. 3 is a plan layout diagram of a basic internal cell according to a second embodiment of the present invention.

この実施例が第1の実施例と相違する点は、バイポーラ
トランジスタ12aのコレクタ12cを電源配線層8に
接続した点、及びP型M OS F ET13a、13
bのゲート配線層とN型MOSFET14a、14bの
ゲート配線層とをそれぞれ互いに接続した点にある。
This embodiment differs from the first embodiment in that the collector 12c of the bipolar transistor 12a is connected to the power supply wiring layer 8, and the P-type MOSFETs 13a, 13
The point is that the gate wiring layer b and the gate wiring layers of the N-type MOSFETs 14a and 14b are connected to each other.

第4図にこの実施例の等価回路図を示す。FIG. 4 shows an equivalent circuit diagram of this embodiment.

この実施例においては、バイポーラトランジスタ12a
のコレクタ12cに対する配線、及びP型MOSFET
13a、13bとN型MOSFET14a、14bとの
間のゲート間配線が不要になるという利点がある。
In this embodiment, bipolar transistor 12a
Wiring for collector 12c and P-type MOSFET
There is an advantage that there is no need for inter-gate wiring between MOSFETs 13a and 13b and N-type MOSFETs 14a and 14b.

第5図(a)〜(c)はこの実施例の基本内部セル2O
Aを適用して2人力NANDゲートを構成したときの回
路図である。
FIGS. 5(a) to 5(c) show the basic internal cell 2O of this embodiment.
FIG. 2 is a circuit diagram when a two-man power NAND gate is constructed by applying A.

この回路は、第5図(a)に示されたMOSFET部分
と、第5図(b)に示されたバイポーラトランジスタ部
分とを結合し、第5図(C)に示すような2人力NAN
Dゲートを構成している。
This circuit combines the MOSFET section shown in FIG. 5(a) and the bipolar transistor section shown in FIG. 5(b), and a two-person NAN as shown in FIG.
It constitutes the D gate.

この回路は、出力端に接続された容量性の負荷を充電す
るときのみ、バイポーラトランジスタ1.2 aを使用
し、放電の際にはN型MOSFET14a、14bを使
用するようになっている。
This circuit uses a bipolar transistor 1.2a only when charging a capacitive load connected to the output terminal, and uses N-type MOSFETs 14a and 14b when discharging.

第5図(C)に示された2人力NANDゲートの平面レ
イアウト図を第6図に示す。
FIG. 6 shows a plan layout of the two-man powered NAND gate shown in FIG. 5(C).

このように、本発明による基本内部セル20゜2OAを
使用することにより、簡単な配線でしがも素子使用率の
高い内部回路を形成することができる。
As described above, by using the basic internal cell 20°2OA according to the present invention, it is possible to form an internal circuit with simple wiring but with a high element usage rate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、1つの基本内部セル内に
複数組のP型及びN型のMOS F ETと1個バイポ
ーラと抵抗とを備えた構成とすることにより、効率的に
MOS F ETとバイポーラトランジスタとを使用す
ることができるので、素子使周率を上げることができ、
従って集積度を高くすることができる効果がある。
As explained above, the present invention has a configuration in which one basic internal cell includes a plurality of sets of P-type and N-type MOS FETs, one bipolar transistor, and a resistor. and bipolar transistors can be used, increasing the element usage rate.
Therefore, there is an effect that the degree of integration can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明の第1の実施例の基
本内部セルの平面レイアウト図及び等価回路図、第3図
及び第4図はそれぞれ本発明の第2の実施例の基本内部
セル部の平面レイアウト図及び等価回路図、第5図(a
)〜(C)及び第6図はそれぞれ第3図に示された実施
例の基本内部セルを2人力NANDゲートに適用したと
きの回路図及び平面レイアウト図である。 1・・・Nウェル、2・・・Pウェル、3・・・P型ソ
ース・ドレイン拡散層、4・・・N型ソース・ドレイン
拡r4!IN、5 a 〜5 f ・・・ゲート配線層
、6,6a−・Nウェル配線層、7・・・Pウェル配線
層、8・・・電源配線層、9・・・接地配線層、10a
〜10m・・・コンタクト、11・・・抵抗、12.1
2a・・・バイポーラトランジスタ、13a、13b、
、、P型MO3FET、14a、14b・N型MOSF
ET、20゜ 0A ・・・基本内部セル。
1 and 2 are a plan layout diagram and an equivalent circuit diagram of a basic internal cell of a first embodiment of the present invention, respectively, and FIGS. 3 and 4 are a basic internal cell diagram of a second embodiment of the present invention, respectively. Planar layout diagram and equivalent circuit diagram of the cell section, Figure 5 (a
) to (C) and FIG. 6 are a circuit diagram and a plan layout diagram, respectively, when the basic internal cell of the embodiment shown in FIG. 3 is applied to a two-manpower NAND gate. 1...N well, 2...P well, 3...P type source/drain diffusion layer, 4...N type source/drain expansion r4! IN, 5a to 5f...gate wiring layer, 6, 6a--N well wiring layer, 7...P well wiring layer, 8...power supply wiring layer, 9...ground wiring layer, 10a
~10m...Contact, 11...Resistance, 12.1
2a... Bipolar transistor, 13a, 13b,
,, P-type MO3FET, 14a, 14b/N-type MOSF
ET, 20° 0A...Basic internal cell.

Claims (1)

【特許請求の範囲】[Claims] 同一基板上に、それぞれ1つのバイポーラトランジスタ
と、複数組のP型MOSFET及びN型MOSFETと
を備えた複数の基本内部セルを有することを特徴とする
バイポーラCMOSゲートアレイ半導体装置。
A bipolar CMOS gate array semiconductor device comprising, on the same substrate, a plurality of basic internal cells each including one bipolar transistor and a plurality of sets of P-type MOSFETs and N-type MOSFETs.
JP18670289A 1989-07-18 1989-07-18 Bipolar cmos gate array semiconductor device Pending JPH0350767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18670289A JPH0350767A (en) 1989-07-18 1989-07-18 Bipolar cmos gate array semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18670289A JPH0350767A (en) 1989-07-18 1989-07-18 Bipolar cmos gate array semiconductor device

Publications (1)

Publication Number Publication Date
JPH0350767A true JPH0350767A (en) 1991-03-05

Family

ID=16193139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18670289A Pending JPH0350767A (en) 1989-07-18 1989-07-18 Bipolar cmos gate array semiconductor device

Country Status (1)

Country Link
JP (1) JPH0350767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493076A (en) * 1990-08-08 1992-03-25 Mitsubishi Electric Corp Semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493076A (en) * 1990-08-08 1992-03-25 Mitsubishi Electric Corp Semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
JPH0638468B2 (en) Semiconductor integrated circuit device
US4825273A (en) Semiconductor integrated circuit device
JP3260509B2 (en) Semiconductor integrated circuit device
KR910020896A (en) Semiconductor integrated circuit
JPH0350767A (en) Bipolar cmos gate array semiconductor device
JPH04164371A (en) Semiconductor integrated circuit
JPH03276757A (en) Semiconductor device
JPH0122733B2 (en)
JP3474266B2 (en) Single-port SRAM
JPH02309673A (en) Semiconductor integrated circuit
EP0498567A1 (en) Mixed CMOS/BiCMOS device
JPS6370541A (en) Semiconductor integrated circuit device
JPH05167048A (en) Gate array
JPH0548050A (en) Semiconductor device
JPH02270372A (en) Basic cell circuit
JPH02208967A (en) Semiconductor integrated circuit
JPS59181028A (en) Semiconductor integrated circuit device
JPH03165565A (en) Master slice semiconductor integrated circuit
JPH01216568A (en) Mos type semiconductor device
JPH0316261A (en) Semiconductor device
JPS61245548A (en) Semiconductor integrated circuit device
JPH04115570A (en) Master-slice semiconductor integrated circuit
JPH0548052A (en) Semiconductor device
JPH02172256A (en) Logic circuit
JPH06275802A (en) Semiconductor device