JPH035056B2 - - Google Patents

Info

Publication number
JPH035056B2
JPH035056B2 JP3861487A JP3861487A JPH035056B2 JP H035056 B2 JPH035056 B2 JP H035056B2 JP 3861487 A JP3861487 A JP 3861487A JP 3861487 A JP3861487 A JP 3861487A JP H035056 B2 JPH035056 B2 JP H035056B2
Authority
JP
Japan
Prior art keywords
thin film
semiconductor
film
electron beam
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3861487A
Other languages
Japanese (ja)
Other versions
JPS63232311A (en
Inventor
Seijiro Furukawa
Hiroshi Ishihara
Seigo Kanamaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO KOGYO DAIGAKUCHO
Original Assignee
TOKYO KOGYO DAIGAKUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO KOGYO DAIGAKUCHO filed Critical TOKYO KOGYO DAIGAKUCHO
Priority to JP3861487A priority Critical patent/JPS63232311A/en
Publication of JPS63232311A publication Critical patent/JPS63232311A/en
Publication of JPH035056B2 publication Critical patent/JPH035056B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、絶縁性金属弗化物の薄膜あるいは基
板上に半導体単結晶薄膜を製造する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing a semiconductor single crystal thin film on an insulating metal fluoride thin film or substrate.

(従来の技術) 一般に、電子素子の高速化、高密度化のため
に、絶縁物上に単結晶半導体薄膜を形成すること
が望まれている。その形成手段の一つに、良好な
単結晶が得られ、結晶型や格子定数が代表的半導
体と類似しているアルカリ土類金属弗化物、ある
いはランタン族金属弗化物を絶縁物として用い、
この上に半導体単結晶薄膜を分子線エピタキシー
法などによりエピタキシヤル成長させる方法があ
る。しかし、これらの金属弗化物上に半導体薄膜
を直接高温で被着すると、成長初期に半導体が島
状に堆積し、膜厚を厚くしても表面が平坦化され
ず結晶性も悪いという問題がある。
(Prior Art) Generally, in order to increase the speed and density of electronic devices, it is desired to form a single crystal semiconductor thin film on an insulator. One of the methods for forming it is to use alkaline earth metal fluorides or lanthanum group metal fluorides as insulators, which can yield good single crystals and whose crystal type and lattice constant are similar to typical semiconductors.
There is a method of epitaxially growing a semiconductor single crystal thin film thereon by molecular beam epitaxy or the like. However, when a semiconductor thin film is deposited directly on these metal fluorides at high temperatures, the semiconductor is deposited in islands in the early stage of growth, and even if the film thickness is increased, the surface is not flattened and the crystallinity is poor. be.

この問題を解決するために、従来、絶縁性金属
弗化物単結晶の薄膜あるいは基板の表面に厚さ
10nm以下の半導体極薄膜を被着し、次いでこの
半導体極薄膜上に半導体薄膜を単結晶成長させる
方法が提案されてきた。
In order to solve this problem, conventional methods have been to apply a thin film of insulating metal fluoride single crystal or a thin film on the surface of the substrate.
A method has been proposed in which an ultra-thin semiconductor film of 10 nm or less is deposited and then a single crystal of the semiconductor thin film is grown on the ultra-thin semiconductor film.

(発明が解決しようとする問題点) しかしながらかかる方法では半導体の種類が、
ゲルマニウム、ひ化ガリウムなどの場合には有効
性に問題があつた。
(Problem to be solved by the invention) However, in this method, the type of semiconductor
There were problems with effectiveness in the case of germanium, gallium arsenide, etc.

そこで本発明はアルカリ土類金属弗化物あるい
はランタン族金属弗化物上に半導体薄膜を単結晶
成長させる場合に、島状成長が起こり、膜厚を厚
くしても半導体薄膜の表面平坦性や結晶性が改善
されないという問題点を解決することを目的とす
る。
Therefore, the present invention aims to improve the surface flatness and crystallinity of the semiconductor thin film even if the film thickness is increased because island-like growth occurs when a semiconductor thin film is grown as a single crystal on an alkaline earth metal fluoride or a lanthanum group metal fluoride. The purpose is to solve the problem of not being improved.

(問題点を解決するための手段) 上記目的を満足する本発明の第1の発明は、絶
縁性金属弗化物単結晶の薄膜、あるいは基板の表
面に厚さ10nm以下の半導体極薄膜を被着する第
1工程と、 半導体極薄膜を被着した後、半導体極薄膜を通
過して上記弗化物の薄膜あるいは基板に到達する
エネルギー及び入射角で試料表面側から電子線を
照射する第2工程と、 上記半導体極薄膜上に半導体薄膜を単結晶成長
させる第3工程 とから成ることを特徴とする半導体薄膜の製造方
法に関するものである。
(Means for Solving the Problems) A first aspect of the present invention that satisfies the above objects is to deposit an insulating metal fluoride single crystal thin film or a semiconductor ultra-thin film with a thickness of 10 nm or less on the surface of a substrate. a first step of depositing an ultra-thin semiconductor film, and a second step of irradiating an electron beam from the surface side of the sample with an energy and incident angle that passes through the ultra-thin semiconductor film and reaches the fluoride thin film or substrate. The present invention relates to a method for manufacturing a semiconductor thin film, comprising a third step of growing a single crystal of a semiconductor thin film on the ultra-thin semiconductor film.

また本発明の第2の発明は、上記第1の発明の
第1工程の前に、弗化物薄膜あるいは弗化物基板
の表面に電子線を照射する工程を加え、第2工程
を省略する方法に関するもので、絶縁性金属弗化
物単結晶の薄膜あるいは基板の表面に電子線を照
射する第1工程と、 次いで上記薄膜あるいは基板の表面に厚さ10n
m以下の半導体極薄膜を被着する第2工程と、上
記半導体極薄膜上に半導体薄膜を単結晶成長させ
る第3工程 とから成ることを特徴とする半導体薄膜の製造方
法に関するものである。
Further, a second invention of the present invention relates to a method in which a step of irradiating the surface of a fluoride thin film or a fluoride substrate with an electron beam is added before the first step of the first invention, and the second step is omitted. The first step is to irradiate the surface of an insulating metal fluoride single crystal thin film or substrate with an electron beam, and then the surface of the thin film or substrate is coated with a thickness of 10 nm.
The present invention relates to a method for producing a semiconductor thin film, comprising a second step of depositing an ultra-thin semiconductor film with a thickness of less than m, and a third step of growing a single crystal of the semiconductor thin film on the ultra-thin semiconductor film.

ここで絶縁性金属弗化物単結晶の薄膜とは、他
の半導体材料より成る基板上に被着した薄膜を意
味し、絶縁性金属弗化物単結晶の基板とは基板全
体が該弗化物単結晶より成ることを意味するもの
とする。
Here, the term "insulating metal fluoride single crystal thin film" means a thin film deposited on a substrate made of another semiconductor material, and the term "insulating metal fluoride single crystal substrate" means that the entire substrate is made of the fluoride single crystal. shall mean consisting of.

本発明において用いられる絶縁性金属弗化物と
しは、弗化マグネシウム、弗化カルシウム、弗化
ストロンチウム、弗化バリウムの如きアルカリ土
類金属弗化物および弗化ツリウム、弗化ホルミウ
ム、弗化ユーロピウム、弗化ネオジウム、弗化プ
ラセオジウム、弗化セリウム、弗化ランタンの如
きランタン族金属弗化物がある。
The insulating metal fluorides used in the present invention include alkaline earth metal fluorides such as magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, thulium fluoride, holmium fluoride, europium fluoride, and fluoride. There are lanthanum group metal fluorides such as neodymium fluoride, praseodymium fluoride, cerium fluoride, and lanthanum fluoride.

本発明の第1の発明において、第1工程におい
ては、上記弗化物単結晶の薄膜あるいは基板の表
面に厚さ10nm以下、好ましくは0.2〜10nmの半
導体極薄膜を被着する(即ち予備堆積する)が、
被着方法としては真空蒸着、スパツタリング法等
が用いられる。
In the first aspect of the present invention, in the first step, an ultra-thin semiconductor film with a thickness of 10 nm or less, preferably 0.2 to 10 nm, is deposited on the fluoride single crystal thin film or the surface of the substrate (i.e., pre-deposited). )but,
Vacuum deposition, sputtering, etc. are used as the deposition method.

上記第1工程において半導体極薄膜を被着した
後、第2工程においてこの極薄膜を通過して上記
弗化物の薄膜あるいは基板に到達するエネルギー
をもつ電子線を任意の入射角で、極薄膜の被着し
た薄膜または基板の表面側から照射する。この際
の電子線の照射は、通常電子線加速電圧100V〜
50kVで、照射量5×10-5〜5×10-3C/cm2の範囲
で行われる。
After depositing an ultra-thin semiconductor film in the first step, in the second step, an electron beam with energy that passes through this ultra-thin film and reaches the fluoride thin film or substrate is applied to the ultra-thin film at an arbitrary incident angle. Irradiate from the surface side of the deposited thin film or substrate. At this time, the electron beam irradiation is usually performed at an electron beam acceleration voltage of 100V or more.
It is carried out at 50kV with an irradiation dose in the range of 5×10 -5 to 5×10 -3 C/cm 2 .

最後に第3工程において半導体極薄膜上に半導
体薄膜を単結晶成長させる。単結晶成長の方法と
しては、同一真空槽中で行う分子線エピタキシー
法、固相エピタキシー法、真空蒸着法などのほ
か、真空槽から取出して行う気相成長法などを用
いることができる。
Finally, in the third step, a semiconductor thin film is grown as a single crystal on the extremely thin semiconductor film. As a method for growing a single crystal, molecular beam epitaxy, solid phase epitaxy, vacuum evaporation, etc. performed in the same vacuum chamber, as well as vapor phase growth performed after taking the crystal out of the vacuum chamber, etc. can be used.

尚半導体極薄膜および半導体薄膜は、周期律表
第族元素半導体、例えばケイ素、ゲルマニウム
より成る半導体、 第−族化合物半導体、例えばインジウム、
ガリウム、アルミニウムと、リン、ヒ素、アンチ
モンの化合物半導体、 第−族化合物半導体、例えば、亜鉛、カド
ミウムと、イオウ、セレン、テルルより成る化合
物半導体、 第−族化合物半導体、例えば錫、鉛と、イ
オウ、セレン、テルルより成る化合物半導体、か
ら形成することができる。
The semiconductor ultra-thin film and the semiconductor thin film are semiconductors made of group element semiconductors of the periodic table, such as silicon and germanium, group compound semiconductors, such as indium,
Compound semiconductors of gallium, aluminum, and phosphorus, arsenic, and antimony; Group-3 compound semiconductors, such as zinc, cadmium, and sulfur, selenium, and tellurium; Group-3 compound semiconductors, such as tin, lead, and sulfur; , selenium, and tellurium.

尚第2の発明において半導体の極薄膜を被着す
る方法、電子線の照射条件等は第1の発明と実質
的に同じである。
In the second invention, the method for depositing the ultra-thin semiconductor film, the electron beam irradiation conditions, etc. are substantially the same as in the first invention.

(実施例) 次に図面を参照して実施例により本発明を説明
する。
(Examples) Next, the present invention will be explained by examples with reference to the drawings.

実施例 1 (A) 第1図aに示すように、厚さ0.6mmのケイ素
(Si)基板上に弗化カルシウム(CaF2)から成
る絶縁性金属弗化物単結晶薄膜をエピタキシヤ
ル成長させた基板1を、真空中で室温に保ち、
上記薄膜上に真空蒸着法による厚さ4nmのゲ
ルマニウム(Ge)半導体極薄膜2を堆積させ
た。
Example 1 (A) As shown in Figure 1a, an insulating metal fluoride single crystal thin film made of calcium fluoride (CaF 2 ) was epitaxially grown on a silicon (Si) substrate with a thickness of 0.6 mm. The substrate 1 is kept at room temperature in a vacuum,
An ultra-thin germanium (Ge) semiconductor film 2 having a thickness of 4 nm was deposited on the above thin film by vacuum evaporation.

(B) 上記Ge極薄膜(予備堆積Ge層)2を堆積さ
せた後、極薄膜2を備えた基板1を400℃に保
つて、第3図に示す加速電圧3kVの電子線反射
回折装置を用い、偏向板5に交流電圧を印加し
て3keのVのエネルギーを持つ電子線4を、走
査しながら基板の極薄膜2の表面に3゜の入射角
で、電子線照射を行い試料を作製した。照射量
は160μC/cm2であつた。図中1−1および1−
2はそれぞれ基板1を構成するケイ素(Si)基
板および弗化カルシウム(CaF2)層で、2は
予備堆積Ge層、6はスクリーンを示す。上記
処理によりCaF2層1−2上に島状構造でない
平坦なGe極薄膜が得られた。
(B) After depositing the Ge ultra-thin film (pre-deposited Ge layer) 2, the substrate 1 with the ultra-thin film 2 was kept at 400°C, and an electron beam reflection diffraction device with an accelerating voltage of 3 kV as shown in Fig. 3 was used. A sample was prepared by applying an AC voltage to the deflection plate 5 and scanning the electron beam 4 with an energy of 3 ke V to irradiate the surface of the ultra-thin film 2 of the substrate at an incident angle of 3 degrees. did. The irradiation dose was 160 μC/cm 2 . 1-1 and 1- in the figure
2 is a silicon (Si) substrate and a calcium fluoride (CaF 2 ) layer constituting the substrate 1, 2 is a preliminary deposited Ge layer, and 6 is a screen. By the above treatment, a flat Ge ultrathin film without an island structure was obtained on the CaF 2 layer 1-2.

(C) 次に上記試料を600℃の温度に保つて分子線
エピタキシー(MBE)法により試料の予備堆
積Ge層上に通常のGeの薄膜3を堆積し、単結
晶成長させた。
(C) Next, the sample was maintained at a temperature of 600° C., and a normal Ge thin film 3 was deposited on the predeposited Ge layer of the sample by molecular beam epitaxy (MBE) to grow a single crystal.

第4図aとbに、4nmの予備堆積Ge層に基板
温度400℃で電子線照射した後の反射中速電子線
回折パターン(RMEED)を示す。この場合回折
パターンの観察を目的としたため電子線は走査せ
ずに固定したままであつた。第4図aがハローな
回折パターンであることから予備堆積Ge層はこ
の段階ではまだ非晶質であることがわかる。しか
し、この膜に十分な量の電子線を照射した第4図
bでストリークなパターンを示し、膜が原子的に
平坦なまま結晶化したことがわかる。この時電子
線を照射していなかつた領域を観察すると依然と
してハローなパターンを示し、第4図bの変化は
電子線照射によるものであることがわかつた。第
4図cは基板温度を600℃としたときの回折パタ
ーンである。このスポツト状パターンにより600
℃まで加熱すればGeは容易にCaF2上で結晶化す
るが、その表面には凹凸があり、Geの凝集が起
こつていることが電子線回折パターンからもわか
つた。そしてこの試料に電子線を照射している
と、このスポツト状パターンが次第にストリーク
状に変化していき第4図bよりもストリークな、
すなわち結晶性のよい膜になることが分かつた。
Figures 4a and 4b show reflection medium velocity electron diffraction (RMEED) patterns after a 4 nm predeposited Ge layer was irradiated with an electron beam at a substrate temperature of 400°C. In this case, since the purpose was to observe the diffraction pattern, the electron beam remained fixed without being scanned. The halo diffraction pattern shown in Figure 4a indicates that the predeposited Ge layer is still amorphous at this stage. However, in FIG. 4b, when this film was irradiated with a sufficient amount of electron beams, it showed a streaky pattern, indicating that the film was crystallized while remaining atomically flat. When the area that was not irradiated with the electron beam at this time was observed, it still showed a halo pattern, and it was found that the change shown in FIG. 4b was due to the electron beam irradiation. FIG. 4c shows the diffraction pattern when the substrate temperature is 600°C. 600 with this spot-like pattern.
Ge easily crystallizes on CaF 2 when heated to ℃, but the surface is uneven, and the electron diffraction pattern reveals that Ge aggregation occurs. When this sample is irradiated with an electron beam, this spot-like pattern gradually changes to a streak-like pattern, which is more streaky than that shown in Figure 4b.
In other words, it was found that the film had good crystallinity.

次に第5図a〜dに予備堆積層膜厚を3nmと
した以外は前記と同様にして、但し比較のため電
子線照射領域とともに非照射領域を設けた試料を
作製した。これらの試料の照射領域と非照射領域
の表面SEM写真をそれぞれ第5図aとbに、後
方散乱(RBS)スペクトルをそれぞれ第5図c
とdに示す。SEM写真より電子線照射領域の表
面は極めて平坦であるのに対し、非照射領域は大
変荒れていることがわかる。また後方散乱スペク
トルにより最小散乱収率(Xnio)は照射領域で8
%、非照射領域で16%と大きな改善がみられてい
ることがわかる。
Next, as shown in FIGS. 5a to 5d, samples were prepared in the same manner as described above except that the thickness of the preliminary deposited layer was changed to 3 nm, except that a non-irradiated area was provided in addition to an electron beam irradiated area for comparison. Surface SEM photographs of the irradiated and non-irradiated areas of these samples are shown in Figures 5a and b, respectively, and the back scattering (RBS) spectra are shown in Figure 5c, respectively.
and d. The SEM photograph shows that the surface of the electron beam irradiated area is extremely flat, while the non-irradiated area is extremely rough. Also, according to the backscattering spectrum, the minimum scattering yield (X nio ) is 8 in the irradiated area.
%, and a significant improvement of 16% in the non-irradiated area.

次に結晶性の電子線電流密度と照射量に対する
依存性を調べた。照射時の電流密度依存性は第7
図よりその値を一桁変化させても結晶性は同じで
あつたが、照射量の変化は第6図に示すような結
晶性と表面平坦性に著しく影響することがわかつ
た。このことより、電子線照射は照射量の積分効
果であり、照射速度に依存する電子線による加熱
効果は本質ではないことがわかつた。
Next, we investigated the dependence of crystallinity on electron beam current density and irradiation dose. The current density dependence during irradiation is the seventh
As shown in the figure, the crystallinity remained the same even if the value was changed by one order of magnitude, but it was found that the change in the irradiation amount significantly affected the crystallinity and surface flatness as shown in FIG. This indicates that electron beam irradiation is an integral effect of the irradiation dose, and that the heating effect of the electron beam, which depends on the irradiation rate, is not essential.

次に電子線によりGeのノツク−オン(Knock
−on)効果、即ち電子線照射のGeへの影響を調
べるためにCaF2面上に電子線を照射した後に予
備堆積を行い、先に述べた予備堆積層に電子線を
照射した場合とほぼ同じ結果を得た。このことに
より電子線は弗化物に照射することが必要であ
り、Geに照射する効果は重要でないことがわか
つた。しかし電子線を照射したCaF2面上に直接
MBE成長しても層状成長ではなく島状成長する
ことが示され、電子線照射と予備堆積法を組合せ
て初めて層状成長を実現できることが明らかにな
つた。
Next, an electron beam is used to knock on Ge.
-on) effect, that is, the effect of electron beam irradiation on Ge, preliminary deposition was performed after electron beam irradiation on the CaF 2 surface, and the results were similar to those obtained when the preliminary deposited layer was irradiated with the electron beam as described above. Got the same result. This revealed that it is necessary to irradiate the fluoride with the electron beam, and that the effect of irradiating Ge is not important. However, directly on the CaF 2 surface irradiated with the electron beam,
It has been shown that MBE growth results in island-like growth rather than layered growth, and it has become clear that layered growth can only be achieved by combining electron beam irradiation and pre-deposition.

次にCaF2面上に電子線を照射した後に予備堆
積を行い、次いで半導体薄膜を単結晶成長させる
方法を実施例2で更に説明する。
Next, a method of performing preliminary deposition after irradiating the CaF 2 surface with an electron beam and then growing a semiconductor thin film as a single crystal will be further explained in Example 2.

実施例 2 実施例1の(A)工程におけるGe半導体極薄膜2
を堆積する工程と、(B)工程における電子線4を照
射する工程の順序を実質的に逆にしてケイ素基板
に弗化カルシウム層を設けた基板1に、第2図a
に示すように該基板を400℃に保つて、実施例1
に記載した方法3keVのエネルギーを持つ電子線
を照射し、しかる後第2図bに示すように厚さ
4nmのゲルマニウム極薄膜を堆積し、その後に
第1図cに示すGeの薄膜3を単結晶成長させた。
Example 2 Ge semiconductor ultra-thin film 2 in step (A) of Example 1
The calcium fluoride layer is provided on the silicon substrate 1 by substantially reversing the order of the step of depositing the calcium fluoride and the step of irradiating the electron beam 4 in step (B), as shown in FIG. 2a.
The substrate was kept at 400°C as shown in Example 1.
The method described in
An ultra-thin germanium film of 4 nm was deposited, and then a Ge thin film 3 shown in FIG. 1c was grown as a single crystal.

このようにして得られたものを試料とし、その
表面SEM写真を第8図aに、RBSスペクトルを
第8図bに示す。SEM写真より表面は極めて平
坦であることがわかる。また、後方散乱スペクト
ルにより最小散乱収率(Xnio)は照射領域で8%
となり、第5図dに示した非照射領域の16%と比
べて大きく改善されていることがわかる。
The thus obtained sample was used as a sample, and its surface SEM photograph is shown in Figure 8a, and its RBS spectrum is shown in Figure 8b. The SEM photograph shows that the surface is extremely flat. In addition, the minimum scattering yield (X nio ) is 8% in the irradiated area according to the backscattering spectrum.
It can be seen that this is a significant improvement compared to 16% in the non-irradiated area shown in Figure 5d.

(発明の効果) 以上説明してきたように、本発明の第1の発明
の方法によると、絶縁性金属弗化物単結晶の薄膜
あるいは基板に半導体薄膜を単結晶成長させる場
合に、初期に半導体膜が島状に成長し、膜厚が厚
くなつた後にも膜の表面に凹凸が発生するという
問題、あるいは初期に形成された島と島とが合体
する際に合体界面に結晶欠陥が入り、成長膜の結
晶性が劣化するという問題が解決される。その結
果、表面が平坦で、結晶性の良好な単結晶半導体
薄膜が絶縁性金属弗化物上に形成される。
(Effects of the Invention) As explained above, according to the method of the first aspect of the present invention, when a semiconductor thin film is grown as a single crystal on an insulating metal fluoride single crystal thin film or a substrate, the semiconductor film is initially grown. The problem is that the film grows in the form of islands and unevenness occurs on the surface of the film even after the film becomes thick, or when the initially formed islands coalesce, crystal defects enter the coalescing interface, causing growth. The problem of deterioration of film crystallinity is solved. As a result, a single crystal semiconductor thin film with a flat surface and good crystallinity is formed on the insulating metal fluoride.

また第2の発明の方法によつても初期における
半導体薄膜の島状成長が抑えられ、表面が平坦で
結晶性の良好な半導体薄膜が、絶縁性金属弗化物
上に単結晶成長できるという効果が得られる。
Moreover, the method of the second invention also suppresses the island-like growth of the semiconductor thin film in the initial stage, and has the effect that a semiconductor thin film with a flat surface and good crystallinity can be grown as a single crystal on the insulating metal fluoride. can get.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の発明方法の工程図、第
2図は本発明の第2の発明方法の工程図、第3図
は実施例で用いた電子線反射回折装置の斜視図
で、試料に電子線照射を実施する状態を示し、第
4図a,bおよびcは実施例1の予備堆積Ge層
に電子線照射した後の結晶の状態を示す回折パタ
ーン、第5図aおよびbは実施例1において予備
堆積層膜厚を3nmとした場合の電子線照射領域
と非照射領域の表面の結晶構造を示すSEM写真、
第5図cおよびdは後方散乱スペクトルによるチ
ヤネル数と後散乱収率の関係を示すグラフ、第6
図は電子照射量と最小散乱収率の関係を示す線
図、第7図は電子照射量率と最小散乱収率の関係
を示す線図、第8図aは実施例2で得た試料の表
面の結晶構造を示すSEM写真、第8図bは同じ
試料の後方散乱スペクトルによるチヤネル数と後
散乱収率の関係を示すグラフである。 1……基板、1−1……ケイ素基板、1−2…
…CaF2層、2……半導体極薄膜、3……半導体
薄膜、4……電子線、5……偏向板、6……スク
リーン。
Figure 1 is a process diagram of the first invention method of the present invention, Figure 2 is a process diagram of the second invention method of the invention, and Figure 3 is a perspective view of the electron beam reflection diffraction apparatus used in the examples. , Figures 4a, b and c show the state of the crystals after electron beam irradiation on the predeposited Ge layer of Example 1, and Figures 5a and b is an SEM photograph showing the crystal structure of the surface of the electron beam irradiated area and non-irradiated area when the thickness of the preliminary deposited layer was 3 nm in Example 1;
Figures 5c and d are graphs showing the relationship between the number of channels and the backscattering yield according to the backscattering spectrum;
Figure 7 is a diagram showing the relationship between electron irradiation dose and minimum scattering yield, Figure 7 is a diagram showing the relationship between electron irradiation rate and minimum scattering yield, and Figure 8a is a diagram showing the relationship between electron irradiation dose and minimum scattering yield. FIG. 8b is a SEM photograph showing the crystal structure of the surface, and is a graph showing the relationship between the number of channels and the backscattering yield based on the backscattering spectrum of the same sample. 1...Substrate, 1-1...Silicon substrate, 1-2...
...CaF 2 layer, 2... semiconductor ultra-thin film, 3... semiconductor thin film, 4... electron beam, 5... deflection plate, 6... screen.

Claims (1)

【特許請求の範囲】 1 絶縁性金属弗化物単結晶の薄膜、あるいは基
板1の表面に厚さ10nm以下の半導体極薄膜2を
被着する第1工程と、 半導体極薄膜2を被着した後、半導体極薄膜2
を通過して上記弗化物の薄膜あるいは基板1に到
達するエネルギー及び入射角で表面側から電子線
4を照射する第2工程と、 上記半導体極薄膜2上に半導体薄膜3を単結晶
成長させる第3工程 とから成ることを特徴とする半導体薄膜の製造方
法。 2 絶縁性金属弗化物単結晶の薄膜、あるいは基
板1の表面に電子線を照射する第1工程と、 次いで上記薄膜あるいは基板1の表面に厚さ
10nm以下の半導体極薄膜2を被着する第2工程
と、 上記半導体極薄膜2上に半導体薄膜3を単結晶
成長させる第3工程 とから成ることを特徴とする半導体薄膜の製造方
法。
[Claims] 1. A first step of depositing an insulating metal fluoride single crystal thin film or a semiconductor ultra-thin film 2 with a thickness of 10 nm or less on the surface of the substrate 1, and after depositing the semiconductor ultra-thin film 2. , semiconductor ultrathin film 2
a second step of irradiating the electron beam 4 from the surface side with an energy and an incident angle that reaches the fluoride thin film or substrate 1 through the fluoride film; and a second step of growing a semiconductor thin film 3 as a single crystal on the semiconductor ultra-thin film 2. A method for manufacturing a semiconductor thin film, characterized by comprising three steps. 2. A first step of irradiating the surface of the insulating metal fluoride single crystal thin film or substrate 1 with an electron beam, and then applying a thickness to the surface of the thin film or substrate 1.
A method for manufacturing a semiconductor thin film, comprising: a second step of depositing an ultra-thin semiconductor film 2 of 10 nm or less; and a third step of growing a single crystal of a semiconductor thin film 3 on the ultra-thin semiconductor film 2.
JP3861487A 1987-02-20 1987-02-20 Manufacture of semiconductor thin film Granted JPS63232311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3861487A JPS63232311A (en) 1987-02-20 1987-02-20 Manufacture of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3861487A JPS63232311A (en) 1987-02-20 1987-02-20 Manufacture of semiconductor thin film

Publications (2)

Publication Number Publication Date
JPS63232311A JPS63232311A (en) 1988-09-28
JPH035056B2 true JPH035056B2 (en) 1991-01-24

Family

ID=12530130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3861487A Granted JPS63232311A (en) 1987-02-20 1987-02-20 Manufacture of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS63232311A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU744614B2 (en) 1996-09-04 2002-02-28 Toyo Ink Manufacturing Co. Ltd. Electron beam irradiating method and object to be irradiated with electron beam
JP3772272B2 (en) * 2004-02-13 2006-05-10 独立行政法人科学技術振興機構 I-VII group semiconductor single crystal thin film and method for producing the same

Also Published As

Publication number Publication date
JPS63232311A (en) 1988-09-28

Similar Documents

Publication Publication Date Title
JP2695488B2 (en) Crystal growth method
US5219769A (en) Method for forming Schottky diode
JPH0360171B2 (en)
EP0093981A1 (en) Method of producing a single-crystal silicon film
Hirasawa et al. Growth mechanism of nanoparticles prepared by radio frequency sputtering
JPH035056B2 (en)
JPH02260524A (en) Crystalline semiconductor film and formation thereof
US6057213A (en) Methods of forming polycrystalline semiconductor layers
JPS5886717A (en) Forming of single crystal silicon film
JP3366169B2 (en) Polycrystalline silicon thin film laminate, silicon thin film solar cell and thin film transistor
JPH0476217B2 (en)
JP2800060B2 (en) Method for manufacturing semiconductor film
JP2936878B2 (en) Manufacturing method of semiconductor Schottky junction
JPS60246619A (en) Manufacture of semiconductor device
JPH0443413B2 (en)
JPH01149483A (en) Solar cell
JPS61256624A (en) Manufacture of semiconductor device
JPS5853823A (en) Manufacture of semiconductor device
JPH0524113B2 (en)
JP2771635B2 (en) Ca lower 1-lower x Sr lower x F lower 2
JP2699608B2 (en) Single crystal thin film forming method
JPH10259099A (en) Production of compound membrane
JP2680114B2 (en) Method for forming crystalline semiconductor thin film
JP2677056B2 (en) Capacitor electrode and method for forming the same
JPH0442918A (en) Formation of semiconductor thin film

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term