JPH0349970B2 - - Google Patents

Info

Publication number
JPH0349970B2
JPH0349970B2 JP58141176A JP14117683A JPH0349970B2 JP H0349970 B2 JPH0349970 B2 JP H0349970B2 JP 58141176 A JP58141176 A JP 58141176A JP 14117683 A JP14117683 A JP 14117683A JP H0349970 B2 JPH0349970 B2 JP H0349970B2
Authority
JP
Japan
Prior art keywords
metal tube
cooling
steel pipe
pipe
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58141176A
Other languages
Japanese (ja)
Other versions
JPS6033314A (en
Inventor
Kyohei Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14117683A priority Critical patent/JPS6033314A/en
Publication of JPS6033314A publication Critical patent/JPS6033314A/en
Publication of JPH0349970B2 publication Critical patent/JPH0349970B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、石油、天燃ガス採取用の鋼管とし
て使用されるアプセツト鋼管ならびに深海油井や
ガス井用海洋構造物に使用される大径、極厚肉鋼
管等の如く、軸方向において半径方向寸法の異な
る部分、たとえば管端部分に段差を有する金属管
の冷却装置に関する。 (従来技術) 軸方向において半径方向寸法の異なる部分、た
とえば外径寸法に段差を有する鋼管の熱処理を行
なう場合について、以下の説明を行なう。 小径或は中径鋼管と称される、外径16インチ
(406.4mm)以下の鋼管では、鋼管を軸方向に接続
すべく管端部にネジ切りを行なうため、その部分
の肉厚を他よりも大きくすべく、熱間でアプセツ
ト加工を行なつて、管端部に段差を付けることが
多い。 鋼管のアプセツト加工には、鋼管の外表面側に
増肉する外アプセツトと、鋼管内周面側に増肉す
る内アプセツトとがあるが、この発明で対象とす
るのは、主として外表面側に増肉せしめた外アプ
セツト鋼管である。 このような、軸方向において半径方向寸法の異
なる部分、たとえば管端に段差を有する鋼管を、
従来行なわれている、管断面中心を指向するとと
もに管軸に対し所定の角度で、ノズル群から冷却
媒体を噴射する、所謂斜め前方噴射外面冷却法で
冷却すると、冷却媒体は、管外周面を軸方向に沿
つて流れ、段差近傍でジヤンプし、その結果、鋼
管に冷却されない部分が発生する。而して、鋼管
に焼入れ不良が生じ、製品品質上致命的欠陥とな
る。 また、軸方向において外径に段差を有する鋼管
を、従来の、パスライン固定の搬送装置で搬送し
ながら加熱、冷却する方法によつて加熱或は冷却
すると、厚肉段差部とその他の定常部の半径方向
寸法の差異によつて、誘導加熱コイルや冷却用ト
ンネル型ヘツダの中心と鋼管軸芯とがずれたり、
鋼管軸芯が傾斜したりするので、鋼管に、加熱む
ら、冷却むら(焼入れむら)を生じ、延いては形
状不良をもたらすといつた問題を生じる。 次の(発明の目的)にも明記した通り本発明の
最大の狙いである深海海洋構造物向大径鋼管例え
ばテンシヨンレグプラツトフオーム(Tension
Leg Platform)用繋留用管(Tether Pipe)等
は、従来、鍛造→熱処理(焼入、焼戻)後機械加
工あるいは厚板を熱処理後造管・溶接し機械加工
を行なつて製造していたので、材質、品質、コス
トの面で問題が多かつた。以上の通り、この種の
鋼管の製造法として造管・溶接後最後に熱処理す
る方法は未知であり存在していなかつた。 (発明の目的) 現在、或は将来に亘つて熱処理した、軸方向に
おいて外径に段差を有する、アプセツト鋼管や海
洋構造物用大径鋼管の供給が要請される処から、
たとえば管端部における段差が80mm〜100mmある
鋼管であつても、前述の如き問題の生じない、金
属管の冷却装置を得ることを目的としてこの発明
はなされた。 (発明の構成、作用) この発明の要旨とする処は、下記に記載する冷
却冷却装置にある。 軸方向において半径方向寸法の異なる部分を有
する金属管を軸方向に搬送しながら冷却する装置
であつて;前記金属管の軸方向変位に伴なう半径
方向寸法の変化に対応して金属管支持面の位置を
半径方向に変化させるための流体圧昇降機構を具
えた複数の金属管支持ローラ、若しくは前記金属
管の軸方向変位に伴なう半径方向寸法の変化に対
応して金属管支持面の位置を半径方向に変化させ
るための流体圧昇降機構を具えるとともに、金属
管の移動に伴つて管軸方向に駆動装置によつて変
位せしめられる複数の金属管支持ローラと;金属
管を加熱するための誘導加熱装置と;金属管の軸
方向に延在する複数本のヘツダと、該ヘツダから
の冷却媒体を金属管外周表面に噴射するノズル群
と、該ノズルの、上記金属管軸方向に垂直あるい
はほぼ垂直な面内で冷却媒体噴射方向の、金属管
半径方向とのなす角を、同時に同一の角度だけ変
化せしめるノズル角度調整機とを有する金属管冷
却装置;とを設けてなる段差を有する金属管の冷
却装置。 以下に、本発明を詳細に説明する。 先ず、従来技術における問題の1つは、金属管
を軸方向に搬送する(変位せしめる)ときに、金
属管の軸方向における外径寸法の異なる部分(段
差)に起因して、誘導加熱コイルの如き加熱手段
や、トンネル型外面冷却装置の断面中心と管軸芯
とがずれたり、金属管軸芯が傾斜することであ
る。 先ず、この問題を解決するために、発明者は、
段差を有する鋼管を軸方向に変位せしめるに際
し、金属管軸芯を半径方向に変動せしめない手段
を工夫した。第1図に、その一実施例を示す。 第1図において、1は鋼管であつて、頭、尾端
部に、他部分よりも外周面側に壁厚の大きな段差
を有している。2は、鋼管1の定常部である。3
は誘導加熱装置、4は冷却装置であつて、この実
施例では、後述する、周方向噴射冷却装置であ
る。5は流体圧機構、たとえば液圧シリンダであ
る。6は金属管支持ローラであつて、流体圧機構
5によつて金属管の半径方向位置、この実施例で
は、鉛直方向位置を離散的或は連続的に変形せし
められる。7は支持ローラ移動用車輪であつて、
金属管支持ローラ6を、金属管軸方向に図示しな
いチエン等の駆動装置によつて変位せしめるべく
機能する。8は床面、18は金属管位置検出装置
である。 第1図において、金属管1を軸方向に移動(変
位)せしめるには、金属管支持ローラ6の回転を
止めて、その管軸方向変位によつて、恰もウオー
キングビーム方式で金属管1を軸方向へ搬送する
如くするか、金属管支持ローラ6を回転駆動し
て、それによつて金属管1を軸方向に搬送するか
する。金属管支持ローラ6の回転駆動によつて、
金属管1を軸方向に変位せしめる場合、金属管支
持ローラ6は、金属管1の軸方向には変位させ
ず、金属管位置検出装置18によつて金属管1の
頭端部位置を検出するとともに、図示しない演算
装置によつて、金属管1の軸方向移動速度と前記
頭端部位置検出結果から金属管1の軸方向位置を
トラツキングし、それに基づいて金属管支持ロー
ラ6の、金属管1の半径方向位置を流体圧機構5
によつて変化させ、段差部の移動に伴なう金属管
軸芯の半径方向への変動を生ぜしめないようにす
る。 また、前記両方法の組合せでも良い。 また金属管支持ローラ6の駆動を止めてウオー
キングビーム方式でその管軸方向変位によつて金
属管を軸方向へ搬送する場合には、金属管1の移
動に従つてそれぞれの金属管支持装置31,3
2,33,34,35,36において支持ローラ
6の金属管半径方向位置を金属管の段差部と直管
部に対応して液体圧昇降機構5によつて変位させ
ると同時に、例えば第1図に示す金属管支持装置
のうち35または36は段差部あるいは直管部を
支持ローラで支持したままの状態で金属管の移動
に伴つて車輪7によつて管軸方向に移動させるこ
とによつて段差部の移動に伴う金属管軸芯の半径
方向への変動を生ぜしめないようにする。 また、この場合金属管の移動に伴つてその他の
金属管支持装置31,32,34も移動可能な範
囲で車輪7によつて管軸方向に移動させる。 この発明においては、かかる装置によつて、軸
方向において外径の異なる部分を有する金属管の
軸方向への移動(変位)に伴なう金属管軸芯の半
径方向への変動を生ぜしめないようにする。 次に、従来技術における2つ目の問題は、金属
管断面中心を指向するとともに、管軸に対し所定
の角度でノズル群から冷却媒体を噴射する、所謂
斜め前方噴射外面冷却法、即ち従来技術で冷却す
ると、冷却媒体が、管外周面を軸方向に沿つて流
れ、段差近傍でジヤンプし、鋼管に冷却されない
部分が生じるという問題である。 この、従来の斜め前方噴射外面冷却法は、冷媒
を噴射し、この冷媒が金属管外周面に衝突後、金
属管外周面を軸方向に流動し、伝熱面積が増大す
る点を利用して、抜熱量の増大を図つている。こ
のため、段差部で冷媒が管表面からとび離れ、ま
たこのとび離れた冷媒に邪魔されて外部から供給
される新しい冷媒が管外周表面に到達しない。こ
のような機構で、段差部から管端にかけて冷却不
良、延いては焼入れ不良が生じていた。 従来技術における3つ目の問題は、例えば特開
昭55−8473に開示された鋼管焼入用冷却装置では
各ヘツダーへの冷却流体の供給を1個の共通環状
チヤンバーから行なう方法を採用しているため円
周方向で冷却の均一性が確保できない点である。
その理由は、伝熱工学の分野で伝熱面の空間にお
ける姿勢により熱伝達が異なることが既に明らか
にされており、伝熱面の姿勢例えば鋼管の上面、
下面および側面で各々のヘツダーの噴出条件を適
度に調整・制御する必要があるからである。従来
この点が全く無視されていた為に冷却後の形状不
良や焼きむらが発生していた。本願発明者はこの
点を解決し、円周方向で極めて均一な冷却を可能
とした。 この問題を解決するために、発明者は、以下の
ような冷却手段を工夫した。 即ち、第2図に示すように、冷却媒体を、金属
管軸方向に垂直な方向にかつ、半径方向に対して
適度な角度で多数のノズルから冷却媒体を噴射
し、空間に冷却媒体のトンネル状輪環を形成(以
後、かかる冷却媒体のトンネル状輪環による円筒
状物体の冷却方法を、周方向噴射冷却法と略称す
る。)しておき、段差を有する鋼管の肉厚部分が、
前述の、冷却媒体のトンネル状輪環部分を通過す
るように、輪環の内径および厚さを所望の値とす
べく、ノズルをそれに合致する形状、寸法に設
計、配設し、冷却媒体噴射方向を設定する。 また、鋼管外周の段差が極めて大きくて、厚肉
部分の外径が、冷却媒体の輪環外径よりも大きく
なるような場合には、対象鋼管の搬送冷却中に、
演算装置による鋼管の軸方向位置のトラツキング
結果から自動的に冷却媒体の噴射角度を変化さ
せ、冷却媒体の輪環寸法を変更する。 何れにしても、本発明によれば、冷却装置を通
過する鋼管の、そのときの外径寸法に応じて冷却
媒体の輪環寸法を変更することが、ノズルからの
冷却媒体噴射角度を変化させることによつて容易
にできる。 冷却媒体の輪環状トンネルの内径、外径および
厚さは、段差を有する金属管の断面寸法に適合す
るように、予め設計しておくことが必要である。 上記の記述を数式で表現すれば以下のようであ
る。(第3図参照)段差を有する鋼管の直管部の
肉厚、外径を各々ts,Ds、管端部の肉厚、外径
を各々tE,DEとし、冷媒の輪環状トンネルの内
径、外径を各々di,doとすると、被冷却鋼管の外
表面は輪環状トンネルの外径内にあつた方が望ま
しいから do≧DsあるいはDE (1) 被冷却鋼管の外周に衝突した冷媒は、幾分は該
鋼管の外周に沿つて流れるので、(1)式は絶対条件
ではないが、冷却の均一性等の観点から、(1)式の
条件を設定するのが望ましい。 また、輪環状トンネルの内径は直管部の外径よ
り小さくなくてはならないから、 di<Ds (2) 次に、長さ1mのトンネル状冷却ゾーン内に供
給する冷媒の量をQm3/min/mとし、輪環状ト
ンネルの断面内の水量分布が均一と仮定すればdi
〜Ds、di〜DEの環状層内の冷媒が各々直管部と
管端部表面に供給されることになる。直管部と管
端部の各々の外表面の平均水量密度をQS、QE
m3/min・m2とすれば QS=Q(DS 2−di2)/πDS(do2−di2) (3) QE=Q(DE 2−di2/πDE(do2−di2) (4) 直管部と管端部でdo、diを変更しなくてよい場
合は、Qが一定なら両者の比は DE/QS=DS/DE×DE 2−di2/DS 2−di2 (5) となる。 特に、段差が極端に大きい場合、被冷却鋼管の
幾何学的寸法、形状と該輪環状トンネルの寸法と
の相互関係で、直管部と管端部を同一の該輪環状
トンネル寸法で冷却すると、いずれか一方の部分
で、(1)または(2)式の条件が満足されない場合が生
ずることがある。この場合には、各々の部分で(1)
および(2)式の条件が満足され、冷却に対して過不
足のない最適な平均水量密度となるように、冷媒
の噴射方向を設定すればよい。また、同一冷却装
置で熱処理する鋼管形状、寸法範囲に適合した
di、doの設計が必須である。 冷媒の噴射方向制御の操作は、本発明の冷却装
置では、円周方向に複数本配列された管軸に平行
なヘツダーからの冷媒の噴射方向が、ヘツダー角
度調整装置により一斉かつ同時に容易に調整、制
御できる機構になつているので、被冷却鋼管の移
動中に、冷却部位に対応して制御可能である。 本発明の主たる対象とする比較的段差の大きな
鋼管は、概して肉厚が厚いので、鋼管の搬送速度
も比較的遅くなり、自動制御は本発明の冷却装置
であれば容易である利点があり、冷却の均一性、
冷却能力の点で何等の問題も生じない。 段差が大きい場合には、長さの短かいヘツダー
で構成された冷却装置を多段に配設し、各々の冷
却装置のヘツダーのノズル噴射方向を鋼管の冷却
部位の外径、形状に最適になるように時々刻々自
動制御すると、より一層の均一冷却が、特に段差
部前後で実現できる。 この発明の、周方向噴射冷却法を実施するとき
の装置を第2図に示す。 第2図において、1は金属管であつて、その軸
方向において半径方向寸法、つまり外径の異なる
部分(段差)を有している。9A,9B,9Cは
中間レシーバタンクであつて、ヘツダ10に冷却
媒体、たとえば水を供給する。中間レシーバタン
ク9A,9B,9Cは各々それ以降の経路が独立
しており、多数のヘツダ10の床面からの距離の
差に起因する重力差によるノズル間での冷却媒体
圧力差および空間における伝熱面の姿勢による熱
伝達の差異を消去すべく、各中間レシーバタンク
毎に独立して冷却媒体の圧力を設定できるよう
に、それぞれ圧力制御機構を具えている。10は
ヘツダであつて、中間レシーバタンク9A,9
B,9Cの何れかから冷却媒体を供給され、ノズ
ル10Aから形成すべき冷却媒体輪環に関し、接
線方向へ冷却媒体を噴射する。 11は噴射方向角度調整装置であつて、第2図
においては、動力の伝達経路を省略しているけれ
ども、究極的に噴射方向調整リング30を周方向
に変位せしめ、この噴射方向調整リング30にピ
ンジヨイントされているヘツダのフレームをヘツ
ダ10の周方向に変位させ、ノズル10Aの、金
属管1半径方向とのなす角を変化させて、冷却媒
体の噴射方向を変更する。 12,13は昇降装置であつて、第2図に示す
冷却装置全体の断面中心位置を鉛直方向に変化さ
せる。6は金属管支持ローラである。15は冷却
媒体配管口、16は冷媒配管であつて、この実施
例では、フレキシブルホースが用いられる。 以上、説明した第2図に示す周方向噴射冷却装
置が、第1図における冷却装置4である。第2図
に示す実施例では、中間レシーバタンクによつ
て、ヘツダ群を複数ブロツクに分割したけれど
も、分割せずに各ヘツダから噴射される冷却媒体
量に、ヘツダ間で多少のバラツキがあつても相互
干渉して均一化される。 第2図に示す、周方向噴射冷却装置による冷却
媒体輪環およびこの冷却媒体輪環トンネルを鋼管
が通過するときの状態を、第3図aおよびbに示
す。第3図aにおいて、17は空間に形成され
た、冷却媒体の輪環状トンネルである。 第3図bに示す状態、即ち冷却媒体の輪環状ト
ンネルを鋼管が通過している状態において、冷却
媒体の輪環の内径diから鋼管外径Dまでの厚さの
冷却水(冷却媒体)が、鋼管の外周面に適用さ
れ、冷却媒体の輪環の外径doから鋼管の外径D
までの厚さの冷却水は鋼管の冷却に殆んど関与し
ない。 たとえば、鋼管の頭、尾端部に他よりも外周面
側に増肉せしめた厚肉部を有する鋼管をこの発明
によつて冷却する場合、段差部から管端部にかけ
ての焼入れ乃至冷却の不均一が解消される理由
は、冷媒の噴射方向が管軸に対してほゞ直角であ
るから、前述の冷媒のとび離れ現象がなく、常に
新しい冷媒が冷却面に供給される為である。 本発明の冷却装置では、冷媒として単一の液体
冷媒のみならず空気と水との混合冷媒でもよい。 前述の通り、比較的段差の大きい鋼管は、概し
て肉厚が厚いので、内外面同時冷却を行なうと、
高い冷却速度が得られ、材料、材質設計上またコ
スト的にも有利であり、品質が安定する。 鋼管内面を併せ冷却するには、第4図a,bに
示す装置を用いる。第4図a,bにおいて、19
は内面冷却ヘツド、20は冷媒供給用中空バー、
21は冷却ヘツドおよび中空バーの支持脚、22
は噴出冷媒、23は旋回案内羽根である。 これらの内面冷却法は、被冷却鋼管の軸芯が不
変でなければ適用できないが、前述の軸芯一定の
搬送手段により、段差を有する金属管の内面冷却
法として、初めて実用化できるようになつた。 本発明者の提案する管端に段差を有する鋼管の
内外面冷却法は、該鋼管を前述の方法で軸芯が空
間に対して常に不変となるように搬送し、外面に
前述の周方向噴射冷却法を適用し、同時に鋼管内
面をスプレー冷却する内外面同時冷却を行なうこ
ともできる。 このように、鋼管を内外面から冷却すると、壁
厚(肉厚)の大なる鋼管であつても、高い冷却速
度を採ることができるのみならず、鋼管の壁厚方
向における温度のバラツキを小さくできるから、
鋼管の冷却に際し、高い精度で、かつ採り得る温
度・時間関係の範囲を拡大できる。 (実施例) 実施例 1 第1図に示した搬送装置、誘導加熱装置および
第2図に示した周方向噴射冷却装置で、加熱、焼
入れを行なつた。加熱温度は930℃であり冷却開
始温度は870℃であつた。比較のために、第1図
の冷却装置部に斜め前方噴射冷却装置を設置し
て、同様の焼入れを行なつた。 供試鋼管の寸法、形状は第1表の通りであり、
冷媒は工業用水(水温23℃)であつた。
(Field of Industrial Application) This invention is applicable to upset steel pipes used as steel pipes for oil and natural gas extraction, and large diameter, extra-thick wall steel pipes used in offshore structures for deep sea oil wells and gas wells. The present invention relates to a cooling device for a metal tube having a step in a portion having different radial dimensions in the axial direction, for example, a tube end portion. (Prior Art) The following describes a case where a steel pipe having different radial dimensions in the axial direction, such as a steel pipe having a step in the outer diameter, is heat treated. For steel pipes with an outer diameter of 16 inches (406.4 mm) or less, which are called small-diameter or medium-diameter steel pipes, threads are cut at the end of the pipe to connect the steel pipe in the axial direction, so the wall thickness at that part must be made thicker than the other parts. In order to increase the size of the pipe, hot upset processing is often performed to create a step at the end of the pipe. There are two types of upset processing for steel pipes: outer upset, which increases the thickness on the outer surface of the steel pipe, and inner upset, which increases the wall thickness on the inner circumferential surface of the steel pipe, but this invention mainly targets the process of increasing the thickness on the outer surface. This is an outer upset steel pipe with increased thickness. Such a steel pipe has parts with different radial dimensions in the axial direction, for example, a step at the pipe end,
When cooling is performed using the so-called diagonal forward injection external surface cooling method, which is conventionally performed and injects the cooling medium from a nozzle group at a predetermined angle to the pipe axis while directing the cooling medium toward the center of the pipe cross section, the cooling medium flows over the pipe outer circumferential surface. It flows along the axial direction and jumps near the step, resulting in a portion of the steel pipe that is not cooled. As a result, poor quenching occurs in the steel pipe, resulting in a fatal defect in product quality. In addition, when a steel pipe with a step on its outer diameter in the axial direction is heated or cooled by a conventional method of heating and cooling while being conveyed by a conveying device with a fixed pass line, the thick step portion and other stationary portions are heated or cooled. Due to differences in radial dimensions, the center of the induction heating coil or cooling tunnel header may be misaligned with the steel pipe axis, or
Since the axis of the steel pipe is inclined, problems arise such as uneven heating and uneven cooling (uneven quenching) of the steel pipe, which in turn leads to poor shape. As stated in the following (objectives of the invention), the main aim of the present invention is to develop large diameter steel pipes for deep sea marine structures, such as tension leg platforms.
Traditionally, Tether Pipe, etc. for Leg Platform) were manufactured by forging, then heat treatment (quenching, tempering), and then machining, or by heat treating thick plates, forming pipes, welding, and machining. Therefore, there were many problems in terms of materials, quality, and cost. As mentioned above, as a manufacturing method for this type of steel pipe, the method of final heat treatment after pipe making and welding was unknown and did not exist. (Purpose of the Invention) Since there is a current or future demand for the supply of heat-treated upset steel pipes and large diameter steel pipes for offshore structures that have a step in the outer diameter in the axial direction,
The present invention was made with the object of providing a cooling device for metal tubes that does not cause the above-mentioned problems even when the tube ends have a step difference of 80 mm to 100 mm. (Structure and operation of the invention) The gist of the invention lies in the cooling cooling device described below. A device for cooling a metal tube having portions with different radial dimensions in the axial direction while conveying the metal tube in the axial direction; A plurality of metal tube support rollers equipped with a hydraulic lifting mechanism for changing the position of the surface in the radial direction, or a metal tube support surface that corresponds to a change in radial dimension due to axial displacement of the metal tube. a plurality of metal tube support rollers that are provided with a fluid pressure lifting mechanism for changing the position of the metal tube in the radial direction and are displaced in the tube axis direction by a drive device as the metal tube moves; heating the metal tube; an induction heating device for: a plurality of headers extending in the axial direction of a metal tube; a group of nozzles for injecting a cooling medium from the headers onto the outer circumferential surface of the metal tube; a metal tube cooling device having a nozzle angle adjuster that simultaneously changes the angle between the cooling medium injection direction and the metal tube radial direction by the same angle in a plane perpendicular or almost perpendicular to Metal tube cooling device with. The present invention will be explained in detail below. First, one of the problems with the prior art is that when a metal tube is transported (displaced) in the axial direction, the induction heating coil is The problem is that the center of the cross section of the heating means or the tunnel type external cooling device is misaligned with the tube axis, or the metal tube axis is tilted. First, in order to solve this problem, the inventor
When displacing a steel pipe with a step in the axial direction, we devised a means to prevent the axial center of the metal pipe from shifting in the radial direction. FIG. 1 shows an example of this. In FIG. 1, reference numeral 1 is a steel pipe, and the head and tail end portions have steps with a wall thickness larger on the outer peripheral surface side than on other portions. 2 is a stationary part of the steel pipe 1. 3
4 is an induction heating device, and 4 is a cooling device, which in this embodiment is a circumferential injection cooling device, which will be described later. 5 is a fluid pressure mechanism, for example a hydraulic cylinder. Reference numeral 6 denotes a metal tube support roller, which allows the fluid pressure mechanism 5 to deform the radial position of the metal tube, in this embodiment, the vertical position, discretely or continuously. 7 is a wheel for moving the support roller,
It functions to displace the metal tube support roller 6 in the axial direction of the metal tube by a drive device such as a chain (not shown). 8 is a floor surface, and 18 is a metal tube position detection device. In FIG. 1, in order to move (displace) the metal tube 1 in the axial direction, the rotation of the metal tube support roller 6 is stopped and the metal tube 1 is moved axially by the axial displacement of the metal tube 1 using a walking beam method. Alternatively, the metal tube support rollers 6 may be rotationally driven to convey the metal tube 1 in the axial direction. By rotating the metal tube support roller 6,
When displacing the metal tube 1 in the axial direction, the metal tube support roller 6 does not displace the metal tube 1 in the axial direction, and the metal tube position detection device 18 detects the head end position of the metal tube 1. At the same time, an arithmetic unit (not shown) tracks the axial position of the metal tube 1 based on the axial movement speed of the metal tube 1 and the detection result of the head end position, and based on this, the metal tube support roller 6 tracks the axial position of the metal tube 1. The radial position of 1 is the fluid pressure mechanism 5.
to prevent the metal tube axis from changing in the radial direction due to the movement of the stepped portion. Further, a combination of both of the above methods may be used. In addition, when the metal tube support roller 6 is stopped and the metal tube is conveyed in the axial direction by displacement in the tube axis direction using a walking beam method, each metal tube support device 31 moves as the metal tube 1 moves. ,3
2, 33, 34, 35, and 36, the position of the support roller 6 in the radial direction of the metal tube is displaced by the liquid pressure elevating mechanism 5 in correspondence with the stepped portion and the straight tube portion of the metal tube, and at the same time, for example, as shown in FIG. 35 or 36 of the metal tube support devices shown in FIG. 3 is constructed by moving the stepped portion or the straight tube portion in the tube axis direction with wheels 7 as the metal tube moves while supporting the stepped portion or the straight tube portion with support rollers. To prevent fluctuations in the radial direction of a metal tube axis due to movement of a stepped portion. Further, in this case, along with the movement of the metal tube, the other metal tube support devices 31, 32, and 34 are also moved in the tube axis direction by the wheels 7 within a movable range. In this invention, such a device prevents fluctuations in the radial direction of the metal tube axis due to axial movement (displacement) of the metal tube having portions with different outer diameters in the axial direction. Do it like this. Next, the second problem with the prior art is the so-called diagonal forward injection outer surface cooling method, in which the cooling medium is injected from a nozzle group at a predetermined angle to the tube axis and directed toward the center of the cross section of the metal tube. When the steel pipe is cooled, the problem is that the cooling medium flows along the outer peripheral surface of the pipe in the axial direction and jumps near the step, resulting in a portion of the steel pipe that is not cooled. This conventional diagonal forward injection external cooling method utilizes the fact that a refrigerant is injected, and after colliding with the outer peripheral surface of a metal tube, the refrigerant flows in the axial direction on the outer peripheral surface of the metal tube, increasing the heat transfer area. , aiming to increase the amount of heat removed. Therefore, the refrigerant separates from the tube surface at the stepped portion, and new refrigerant supplied from the outside is prevented from reaching the outer circumferential surface of the tube due to this separated refrigerant. With such a mechanism, poor cooling and, in turn, poor quenching occurred from the stepped portion to the end of the tube. The third problem with the prior art is that, for example, the cooling device for steel pipe quenching disclosed in JP-A-55-8473 adopts a method in which cooling fluid is supplied to each header from one common annular chamber. Because of this, it is not possible to ensure uniform cooling in the circumferential direction.
The reason for this is that it has already been clarified in the field of heat transfer engineering that heat transfer differs depending on the position of the heat transfer surface in space.
This is because it is necessary to appropriately adjust and control the ejection conditions of each header on the bottom and side surfaces. Conventionally, this point was completely ignored, resulting in poor shape and uneven baking after cooling. The inventor of the present application solved this problem and made it possible to achieve extremely uniform cooling in the circumferential direction. In order to solve this problem, the inventor devised the following cooling means. That is, as shown in Figure 2, the cooling medium is injected from a number of nozzles in a direction perpendicular to the axial direction of the metal tube and at an appropriate angle to the radial direction, creating a cooling medium tunnel in the space. (Hereinafter, the method of cooling a cylindrical object using a tunnel-shaped ring of cooling medium will be abbreviated as the circumferential injection cooling method.), and the thick part of the steel pipe with steps is
In order for the cooling medium to pass through the tunnel-shaped ring portion described above, the nozzle is designed and arranged to have a shape and dimensions that match the desired inner diameter and thickness of the ring ring, and the cooling medium is injected. Set direction. In addition, if the step on the outer periphery of the steel pipe is extremely large and the outer diameter of the thick wall portion is larger than the outer diameter of the ring ring of the cooling medium, during transportation and cooling of the target steel pipe,
The injection angle of the coolant is automatically changed based on the tracking result of the axial position of the steel pipe by the calculation device, and the ring size of the coolant is changed. In any case, according to the present invention, changing the ring size of the cooling medium according to the outer diameter size of the steel pipe passing through the cooling device at that time changes the injection angle of the cooling medium from the nozzle. This can be easily done. The inner diameter, outer diameter, and thickness of the cooling medium annular tunnel need to be designed in advance so as to match the cross-sectional dimensions of the metal tube having steps. The above description can be expressed mathematically as follows. (Refer to Figure 3) Let the wall thickness and outer diameter of the straight pipe part of the steel pipe with a step be ts and Ds, respectively, and the wall thickness and outer diameter of the pipe end part be t E and D E , respectively, and the refrigerant annular tunnel. If the inner and outer diameters are di and do, respectively, it is desirable that the outer surface of the steel pipe to be cooled be within the outer diameter of the annular tunnel, so do≧Ds or D E (1) Collision with the outer periphery of the steel pipe to be cooled Since the refrigerant flows somewhat along the outer periphery of the steel pipe, equation (1) is not an absolute condition, but from the viewpoint of uniformity of cooling, etc., it is desirable to set the condition of equation (1). Also, since the inner diameter of the annular tunnel must be smaller than the outer diameter of the straight pipe section, di<Ds (2) Next, the amount of refrigerant to be supplied into the tunnel-shaped cooling zone with a length of 1 m is Qm 3 / min/m, and assuming that the water volume distribution within the cross section of the annular tunnel is uniform, di
The refrigerant in the annular layers of ~Ds and di~ DE will be supplied to the straight pipe section and the pipe end surface, respectively. The average water density of the outer surface of the straight pipe part and the pipe end part is Q S , Q E
If m 3 /min・m 2 , then Q S =Q (D S 2 −di 2 )/πD S (do 2 −di 2 ) (3) Q E =Q(D E 2 −di 2 /πD E ( do 2 − di 2 ) (4) If do and di do not need to be changed between the straight pipe section and the pipe end, and Q is constant, the ratio of the two is D E /Q S = D S /D E ×D E 2 −di 2 /D S 2 −di 2 (5) Especially when the difference in level is extremely large, due to the interaction between the geometric dimensions and shape of the steel pipe to be cooled and the dimensions of the annular tunnel, If the straight pipe part and the pipe end part are cooled with the same annular tunnel dimensions, the condition of formula (1) or (2) may not be satisfied in one of the parts.In this case, , in each part (1)
The injection direction of the refrigerant may be set so that the conditions of equation (2) and (2) are satisfied, and the optimum average water flow density is just right for cooling. In addition, the steel pipe shape and size range to be heat treated with the same cooling equipment are
Di and do designs are essential. In the cooling device of the present invention, the direction of refrigerant injection can be easily adjusted by using a header angle adjustment device to easily adjust the injection direction of refrigerant from a plurality of headers parallel to the tube axis arranged in the circumferential direction. , since it has a controllable mechanism, it can be controlled in accordance with the cooling location while the steel pipe to be cooled is moving. Since steel pipes with relatively large steps, which are the main object of the present invention, generally have thick walls, the conveyance speed of the steel pipes is relatively slow, and the cooling device of the present invention has the advantage that automatic control is easy. Uniformity of cooling,
No problems arise in terms of cooling capacity. If the difference in level is large, a cooling device consisting of short headers is arranged in multiple stages, and the nozzle jet direction of the header of each cooling device is optimized to the outer diameter and shape of the cooling part of the steel pipe. Automatic control from time to time can achieve even more uniform cooling, especially before and after the stepped portion. FIG. 2 shows an apparatus for carrying out the circumferential injection cooling method of this invention. In FIG. 2, reference numeral 1 is a metal tube that has portions (steps) with different radial dimensions, that is, outer diameters, in the axial direction. 9A, 9B, and 9C are intermediate receiver tanks that supply the header 10 with a cooling medium, such as water. Intermediate receiver tanks 9A, 9B, and 9C each have an independent route, and the coolant pressure difference between nozzles due to the gravity difference caused by the difference in distance from the floor surface of the many headers 10 and the transmission in space are eliminated. In order to eliminate differences in heat transfer due to the orientation of the hot surface, each intermediate receiver tank is equipped with a pressure control mechanism so that the pressure of the cooling medium can be set independently. 10 is a header, and intermediate receiver tanks 9A, 9
The cooling medium is supplied from either B or 9C, and is injected from the nozzle 10A in a tangential direction with respect to the cooling medium ring to be formed. Reference numeral 11 denotes an injection direction angle adjustment device, which ultimately displaces the injection direction adjustment ring 30 in the circumferential direction, although the power transmission path is omitted in FIG. The frame of the pin-jointed header is displaced in the circumferential direction of the header 10, and the angle formed by the nozzle 10A with the radial direction of the metal tube 1 is changed to change the injection direction of the cooling medium. Reference numerals 12 and 13 are lifting devices that vertically change the cross-sectional center position of the entire cooling device shown in FIG. 6 is a metal tube support roller. 15 is a coolant pipe port, and 16 is a coolant pipe, for which flexible hoses are used in this embodiment. The circumferential injection cooling device shown in FIG. 2 described above is the cooling device 4 in FIG. 1. In the embodiment shown in Fig. 2, the header group is divided into a plurality of blocks by an intermediate receiver tank, but there is some variation in the amount of cooling medium injected from each header without dividing the header. They also interfere with each other and become uniform. FIGS. 3a and 3b show the state in which the steel pipe passes through the coolant ring formed by the circumferential injection cooling device and the coolant ring tunnel shown in FIG. 2. In FIG. 3a, 17 is a ring-shaped tunnel for cooling medium formed in the space. In the state shown in Fig. 3b, that is, the steel pipe is passing through the ring-shaped tunnel of the cooling medium, the cooling water (cooling medium) has a thickness from the inner diameter di of the cooling medium ring to the outer diameter D of the steel pipe. , applied to the outer peripheral surface of the steel pipe, from the outer diameter do of the ring of the cooling medium to the outer diameter D of the steel pipe
Cooling water with a thickness of For example, when cooling a steel pipe that has thick walled parts at the head and tail ends of the pipe that are thicker on the outer circumferential side than the other parts, the hardening or cooling process from the stepped part to the pipe end is prevented. The reason why the uniformity is eliminated is that since the injection direction of the refrigerant is substantially perpendicular to the tube axis, the above-mentioned refrigerant scattering phenomenon does not occur, and new refrigerant is always supplied to the cooling surface. In the cooling device of the present invention, not only a single liquid refrigerant but also a mixed refrigerant of air and water may be used as the refrigerant. As mentioned above, steel pipes with relatively large steps generally have thick walls, so if the inside and outside surfaces are cooled simultaneously,
A high cooling rate can be obtained, and it is advantageous in terms of materials and material design as well as in terms of cost, and the quality is stable. To cool the inner surface of the steel pipe, the apparatus shown in FIGS. 4a and 4b is used. In Figures 4a and b, 19
20 is an inner cooling head, 20 is a hollow bar for supplying refrigerant,
21 is the support leg of the cooling head and hollow bar, 22
2 is a jetting refrigerant, and 23 is a rotating guide vane. These inner surface cooling methods cannot be applied unless the axial center of the steel pipe to be cooled remains unchanged, but by using the above-mentioned conveying means with a constant axial center, it has become possible for the first time to put it into practical use as an inner surface cooling method for metal pipes with steps. Ta. In the method for cooling the inner and outer surfaces of a steel pipe with a step at the pipe end proposed by the present inventor, the steel pipe is transported by the method described above so that the axis always remains unchanged with respect to space, and the outer surface is subjected to the above-mentioned circumferential injection. It is also possible to simultaneously cool the inner and outer surfaces of the steel pipe by applying a cooling method and simultaneously spray cooling the inner surface of the steel pipe. In this way, cooling a steel pipe from the inside and outside not only allows a high cooling rate even for a steel pipe with a large wall thickness, but also reduces the temperature variation in the wall thickness direction of the steel pipe. Because I can,
When cooling steel pipes, it is possible to achieve high precision and expand the range of possible temperature/time relationships. (Examples) Example 1 Heating and quenching were performed using the conveying device and induction heating device shown in FIG. 1 and the circumferential injection cooling device shown in FIG. 2. The heating temperature was 930°C and the cooling start temperature was 870°C. For comparison, a diagonal forward injection cooling device was installed in the cooling device section shown in FIG. 1, and similar quenching was performed. The dimensions and shape of the test steel pipe are as shown in Table 1.
The refrigerant was industrial water (water temperature 23°C).

【表】 両者の冷却方法の優劣をアツプセツト部の焼入
硬度で比較し、その結果を第2表に示した。
[Table] The advantages and disadvantages of both cooling methods were compared based on the quenching hardness of the upset part, and the results are shown in Table 2.

【表】【table】

【表】 第2表から、従来法の斜め前方噴射冷却法で
は、アツプセツト部の焼入れは不完全であるのに
対し、本発明の周方向噴射冷却法では完全焼入れ
が達成されており、本発明の冷却法により、管端
部の焼入不良問題が解消した。 実施例 2 実施例1と同様の加熱、冷却装置列に第4図に
示した内面冷却用焼入ヘツドを被冷却鋼管の先端
より挿入して焼入れ実験を行なつた。該焼入ヘツ
ドはスリツトノズル型焼入ヘツドであつた。本実
施例では、第1図の床面8を水平面に対して1.5゜
傾斜させ、内面スプレー用冷却水が被冷却鋼管の
先端側に確実に排出されるのを容易にし、誘導加
熱装置の方に逆流しないようにした。周方向噴射
冷却装置はヘツダ数24本の第2図に示したと同様
のものを用いた。 本実施例では、第3表に示した通り、鋼管外
径、段差共に非常に大きいので、管端部焼入れの
為にセツトした噴射方向では空間に形成される輪
環状トンネルの内径と外径が大きいから、直管部
焼入れ時には平均水量密度が小さくなるので、直
管部焼入れ時該輪環状トンネルの内径を約60mm小
さくした。その方法は、段差部の肩部の位置を、
基準位置通過時刻と搬送速度とから算出し、第1
図の冷却装置を2/3通過した位置から、周方向噴
射方向を段階的に制御した。
[Table] From Table 2, it can be seen that in the conventional diagonal forward injection cooling method, the quenching of the upset part is incomplete, whereas in the circumferential injection cooling method of the present invention, complete quenching is achieved. The cooling method solved the problem of poor quenching at the tube ends. Example 2 A quenching experiment was carried out by inserting the quenching head for inner surface cooling shown in FIG. 4 into the same heating and cooling equipment row as in Embodiment 1 from the tip of the steel pipe to be cooled. The quench head was a slit nozzle type quench head. In this embodiment, the floor surface 8 in Fig. 1 is tilted at 1.5 degrees with respect to the horizontal plane, so that the cooling water for the inner surface spray can be easily discharged to the tip side of the steel pipe to be cooled, and the induction heating device can be easily discharged. to prevent it from flowing backwards. A circumferential injection cooling device similar to that shown in FIG. 2 with 24 headers was used. In this example, as shown in Table 3, both the outer diameter and step difference of the steel pipe are very large, so in the injection direction set for hardening the pipe end, the inner diameter and outer diameter of the annular tunnel formed in the space are Since it is large, the average water density becomes small when the straight pipe part is quenched, so the inner diameter of the annular tunnel was reduced by about 60 mm when the straight pipe part was quenched. The method is to determine the position of the shoulder of the step,
Calculated from the reference position passing time and conveyance speed,
The injection direction in the circumferential direction was controlled in stages from the position 2/3 of the way through the cooling device shown in the figure.

【表】 本実施例では、被冷却鋼管の搬送速度は0.3
m/min、冷却開始温度は800℃(>Ar3)であつ
た。内面スプレー用焼入ヘツドとしては、第4図
bの型式が良好であつた。その理由は、スリツト
ノズルから供給された冷却水が旋回案内羽根によ
つて被冷却鋼管の内面に広く接触し、伝熱面積が
拡大し、抜熱量が増大する為である。 第4表に、焼入れ冷却後の肉厚方向の硬度分布
を管端部、直管部に分離して示した。
[Table] In this example, the conveyance speed of the cooled steel pipe is 0.3
m/min, and the cooling start temperature was 800°C (>Ar 3 ). As a hardened head for internal spraying, the type shown in Fig. 4b was found to be good. The reason for this is that the cooling water supplied from the slit nozzle comes into wide contact with the inner surface of the steel pipe to be cooled by the swirling guide vanes, expanding the heat transfer area and increasing the amount of heat removed. Table 4 shows the hardness distribution in the wall thickness direction after quenching and cooling, separated into the tube end portion and the straight tube portion.

【表】 本発明の内外面冷却法では焼入れた後の円周方
向及び長手方向での硬度のバラツキは、第4表の
程度であり、材料の成分、組織等の不可避的バラ
ツキを考慮すると、本発明の冷却法により、直管
部、段差部から管端部にわたつて均一な焼入が実
現したと云える。 以上の通り、本発明の冷却法は段差部から管端
部にわたる焼入不良も解消し、均一な焼入れが実
現し、焼入れ形状(曲がり、真円度)も良好であ
つた。したがつて、管端に大きな段差を有する鋼
管の冷却法として、本発明の冷却法が優れてお
り、実用化できることが実証された。 (発明の効果) アツプセツト鋼管その他の管端に段差を有する
各種鋼管の焼入れもしくは冷却は、前述の通り、
均一材質確保その他の点で種々の問題があり、む
づかしいケースであつた。特に、段差の大きい大
径極厚鋼管で、その傾向は顕著であり、実用化さ
れた冷却法は皆無であつた。 本発明の冷却方法は、段差の程度によらず全長
にわたつて均一な焼入れや冷却が可能になり、工
業上のメリツトは大きい。特に、今後需要の増大
する深海油井やガス井用巨大海洋構造物を構築す
る用途に使用される管端に非常に大きな段差(ネ
ジ加工の為)を有する大径極厚肉鋼管の熱処理方
法として最適であり、設備費も低廉である。該形
状の大径極厚肉鋼管の熱処理方法は、未だ全く提
案されておらず、深海油井やガス井用巨大海洋構
造用鋼管の製造業者や熱処理業者の受ける工業上
の利便は莫大なものがある。 本願発明に係わる段差を有する金属管の搬送方
法では、管軸が空間的に常に一定であるから、金
属管の後端から管内に誘導加熱コイルを挿入する
方法で内面からも加熱が可能となり、極厚肉部の
内外面誘導加熱法等への応用も可能となる。
[Table] In the inner and outer surface cooling method of the present invention, the variation in hardness in the circumferential direction and longitudinal direction after quenching is as shown in Table 4. Considering unavoidable variations in material composition, structure, etc. It can be said that by the cooling method of the present invention, uniform quenching was achieved from the straight pipe section and the stepped section to the tube end. As described above, the cooling method of the present invention eliminated the quenching defects from the stepped portion to the tube end, achieved uniform quenching, and had good quenched shape (bend, roundness). Therefore, it has been demonstrated that the cooling method of the present invention is excellent as a method for cooling steel pipes having a large step at the pipe end, and can be put into practical use. (Effects of the Invention) As mentioned above, quenching or cooling of various types of steel pipes such as upset steel pipes having a step at the pipe end can be performed by
This was a difficult case as there were various problems in ensuring uniform material quality and other issues. This tendency is particularly noticeable in large-diameter, extra-thick steel pipes with large steps, and no cooling method has been put to practical use. The cooling method of the present invention enables uniform quenching and cooling over the entire length regardless of the degree of level difference, and has great industrial merits. In particular, as a heat treatment method for large-diameter, extremely thick-walled steel pipes with very large steps (due to threading) at the pipe ends used for constructing large offshore structures for deep-sea oil and gas wells, for which demand will increase in the future. It is optimal and the equipment cost is low. No heat treatment method has yet been proposed for large-diameter, extra-thick-walled steel pipes with this shape, and the industrial benefits for manufacturers and heat treaters of giant offshore structural steel pipes for deep-sea oil and gas wells are enormous. be. In the method for conveying a metal tube with a step according to the present invention, since the tube axis is always spatially constant, heating can be performed from the inner surface by inserting an induction heating coil into the tube from the rear end of the metal tube. Applications such as induction heating of the inner and outer surfaces of extremely thick parts are also possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の段差を有する金属管の支持・
搬送機構および加熱、冷却装置全体の説明図。第
2図は本発明の冷却法において適用する周方向噴
射装置の説明図。第3図は周方向噴射冷却法にお
いて、空間に形成される輪環状トンネルの説明
図。第3図aは被冷却金属管が通過していない時
の状態と記号を説明している。第3図bは被冷却
金属管が通過中の輪環状トンネルと該金属管との
幾何学的関係を示す。第4図は本発明の実施例B
で用いた内面冷却用焼入ヘツドの説明図。 1……段差付金属管、2……金属管の直管部、
3……誘導加熱装置、4……接線方向噴射冷却装
置、5……高さ制御用流体圧シリンダー、6……
支持ロール、7……前後移動用車輪、8……床
面、9A,9B,9C……中間レシーバータン
ク、10……ヘツダ(冷媒噴射用)、11……噴
射方向角度調整装置、12……昇降装置、13…
…昇降装置、15……冷媒配管口、16……冷媒
配管(ヘツダーへ)、17……空間に形成された
輪環状トンネル、18……管位置検出器、19…
…内面冷却ヘツド、20……冷媒供給用中空バ
ー、21……冷却ヘツド及びバーの支持脚、22
……噴出冷媒、23……旋回案内羽根、30……
噴射方向変更枠。
Figure 1 shows the support and
An explanatory diagram of the entire transport mechanism and heating and cooling device. FIG. 2 is an explanatory diagram of a circumferential injection device applied in the cooling method of the present invention. FIG. 3 is an explanatory diagram of an annular tunnel formed in a space in the circumferential injection cooling method. FIG. 3a explains the state and symbols when the metal tube to be cooled is not passing through. FIG. 3b shows the geometrical relationship between the metal tube and the annular tunnel through which the metal tube to be cooled passes. FIG. 4 is an embodiment B of the present invention.
An explanatory diagram of the quenching head for internal cooling used in . 1... Metal pipe with a step, 2... Straight pipe part of metal pipe,
3...Induction heating device, 4...Tangential injection cooling device, 5...Fluid pressure cylinder for height control, 6...
Support roll, 7... Wheel for forward and backward movement, 8... Floor surface, 9A, 9B, 9C... Intermediate receiver tank, 10... Header (for refrigerant injection), 11... Injection direction angle adjustment device, 12... Lifting device, 13...
... Lifting device, 15 ... Refrigerant pipe port, 16 ... Refrigerant pipe (to header), 17 ... Ring-shaped tunnel formed in space, 18 ... Pipe position detector, 19 ...
...Internal cooling head, 20...Hollow bar for refrigerant supply, 21...Support legs for cooling head and bar, 22
...Blowout refrigerant, 23...Swivel guide vane, 30...
Injection direction change frame.

Claims (1)

【特許請求の範囲】[Claims] 1 軸方向において半径方向寸法の異なる部分を
有する金属管を軸方向に搬送しながら冷却する装
置であつて;前記金属管の軸方向変位に伴なう半
径方向寸法の変化に対応して金属管支持面の位置
を半径方向に変化させるための流体圧昇降機構を
具えた複数の金属管支持ローラ、若しくは前記金
属管の軸方向変位に伴なう半径方向寸法の変化に
対応して金属管支持面の位置を半径方向に変化さ
せるための流体圧昇降機構を具えるとともに、金
属管の移動に伴つて管軸方向に駆動装置によつて
変位せしめられる複数の金属管支持ローラと;金
属管を加熱するための誘導加熱装置と;金属管の
軸方向に延在する複数本のヘツダと、該ヘツダか
らの冷却媒体を金属管外周表面に噴射するノズル
群と、該ノズルの、上記金属管軸方向に垂直ある
いはほぼ垂直な面内で冷却媒体噴射方向の、金属
管半径方向とのなす角を、同時に同一の角度だけ
変化せしめるノズル角度調整機とを有する金属管
冷却装置;とを設けてなる段差を有する金属管の
冷却装置。
1 A device that cools a metal tube having portions with different radial dimensions in the axial direction while conveying it in the axial direction; A plurality of metal tube support rollers equipped with a hydraulic lifting mechanism for changing the position of the support surface in the radial direction, or a metal tube support that corresponds to a change in radial dimension due to axial displacement of the metal tube. A plurality of metal tube support rollers are provided with a fluid pressure lifting mechanism for changing the position of the surface in the radial direction and are displaced in the tube axis direction by a drive device as the metal tube moves; an induction heating device for heating; a plurality of headers extending in the axial direction of a metal tube; a nozzle group for injecting a cooling medium from the headers onto the outer peripheral surface of the metal tube; and an axis of the metal tube of the nozzles. a metal tube cooling device having a nozzle angle adjuster that simultaneously changes the angle formed between the cooling medium injection direction and the metal tube radial direction by the same angle in a plane perpendicular or almost perpendicular to the direction; A metal tube cooling device with steps.
JP14117683A 1983-08-03 1983-08-03 Method of and apparatus for cooling metallic pipe having difference in level Granted JPS6033314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14117683A JPS6033314A (en) 1983-08-03 1983-08-03 Method of and apparatus for cooling metallic pipe having difference in level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14117683A JPS6033314A (en) 1983-08-03 1983-08-03 Method of and apparatus for cooling metallic pipe having difference in level

Publications (2)

Publication Number Publication Date
JPS6033314A JPS6033314A (en) 1985-02-20
JPH0349970B2 true JPH0349970B2 (en) 1991-07-31

Family

ID=15285906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14117683A Granted JPS6033314A (en) 1983-08-03 1983-08-03 Method of and apparatus for cooling metallic pipe having difference in level

Country Status (1)

Country Link
JP (1) JPS6033314A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3021627B2 (en) * 1990-11-21 2000-03-15 三洋電機株式会社 Substrate bias generation circuit
JP6187441B2 (en) * 2014-12-11 2017-08-30 Jfeスチール株式会社 Method and apparatus for quenching steel pipe
JP6187446B2 (en) * 2014-12-18 2017-08-30 Jfeスチール株式会社 Method and apparatus for quenching steel pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556417A (en) * 1978-06-24 1980-01-17 Sumitomo Metal Ind Ltd Method and apparatus for continuous quenching of steel pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556417A (en) * 1978-06-24 1980-01-17 Sumitomo Metal Ind Ltd Method and apparatus for continuous quenching of steel pipe

Also Published As

Publication number Publication date
JPS6033314A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
JP5851136B2 (en) Cooling device and cooling method for metal tube after heating
US3804390A (en) Apparatus and method for heat-treating large diameter steel pipe
EP2072157A1 (en) Method of cooling hot-rolled steel strip
CN102266872B (en) Steel tube cooling device
CN105431238A (en) Descaling device for the interior of tubes and descaling process
KR20080034966A (en) Hot rolling facility of steel plate and hot rolling method
US3937448A (en) Apparatus for hardening steel pipes
JP6015878B2 (en) Steel cooling device and cooling method
JPH0349970B2 (en)
WO2013008831A1 (en) Heat processing system and heat processing method
JP2001246408A (en) Device and method for uniformly cooling long size steel tube which is heated to high temperature
US3650282A (en) Continuous quenching apparatus
US11230747B2 (en) Method of quenching steel pipe, apparatus for quenching steel pipe, method of manufacturing steel pipe and facility for manufacturing steel pipe
JPS629163B2 (en)
JPH0137452B2 (en)
JP6923000B2 (en) Drilling machine and method for manufacturing seamless metal pipe using it
US3932238A (en) Method and apparatus for quenching pipe
JP6939900B2 (en) A drilling machine, a mandrel bar, and a method for manufacturing a seamless metal tube using them.
EP0089019B1 (en) Method and apparatus for sequentially quenching steel pipes
JP2006283179A (en) Facility for cooling pipe and cooling method
JPS58151418A (en) Method and device for carrying out steel heat treatment
US20170320173A1 (en) Apparatus and method for cooling a hard metal applied to the surface of a metal alloy substrate
JPS62188726A (en) Apparatus and method for cooling unequal leg and unequal thickness angle steel
KR101988284B1 (en) Materials treatment apparatus
JP4752252B2 (en) H-shaped steel cooling method