JP6187446B2 - Method and apparatus for quenching steel pipe - Google Patents

Method and apparatus for quenching steel pipe Download PDF

Info

Publication number
JP6187446B2
JP6187446B2 JP2014256296A JP2014256296A JP6187446B2 JP 6187446 B2 JP6187446 B2 JP 6187446B2 JP 2014256296 A JP2014256296 A JP 2014256296A JP 2014256296 A JP2014256296 A JP 2014256296A JP 6187446 B2 JP6187446 B2 JP 6187446B2
Authority
JP
Japan
Prior art keywords
steel pipe
cooling water
closing member
nozzle
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014256296A
Other languages
Japanese (ja)
Other versions
JP2016117916A (en
Inventor
木島 秀夫
秀夫 木島
雄太 田村
雄太 田村
啓之 福田
啓之 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014256296A priority Critical patent/JP6187446B2/en
Publication of JP2016117916A publication Critical patent/JP2016117916A/en
Application granted granted Critical
Publication of JP6187446B2 publication Critical patent/JP6187446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、加熱された鋼管を急冷して焼入れを行なう焼入れ方法および焼入れ装置に関するものである。   The present invention relates to a quenching method and a quenching apparatus that quench and quench a heated steel pipe.

近年、各種の用途に使用される鋼管(たとえば継目無鋼管、電縫鋼管等)に要求される特性(たとえば強度、靭性等)が厳しさを増しており、良好な品質の鋼管を得るために、製造工程で焼入れが行なわれ、必要に応じて焼戻しも行なわれている。焼入れを行なう際には、鋼管を加熱炉等で加熱した後に急冷(たとえば冷却水槽に浸漬する等)する技術が広く普及している。また、熱間穿孔圧延で製造される継目無鋼管では、その穿孔圧延ラインから排出された高温の鋼管をそのまま急冷して焼入れを行なう技術も開発されている。   In recent years, the characteristics (for example, strength, toughness, etc.) required for steel pipes used in various applications (for example, seamless steel pipes, ERW steel pipes, etc.) have become increasingly severe, and in order to obtain steel pipes of good quality Quenching is performed in the manufacturing process, and tempering is also performed as necessary. When quenching, a technique of rapidly cooling (for example, immersing in a cooling water tank) after heating a steel pipe in a heating furnace or the like is widely used. In addition, for seamless steel pipes manufactured by hot piercing and rolling, a technique has been developed in which a high-temperature steel pipe discharged from the piercing and rolling line is quenched and quenched as it is.

いずれの焼入れにおいても、加熱された鋼管を全体にわたって均一に急冷する必要がある。つまり、急冷における冷却速度が不均一になった場合、冷却速度が大きすぎた部位では鋼管の靭性が劣化し、冷却速度が小さすぎた部位では鋼管の強度が低下するので、鋼管の品質にバラツキが生じる。また冷却速度が不均一であれば、特性に関わる問題のみならず、鋼管の曲がり等の形状に関わる問題も発生する。そこで鋼管の焼入れを行なう際に、均一に急冷する技術が検討されている。   In any quenching, the heated steel pipe needs to be quenched rapidly throughout. In other words, when the cooling rate in the rapid cooling becomes uneven, the toughness of the steel pipe deteriorates at the part where the cooling rate is too high, and the strength of the steel pipe decreases at the part where the cooling rate is too low. Occurs. In addition, if the cooling rate is not uniform, not only a problem related to characteristics but also a problem related to the shape of the steel pipe, such as bending. Therefore, a technique for uniformly quenching when quenching a steel pipe has been studied.

たとえば特許文献1には、加熱された鋼管を冷却水槽に浸漬し、さらに鋼管の内部に冷却水を流通させる技術が開示されている。しかしこの技術は、鋼管の内部を流通する冷却水が一方向に(すなわち片方の端面から他方の端面へ)流れるので、図3に示すように、鋼管1の内面上部が冷却水2と接触し難くなり、その結果、品質のバラツキが生じる。また、冷却水槽内で鋼管とノズル(図示せず)の軸芯を一致させる必要があるので、鋼管を把持して冷却水槽内の所定の位置に浸漬させるための機器(たとえばアーム等)を設置せざるを得ず、その結果、設備の構成が複雑になるのは避けられない。   For example, Patent Document 1 discloses a technique in which a heated steel pipe is immersed in a cooling water tank and further cooling water is circulated inside the steel pipe. However, in this technique, the cooling water flowing inside the steel pipe flows in one direction (that is, from one end face to the other end face), so that the upper part of the inner surface of the steel pipe 1 comes into contact with the cooling water 2 as shown in FIG. As a result, quality variation occurs. Also, since it is necessary to align the axis of the steel pipe and the nozzle (not shown) in the cooling water tank, equipment (such as an arm) for gripping the steel pipe and immersing it in a predetermined position in the cooling water tank is installed. As a result, it is inevitable that the equipment configuration becomes complicated as a result.

特許文献2には、加熱された鋼管を回転させながら、鋼管の外面に冷却水をスプレーするとともに、鋼管の内部に冷却水を流通させる技術が開示されている。しかしこの技術は、鋼管を水中に浸漬せず、かつ鋼管の内部を流通する冷却水が一方向に流れるので、図4に示すように、鋼管1の内部に冷却水2を充満させることは困難であり、その結果、品質のバラツキが生じる。また、鋼管1とノズル3の軸芯を一致させる必要があるので、鋼管1を所定の位置に保持しつつ回転させるための機器(たとえばピンチロール等)を設置せざるを得ず、その結果、設備の構成が複雑になるのは避けられない。   Patent Document 2 discloses a technique for spraying cooling water on the outer surface of a steel pipe while circulating the heated steel pipe and circulating the cooling water inside the steel pipe. However, this technique does not immerse the steel pipe in water, and the cooling water flowing in the steel pipe flows in one direction, so that it is difficult to fill the inside of the steel pipe 1 with the cooling water 2 as shown in FIG. As a result, quality variation occurs. Moreover, since it is necessary to make the axial center of the steel pipe 1 and the nozzle 3 correspond, you have to install the apparatus (for example, pinch roll etc.) for rotating while holding the steel pipe 1 in a predetermined position, As a result, It is inevitable that the construction of the equipment becomes complicated.

つまり、鋼管の焼入れを行なう際に、簡便な手段で均一な急冷を行ない、良好かつ均一な品質の鋼管を得る技術は未だ確立されていない。   That is, when quenching a steel pipe, a technique for performing uniform rapid cooling with a simple means to obtain a steel pipe with good and uniform quality has not been established yet.

特許第5071537号公報Japanese Patent No. 5071537 特許第3624680号公報Japanese Patent No. 3624680

本発明は、従来の技術の問題点を解消し、簡便な手段で、鋼管の長手方向および円周方向に均一な急冷を行ない、良好かつ均一な品質の鋼管を得ることができる焼入れ方法および焼入れ装置を提供することを目的とする。   The present invention eliminates the problems of the prior art, and quenching method and quenching capable of obtaining a steel pipe of good and uniform quality by performing uniform quenching in the longitudinal direction and circumferential direction of the steel pipe by simple means. An object is to provide an apparatus.

本発明者は、ノズルから鋼管の内部に冷却水を噴射して、鋼管を均一に急冷する技術について検討した。そして、鋼管の内部容積を減少させ、かつ冷却水が鋼管の内面に接触しながら流通する流路を確保すれば、冷却水がその流路に充満して内面全体に接触し、しかも円滑に流れるので、鋼管を均一に急冷できることが分かった。   This inventor examined the technique of injecting cooling water into the inside of a steel pipe from a nozzle, and quenching a steel pipe uniformly. And if the internal volume of a steel pipe is reduced and the flow path through which cooling water circulates in contact with the inner surface of the steel pipe is secured, the cooling water fills the flow path, contacts the entire inner surface, and flows smoothly. Therefore, it turned out that a steel pipe can be cooled rapidly uniformly.

本発明は、このような知見に基づいてなされたものである。   The present invention has been made based on such knowledge.

すなわち本発明は、外面に線状突起を有する閉塞部材を、加熱された鋼管の長手方向の一部または全長にわたって鋼管の内部に挿入し、かつ鋼管と閉塞部材との間に隙間を設けるとともに、鋼管の片方の端面との間に空隙を有して配設されたノズルから冷却水を噴射流量V1(m3/秒)で噴射して、ノズルと鋼管との空隙から冷却水の一部を流出させながら、冷却水の残部を閉塞部材と鋼管の隙間に流し込んで他方の端面から流出流量V2(m3/秒)で流出させることによってV2<V1とする鋼管の焼入れ方法である。 That is, the present invention inserts a closing member having a linear protrusion on the outer surface into the steel pipe over a part or the entire length of the heated steel pipe, and provides a gap between the steel pipe and the closing member. Cooling water is injected at a jet flow rate V 1 (m 3 / sec) from a nozzle arranged with a gap between one end face of the steel pipe, and a part of the cooling water is discharged from the gap between the nozzle and the steel pipe. With the steel pipe quenching method, V 2 <V 1 is obtained by flowing the remaining cooling water into the gap between the closing member and the steel pipe and letting it flow out from the other end surface at the outflow flow rate V 2 (m 3 / sec). is there.

本発明の焼入れ方法においては、閉塞部材が、螺旋状の線状突起あるいは鋼管の軸芯に平行な線状突起を有することが好ましい。突起としては、図2(a)のように突起の幅(すなわち凸部の幅)が、突起の間隔(すなわち凹部の幅)より小さいものだけでなく、図2(b)のように突起の幅が、突起の間隔より大きいものでも良い。   In the quenching method of the present invention, the closing member preferably has a helical linear protrusion or a linear protrusion parallel to the axis of the steel pipe. As shown in FIG. 2 (a), the width of the protrusion (that is, the width of the convex portion) is smaller than the distance between the protrusions (that is, the width of the concave portion). The width may be larger than the interval between the protrusions.

また本発明は、加熱された鋼管の長手方向の一部または全長にわたって鋼管の内部に挿入されかつ外面に線状突起を有する閉塞部材と、鋼管の片方の端面との間に空隙を有して配設されて冷却水を噴射することによって空隙から冷却水の一部を流出させかつ鋼管と閉塞部材との間の隙間に冷却水の残部を流し込むノズルと、を有し、ノズルから噴射される冷却水の噴射流量V1(m3/秒)および閉塞部材と鋼管の隙間を通って他方の端面から流出する冷却水の流出流量V2(m3/秒)がV2<V1を満足する鋼管の焼入れ装置である。 Further, the present invention has a gap between a closing member inserted into the inside of the steel pipe over a part or the entire length of the heated steel pipe and having a linear protrusion on the outer surface, and one end face of the steel pipe. A nozzle that is arranged and causes a portion of the cooling water to flow out of the gap by injecting the cooling water and to flow the remainder of the cooling water into the gap between the steel pipe and the closing member, and is injected from the nozzle Cooling water injection flow rate V 1 (m 3 / second) and cooling water flow rate V 2 (m 3 / second) flowing out from the other end surface through the gap between the blocking member and the steel pipe satisfy V 2 <V 1 This is a steel pipe quenching device.

本発明の焼入れ装置においては、閉塞部材が、螺旋状の線状突起あるいは鋼管の軸芯に平行な線状突起を有することが好ましい。   In the hardening apparatus of this invention, it is preferable that the obstruction | occlusion member has a linear protrusion parallel to the spiral linear protrusion or the axial center of a steel pipe.

本発明によれば、簡便な手段で、鋼管の長手方向および円周方向に均一な急冷を行ない、良好かつ均一な品質の鋼管を得ることができるので、産業上格段の効果を奏する。   According to the present invention, uniform quenching can be performed in a longitudinal direction and a circumferential direction of a steel pipe by a simple means, and a steel pipe having a good and uniform quality can be obtained.

本発明を適用する焼入れ装置の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of the hardening apparatus to which this invention is applied. 図1中の閉塞部材を拡大して示す断面図である。It is sectional drawing which expands and shows the obstruction | occlusion member in FIG. 鋼管の内部を流通する冷却水の従来の例を模式的に示す断面図である。It is sectional drawing which shows typically the conventional example of the cooling water which distribute | circulates the inside of a steel pipe. 鋼管の内部を流通する冷却水の従来の例を模式的に示す断面図である。It is sectional drawing which shows typically the conventional example of the cooling water which distribute | circulates the inside of a steel pipe. 鋼管の温度の推移を示すグラフであり、(a)は本発明を適用した例、(b)は従来の例である。It is a graph which shows transition of the temperature of a steel pipe, (a) is an example to which the present invention is applied, and (b) is a conventional example. 冷却水流路内の冷却水の流量と流速との関係を示すグラフである。It is a graph which shows the relationship between the flow volume of the cooling water in a cooling water flow path, and the flow velocity. 冷却水流路内の冷却水の流速と膜沸騰が発生する水温との関係を示すグラフである。It is a graph which shows the relationship between the flow rate of the cooling water in a cooling water flow path, and the water temperature which a film | membrane boiling generate | occur | produces. 鋼管の温度の推移を示すグラフであり、(a)は本発明を適用した例、(b)は従来の例である。It is a graph which shows transition of the temperature of a steel pipe, (a) is an example to which the present invention is applied, and (b) is a conventional example. 図1中の閉塞部材を上方へ変位させた例を模式的に示す断面図である。It is sectional drawing which shows typically the example which displaced the obstruction | occlusion member in FIG. 1 upwards.

本発明を適用する焼入れ装置は、図1に示すように、加熱された鋼管1の全長にわたって、鋼管1の内部に閉塞部材4が挿入され、かつ鋼管1と閉塞部材4との間に隙間を有する。あるいは図示を省略するが、必ずしも全長にわたって挿入するする必要はなく、鋼管1の長手方向の一部に閉塞部材4を挿入しても良い。なお、図1(a)は軸芯に平行な線状突起を有する閉塞部材4の先端を円筒形にした例、図1(b)は軸芯に平行な線状突起を有する閉塞部材4の先端を円錐形にした例、図1(c)は螺旋状の線状突起を有する閉塞部材4の先端を円筒形にした例である。   As shown in FIG. 1, the quenching apparatus to which the present invention is applied has a closing member 4 inserted into the steel pipe 1 over the entire length of the heated steel pipe 1, and a gap is formed between the steel pipe 1 and the closing member 4. Have. Or although illustration is abbreviate | omitted, it is not necessary to insert over the full length, You may insert the obstruction | occlusion member 4 in a part of longitudinal direction of the steel pipe 1. FIG. 1A shows an example in which the tip of the closing member 4 having linear protrusions parallel to the axis is cylindrical, and FIG. 1B shows the closing member 4 having linear protrusions parallel to the axis. An example in which the tip is conical, FIG. 1 (c) is an example in which the tip of the closing member 4 having a helical linear protrusion is made cylindrical.

閉塞部材4の外面には、線状の突出(以下、線状突起という)を設ける。図2(a)(b)では図1中の閉塞部材4を拡大して、4本の線状突起8を鋼管1の軸芯に平行に設ける例を示す。また図1(c)に示すように、線状突起8を螺旋状(図示せず)に設けても良い。なお線状突起8を形成する手段は、特に限定せず、閉塞部材4の外面に接合する、あるいは、閉塞部材4の外面を切削する等の方法で形成することが可能である。   A linear protrusion (hereinafter referred to as a linear protrusion) is provided on the outer surface of the closing member 4. 2A and 2B show an example in which the closing member 4 in FIG. 1 is enlarged and four linear protrusions 8 are provided in parallel to the axis of the steel pipe 1. Further, as shown in FIG. 1 (c), the linear protrusions 8 may be provided in a spiral shape (not shown). The means for forming the linear protrusion 8 is not particularly limited, and may be formed by a method such as joining to the outer surface of the closing member 4 or cutting the outer surface of the closing member 4.

線状突起8の高さH(mm)が低すぎると、後述する冷却水2を鋼管1内で円滑に流通させる効果が得られない。一方で、高すぎると、閉塞部材4の直径Dを縮小しなければならず、閉塞部材4の強度を確保できない。したがって、線状突起8の高さHは、閉塞部材4の直径D(mm)に対してD/1〜D/4の範囲内が好ましい。   If the height H (mm) of the linear protrusion 8 is too low, the effect of smoothly circulating the cooling water 2 described later in the steel pipe 1 cannot be obtained. On the other hand, if it is too high, the diameter D of the closing member 4 must be reduced, and the strength of the closing member 4 cannot be ensured. Therefore, the height H of the linear protrusion 8 is preferably within the range of D / 1 to D / 4 with respect to the diameter D (mm) of the closing member 4.

線状突起8の幅W(mm)が狭すぎると、線状突起8が破損する惧れがある。したがって、幅Wは5mm以上が好ましい。一方で、線状突起8の幅Wが広すぎると、閉塞部材4と鋼管1の隙間が減少するので、後述する冷却水2の鋼管1内における流通が阻害される。したがって、幅Wは線状突起8同士の間隔よりも小さくすることが好ましい。   If the width W (mm) of the linear protrusion 8 is too narrow, the linear protrusion 8 may be damaged. Therefore, the width W is preferably 5 mm or more. On the other hand, if the width W of the linear protrusion 8 is too wide, the gap between the closing member 4 and the steel pipe 1 is reduced, so that the circulation of the cooling water 2 described later in the steel pipe 1 is hindered. Therefore, the width W is preferably smaller than the interval between the linear protrusions 8.

なお図1、2には、4本の線状突起8を等間隔(90°間隔)で設ける例を示したが、線状突起8の本数は特に限定しない。ただし、線状突起8の本数が少なすぎると、後述する冷却水2を鋼管1内で円滑に流通させる効果が得られない。一方で、多すぎると、後述する冷却水2の鋼管1内における流通が阻害される。したがって、線状突起8の本数は2〜8本の範囲内とし、等間隔で配置することが好ましい。   1 and 2 show an example in which four linear protrusions 8 are provided at equal intervals (90 ° intervals), the number of linear protrusions 8 is not particularly limited. However, if the number of the linear protrusions 8 is too small, the effect of smoothly circulating the cooling water 2 described later in the steel pipe 1 cannot be obtained. On the other hand, when too much, the distribution | circulation in the steel pipe 1 of the cooling water 2 mentioned later is inhibited. Therefore, the number of the linear protrusions 8 is preferably in the range of 2 to 8, and is preferably arranged at equal intervals.

このようにして鋼管1、閉塞部材4、線状突起8で形成される空間が、後述する冷却水2の流路となる。そして、鋼管1の片側に冷却水2を噴射するためのノズル3を配設する。鋼管1のノズル3側の端面5(以下、ノズル側端面という)とノズル3との間に空隙を設ける。また閉塞部材4は、冷却水2が流出する側の端面7(以下、流出側端面という)から鋼管1に挿入する。   Thus, the space formed by the steel pipe 1, the closing member 4, and the linear protrusion 8 becomes a flow path for the cooling water 2 described later. And the nozzle 3 for injecting the cooling water 2 to the one side of the steel pipe 1 is arrange | positioned. A gap is provided between the nozzle 3 and the end surface 5 (hereinafter referred to as nozzle-side end surface) of the steel pipe 1 on the nozzle 3 side. Further, the closing member 4 is inserted into the steel pipe 1 from an end surface 7 (hereinafter referred to as an outflow side end surface) on the side from which the coolant 2 flows out.

加熱された鋼管1の焼入れを行なう際には、鋼管1に対してノズル3と閉塞部材4をこのように配置して、ノズル3から冷却水2を噴射する。ノズル3から噴射される噴射水量をV1(m3/秒)とする。このとき、鋼管1と閉塞部材4と線状突起8で形成される空間6(以下、冷却水流路という)に冷却水2を均一に流通させるために、鋼管1と閉塞部材4とノズル3の軸芯を一致させることが好ましい。 When quenching the heated steel pipe 1, the nozzle 3 and the closing member 4 are arranged in this way on the steel pipe 1, and the cooling water 2 is injected from the nozzle 3. Let the amount of water jetted from the nozzle 3 be V 1 (m 3 / sec). At this time, in order to distribute the cooling water 2 uniformly in a space 6 (hereinafter referred to as a cooling water flow path) formed by the steel pipe 1, the closing member 4 and the linear protrusion 8, the steel pipe 1, the closing member 4 and the nozzle 3 It is preferable to match the axes.

ただし、鋼管1の内径に比べて閉塞部材4の直径が細く、後述する閉塞体積率が小さい場合は、鋼管1内部に冷却水2が充満し難くなり、その結果、鋼管1の上部の急冷が阻害される。したがって、その場合は、図9に示すように、閉塞部材4の軸芯を鋼管1の軸芯よりも上方へ変位させることが好ましい。その場合は、閉塞部材4と鋼管1との間に形成される隙間の下側の幅をd1(mm)とし、隙間の上側の幅をd2(mm)として、d1/d2値が2以下となる範囲で変位させることが好ましい。 However, when the diameter of the closing member 4 is smaller than the inner diameter of the steel pipe 1 and the closing volume ratio described later is small, it becomes difficult to fill the inside of the steel pipe 1 with the cooling water 2, and as a result, the upper portion of the steel pipe 1 is rapidly cooled. Be inhibited. Therefore, in that case, as shown in FIG. 9, it is preferable to displace the shaft core of the closing member 4 upward from the shaft core of the steel pipe 1. In that case, the lower side in the width of the gap formed between the closing member 4 and the steel pipe 1 and d 1 and (mm), the width of the upper gap as d 2 (mm), d 1 / d 2 value Is preferably displaced within a range of 2 or less.

つまり、鋼管1と閉塞部材4とノズル3の軸芯が一致する場合のd1/d2値は1であるから、d1/d2値が1〜2となる範囲で閉塞部材4の軸芯を変位させて、冷却水2が冷却水流路6に充満するように調整する。 That is, since the d 1 / d 2 value is 1 when the axis of the steel pipe 1, the closing member 4, and the nozzle 3 coincide with each other, the shaft of the closing member 4 is within the range where the d 1 / d 2 value is 1 to 2. The core is displaced and adjusted so that the cooling water 2 fills the cooling water flow path 6.

ノズル3から噴射された冷却水2は、一部が閉塞部材4に衝突して、鋼管1のノズル側端面5とノズル3との空隙から流出し、残部が冷却水流路6に流れ込む。閉塞部材4のノズル3側先端は、鋼管1のノズル側端面5からノズル3の方向に突出しても良い。その場合は、鋼管1の全長にわたって、鋼管1の内部に閉塞部材4が存在する。   A part of the cooling water 2 sprayed from the nozzle 3 collides with the closing member 4, flows out from the gap between the nozzle side end surface 5 of the steel pipe 1 and the nozzle 3, and the remaining part flows into the cooling water flow path 6. The nozzle 3 side tip of the blocking member 4 may protrude from the nozzle side end surface 5 of the steel pipe 1 in the direction of the nozzle 3. In that case, the closing member 4 exists inside the steel pipe 1 over the entire length of the steel pipe 1.

また、閉塞部材4が鋼管1の内奥部に埋没する場合は、閉塞部材4のノズル3側先端を鋼管1のノズル側端面5から内側100mm以内に配置すれば良い。その場合は、鋼管1の長手方向の一部に閉塞部材4が存在する。   Further, when the closing member 4 is buried in the inner part of the steel pipe 1, the nozzle 3 side tip of the closing member 4 may be disposed within 100 mm on the inner side from the nozzle side end surface 5 of the steel pipe 1. In that case, the closing member 4 exists in a part of the longitudinal direction of the steel pipe 1.

閉塞部材4の先端が図1(a)に示すような円筒形であっても、冷却水2は、線状突起8によって円滑に冷却水流路6へ誘導される。ただし図1(b)に示すように閉塞部材4の先端を円錐形状とすることによって、冷却水2が一層円滑に冷却水流路6へ誘導される。また、閉塞部材4の先端を球面状の曲面(図示せず)としても同様の効果が得られる。   Even if the end of the closing member 4 is cylindrical as shown in FIG. 1A, the cooling water 2 is smoothly guided to the cooling water flow path 6 by the linear protrusions 8. However, as shown in FIG. 1B, the cooling water 2 is more smoothly guided to the cooling water flow path 6 by making the tip of the closing member 4 conical. Further, the same effect can be obtained even if the tip of the closing member 4 is a spherical curved surface (not shown).

ここで、鋼管1の内部容積をMP(mm3)とし、鋼管1の内部に挿入された閉塞部材4の体積を線状突起8も含めてMQ(mm3)とすると、冷却水流路6の体積は下記の(1)式で算出できる。つまり、冷却水流路6の容積は鋼管1の内部容積MPよりも減少しているので、冷却水2が冷却水流路6に充満し易く、かつ高速で流通する。そのため、加熱された鋼管1の熱を効率良く安定して排出することが可能となり、鋼管1の長手方向および円周方向に均一な急冷を行なうことができる。このような効果を発揮するために、鋼管1の内部容積MP(mm3)と、鋼管1の内部に挿入された閉塞部材4の体積MQ(mm3)が下記の(2)式で算出される閉塞体積率を15%以上とすることが好ましい。
冷却水流路の体積=MP−MQ ・・・(1)
閉塞体積率(%)=100×MQ/MP ・・・(2)
一方、閉塞体積率が大きすぎると、冷却水流路6が狭くなり、冷却水2の流通が阻害されるので、鋼管1の均一な急冷が困難になる。したがって、閉塞体積率は70%以下が好ましい。
Here, when the internal volume of the steel tube 1 and M P (mm 3), and M Q (mm 3) the volume of the closing member 4 which is inserted into the steel pipe 1 linear projections 8 also including a cooling water flow path The volume of 6 can be calculated by the following equation (1). In other words, the volume of the cooling water passage 6 because it decreases than the internal volume M P of the steel tube 1, easily coolant 2 is filled in the cooling water passage 6, and flows at a high speed. Therefore, the heat of the heated steel pipe 1 can be discharged efficiently and stably, and uniform quenching can be performed in the longitudinal direction and the circumferential direction of the steel pipe 1. In order to exert such an effect, the internal volume M P (mm 3 ) of the steel pipe 1 and the volume M Q (mm 3 ) of the closing member 4 inserted into the steel pipe 1 are expressed by the following equation (2). It is preferable that the calculated closed volume ratio is 15% or more.
Cooling water channel volume = M P -M Q (1)
Blocking volume ratio (%) = 100 × M Q / M P (2)
On the other hand, if the closed volume ratio is too large, the cooling water flow path 6 becomes narrow and the flow of the cooling water 2 is hindered, so that uniform rapid cooling of the steel pipe 1 becomes difficult. Therefore, the closed volume ratio is preferably 70% or less.

こうして冷却水流路6を通って、鋼管1の流出側端面7から流出する冷却水2の流出流量をV2(m3/秒)とすると、下記の(3)式の関係が成り立つ。この関係を満たすことによって、冷却水2が冷却水流路6に充満する。その結果、鋼管1の内面全体に冷却水2が接触して、円周方向に均一な急冷が可能となる(図5(a)参照)。しかも、鋼管1を冷却水槽に浸漬する必要はなく、簡便な手段で焼入れを行なうことができる。なお、本発明では鋼管1の長手方向にも均一な急冷が可能であるが、それについては図8を参照して後述する。なお、線状突起8を螺旋状に設けると、円周方向の均一性がさらに向上する。
2<V1 ・・・(3)
これに対してV2=V1の場合は、図3、4に示すように鋼管1の上部が冷却され難くなる(図5(b)参照)。
Thus, if the outflow rate of the cooling water 2 flowing out from the outflow side end face 7 of the steel pipe 1 through the cooling water flow path 6 is V 2 (m 3 / sec), the following equation (3) is established. By satisfying this relationship, the cooling water 2 fills the cooling water channel 6. As a result, the cooling water 2 comes into contact with the entire inner surface of the steel pipe 1 and uniform cooling in the circumferential direction is possible (see FIG. 5 (a)). And it is not necessary to immerse the steel pipe 1 in a cooling water tank, and it can quench by a simple means. In the present invention, uniform quenching is also possible in the longitudinal direction of the steel pipe 1, which will be described later with reference to FIG. If the linear protrusions 8 are provided in a spiral shape, the circumferential uniformity is further improved.
V 2 <V 1 (3)
On the other hand, when V 2 = V 1 , the upper part of the steel pipe 1 is hardly cooled as shown in FIGS. 3 and 4 (see FIG. 5B).

つまり本発明は、閉塞部材4を用いてV2<V1とすることによって、鋼管1の均一な急冷を可能とするものである。好ましくはV2<0.9×V1である。 That is, the present invention enables uniform rapid cooling of the steel pipe 1 by using the closing member 4 to satisfy V 2 <V 1 . Preferably V 2 <0.9 × V 1 .

そして本発明者が、鋼管1の軸芯に平行な線状突起8を有しかつ先端が円筒形の閉塞部材4を、鋼管1(内径130mm、管長9000mm)の全長にわたって挿入(図1(a)参照)して行なった実験と、閉塞部材4を使用せずに行なった実験によれば、冷却水流路6を流れる冷却水2の流量すなわちV2(m3/秒)と流速(m/秒)との関係は、図6に示す通りとなる。 The inventor then inserts a blocking member 4 having a linear protrusion 8 parallel to the axis of the steel pipe 1 and having a cylindrical tip over the entire length of the steel pipe 1 (inner diameter 130 mm, pipe length 9000 mm) (FIG. 1 (a )) And the experiment conducted without using the closing member 4, the flow rate of the cooling water 2 flowing through the cooling water flow path 6, that is, V 2 (m 3 / sec) and the flow velocity (m / The relationship with (second) is as shown in FIG.

図6から明らかなように、閉塞部材4を鋼管1に挿入することによって、冷却水流路6を流れる冷却水2の流速が速くなる。冷却水2の流速が速くなると、鋼管1の熱を排出し易くなるので、膜沸騰が発生し難くなる。つまり、図7に示すように膜沸騰が発生する水温が上昇する。一方で、閉塞部材4を用いない場合の冷却水流路6は、鋼管1の内部全体であり、冷却水2の流速は遅くなるので、図7に示すように膜沸騰が発生する水温が低下する。   As apparent from FIG. 6, the flow rate of the cooling water 2 flowing through the cooling water flow path 6 is increased by inserting the closing member 4 into the steel pipe 1. When the flow rate of the cooling water 2 is increased, the heat of the steel pipe 1 is easily discharged, so that film boiling is difficult to occur. That is, as shown in FIG. 7, the water temperature at which film boiling occurs increases. On the other hand, the cooling water flow path 6 when the closing member 4 is not used is the entire inside of the steel pipe 1, and the flow rate of the cooling water 2 becomes slow, so that the water temperature at which film boiling occurs is lowered as shown in FIG. .

したがって、図6に示した実験の結果を解析すると、冷却水2の流量が0.1m3/秒で流速が十分に速い場合(すなわち10.5m/秒)は、鋼管1のノズル側端面5と流出側端面7における温度の推移は図8(a)に示す通りであり、鋼管1の長手方向に均一な急冷が可能であることが分かる。これに対して冷却水2の流量が同じく0.1m3/秒であっても流速が遅い場合(すなわち7.5m/秒)は、鋼管1のノズル側端面5は冷却されるものの、冷却水流路6内で膜沸騰が発生して、図8(b)に示す通り、流出側端面7が冷却され難くなる。 Therefore, when the result of the experiment shown in FIG. 6 is analyzed, when the flow rate of the cooling water 2 is 0.1 m 3 / sec and the flow velocity is sufficiently high (that is, 10.5 m / sec), the nozzle side end surface 5 of the steel pipe 1 and the outflow The transition of the temperature at the side end face 7 is as shown in FIG. 8 (a), and it can be seen that uniform rapid cooling in the longitudinal direction of the steel pipe 1 is possible. On the other hand, when the flow rate of the cooling water 2 is also 0.1 m 3 / sec but the flow velocity is slow (ie 7.5 m / sec), the nozzle-side end face 5 of the steel pipe 1 is cooled, but the cooling water flow path 6 In this case, film boiling occurs and the outflow side end face 7 is hardly cooled as shown in FIG.

以上の通り、本発明は、鋼管1の軸芯に平行な線状突起8を有する閉塞部材4を鋼管1の内部に挿入することによって、冷却水流路6内に冷却水2を充満させ、かつ冷却水2の流速を速くして、急冷を行なうものである。そして、冷却水2が充満することによって、円周方向に均一な急冷が可能となり、冷却水2の流速が速くなることによって、長手方向に均一な急冷が可能となる。線状突起8を螺旋状に設けると、円周方向の均一性がさらに向上する。   As described above, the present invention fills the cooling water flow path 6 with the cooling water 2 by inserting the closing member 4 having the linear protrusions 8 parallel to the axis of the steel pipe 1 into the steel pipe 1, and Rapid cooling is performed by increasing the flow rate of the cooling water 2. When the cooling water 2 is filled, uniform quenching in the circumferential direction is possible, and when the flow rate of the cooling water 2 is increased, uniform quenching in the longitudinal direction is possible. When the linear protrusions 8 are provided in a spiral shape, the uniformity in the circumferential direction is further improved.

なお、閉塞部材4を鋼管1に挿入しさらに抜き出す操作を、容易かつ迅速に行なうために、閉塞部材4の軽量化を図る(たとえば内部を中空にする等)ことが好ましい。また、急冷の際に鋼管1を回転させることによって、円周方向の温度偏差を一層小さくする効果が得られる。   In order to easily and quickly perform the operation of inserting and removing the closing member 4 from the steel pipe 1, it is preferable to reduce the weight of the closing member 4 (for example, to make the inside hollow). Moreover, the effect which makes the temperature deviation of the circumferential direction still smaller by rotating the steel pipe 1 in the case of rapid cooling is acquired.

加熱炉で加熱されたビレットに、熱間で穿孔圧延を施して継目無鋼管(内径130mm、管厚40mm、管長8000mm)とした。その継目無鋼管(温度1150℃)にノズルから冷却水を噴射して850℃まで急冷した。その際に設定した条件は表1に示す通りである。なお、使用したノズルの噴射口の直径は、いずれも110mmである。以下では図1(a)、図9を参照して、継目無鋼管を鋼管1として説明する。   The billet heated in the heating furnace was subjected to hot piercing and rolling to obtain a seamless steel pipe (inner diameter 130 mm, pipe thickness 40 mm, pipe length 8000 mm). Cooling water was sprayed from the nozzle onto the seamless steel pipe (temperature 1150 ° C) to rapidly cool to 850 ° C. The conditions set at that time are as shown in Table 1. The diameter of the nozzle used is 110 mm. Hereinafter, a seamless steel pipe will be described as a steel pipe 1 with reference to FIGS.

Figure 0006187446
Figure 0006187446

発明例1は、図1(c)に示す2本の螺旋状の線状突起を等間隔(すなわち180°間隔)で設けた閉塞部材4の軸芯を、鋼管1の軸芯よりも上方へ変位(図9参照)させてd1/d2=2とし、さらに鋼管1の全長にわたって閉塞部材4を挿入して閉塞体積率を15%とし、鋼管1を回転させずに急冷した例である。表1に示す通りV2<V1であり、鋼管1の内部に冷却水2が100%充満し、鋼管1内における冷却水2の流速は8.5m/秒であった。そして、鋼管1の円周方向の温度偏差は8℃、長手方向の温度偏差は14℃に抑えられた。円周方向の温度偏差は、鋼管1を回転させていないにも関わらず、鋼管1を回転する場合(比較例2)とほぼ同等であった。 In Invention Example 1, the shaft core of the closing member 4 in which the two spiral linear protrusions shown in FIG. 1C are provided at equal intervals (ie, 180 ° intervals) is located above the axis of the steel pipe 1. In this example, the displacement (see FIG. 9) is set to d 1 / d 2 = 2 and the closing member 4 is inserted over the entire length of the steel pipe 1 to set the closing volume ratio to 15%, and the steel pipe 1 is rapidly cooled without rotating. . As shown in Table 1, V 2 <V 1 was satisfied, and the inside of the steel pipe 1 was 100% filled with the cooling water 2, and the flow rate of the cooling water 2 in the steel pipe 1 was 8.5 m / sec. And the temperature deviation of the circumferential direction of the steel pipe 1 was restrained to 8 degreeC, and the temperature deviation of the longitudinal direction was restrained to 14 degreeC. Although the steel pipe 1 was not rotated, the temperature deviation in the circumferential direction was almost the same as that in the case where the steel pipe 1 was rotated (Comparative Example 2).

なお、表1に示す閉塞面積率は、鋼管1の管端開口面積に対する閉塞部材4の断面積の割合(%)として算出した値である。充満度は、急冷中に流出側端面7を撮影し、その画像から冷却水2が占める面積を求め、冷却水流路6の断面積に対する割合(%)として算出した値である。温度偏差は、焼入れ装置の出側で、非接触式の放射温度計を用いて鋼管1の温度を測定(円周方向8ケ所、長手方向4ケ所)し、その最大値と最小値との差である。   In addition, the obstruction | occlusion area rate shown in Table 1 is the value computed as a ratio (%) of the cross-sectional area of the obstruction | occlusion member 4 with respect to the pipe end opening area of the steel pipe 1. FIG. The degree of fullness is a value calculated by photographing the outflow side end face 7 during rapid cooling, obtaining the area occupied by the cooling water 2 from the image, and calculating the ratio (%) to the cross-sectional area of the cooling water flow path 6. The temperature deviation is the difference between the maximum value and the minimum value when the temperature of the steel pipe 1 is measured using a non-contact type radiation thermometer on the exit side of the quenching device (8 places in the circumferential direction and 4 places in the longitudinal direction). It is.

発明例2は、鋼管1の軸芯に平行な線状突起8を等間隔(すなわち90°間隔)で4本設けた閉塞部材4の軸芯と、鋼管1の軸芯を一致させてd1/d2=1とし、さら鋼管1を回転させ、その他は発明例1と同様に設定して急冷を行なった例である。発明例2の温度偏差は、表1に示す通り、鋼管1の円周方向が7℃、長手方向が13℃であり、いずれも発明例1よりも減少した。これは、急冷において鋼管1を回転させることによって円周方向の均一性が向上し、d1/d2=1とすることによって長手方向の均一性が向上したことを意味している。 Inventive Example 2 is a case where the shaft core of the closing member 4 provided with four linear protrusions 8 parallel to the shaft core of the steel pipe 1 at equal intervals (ie, 90 ° intervals) is aligned with the shaft core of the steel pipe 1 d 1. This is an example in which / d 2 = 1, the steel pipe 1 is further rotated, and the others are set in the same manner as in Example 1 to perform rapid cooling. As shown in Table 1, the temperature deviation of Invention Example 2 was 7 ° C. in the circumferential direction of the steel pipe 1 and 13 ° C. in the longitudinal direction. This means that the circumferential uniformity is improved by rotating the steel pipe 1 during rapid cooling, and the longitudinal uniformity is improved by setting d 1 / d 2 = 1.

発明例3は、螺旋状の線状突起を等間隔で8本設けた閉塞部材4を使用し、その他の設定は発明例2と同様にして急冷を行なった例である。発明例3の温度偏差は、表1に示す通り、鋼管1の円周方向が6℃、長手方向が13℃であり、円周方向の温度偏差が発明例2よりも減少した。これは、閉塞部材4に螺旋状の線状突起を設けることによって円周方向の均一性が向上したことを意味している。   Inventive Example 3 is an example in which a closing member 4 provided with eight spiral linear protrusions at equal intervals is used, and other settings are performed in the same manner as in Inventive Example 2 for rapid cooling. As shown in Table 1, the temperature deviation of Invention Example 3 was 6 ° C. in the circumferential direction of the steel pipe 1 and 13 ° C. in the longitudinal direction, and the temperature deviation in the circumferential direction was smaller than that of Invention Example 2. This means that the uniformity in the circumferential direction is improved by providing the occluding member 4 with spiral linear protrusions.

比較例1は、線状突起8のない閉塞部材4を用いて、鋼管1と閉塞部材4の軸芯を合わせ、鋼管1を回転させず、その他の設定は発明例2と同様にして急冷を行なった例である。比較例1の温度偏差は、表1に示す通り、鋼管1の円周方向が10℃、長手方向が15℃であり、表1中の発明例と比較例の中で最も大きかった。   In Comparative Example 1, the closing member 4 without the linear protrusion 8 is used, the axis of the steel pipe 1 and the closing member 4 are aligned, the steel pipe 1 is not rotated, and the other settings are the same as in Example 2 for rapid cooling. This is an example. As shown in Table 1, the temperature deviation of Comparative Example 1 was 10 ° C. in the circumferential direction of the steel pipe 1 and 15 ° C. in the longitudinal direction, which was the largest among the inventive examples and comparative examples in Table 1.

比較例2は、線状突起のない閉塞部材を用いて、その他の設定は発明例2、3と同様にして急冷を行なった例である。比較例2の温度偏差は、表1に示す通り、鋼管1の円周方向が7℃、長手方向が15℃であり、円周方向の温度偏差が発明例2、3よりも増大した。   Comparative Example 2 is an example in which a closing member having no linear protrusion was used, and the other settings were quenched as in Invention Examples 2 and 3. As shown in Table 1, the temperature deviation of Comparative Example 2 was 7 ° C. in the circumferential direction of the steel pipe 1 and 15 ° C. in the longitudinal direction, and the temperature deviation in the circumferential direction was greater than that of Invention Examples 2 and 3.

1 鋼管
2 冷却水
3 ノズル
4 閉塞部材
5 ノズル側端面
6 冷却水流路
7 流出側端面
8 線状突起
DESCRIPTION OF SYMBOLS 1 Steel pipe 2 Cooling water 3 Nozzle 4 Blocking member 5 Nozzle side end surface 6 Cooling water flow path 7 Outflow side end surface 8 Linear protrusion

Claims (4)

外面に線状突起を有する閉塞部材を、加熱された鋼管の長手方向の一部または全長にわたって前記鋼管の内部に挿入し、かつ前記鋼管と前記閉塞部材との間に隙間を設けるとともに、前記鋼管の片方の端面との間に空隙を有して配設されたノズルから冷却水を噴射流量V1(m3/秒)で噴射して、前記ノズルと前記鋼管との空隙から前記冷却水の一部を流出させながら、前記冷却水の残部を前記閉塞部材と前記鋼管の隙間に流し込んで他方の端面から流出流量V2(m3/秒)で流出させることによってV2<V1とすることを特徴とする鋼管の焼入れ方法。 A closing member having a linear protrusion on the outer surface is inserted into the steel pipe over a part or the entire length in the longitudinal direction of the heated steel pipe, and a gap is provided between the steel pipe and the closing member, and the steel pipe The cooling water is injected at a jet flow rate V 1 (m 3 / sec) from a nozzle disposed with a gap between one end face of the nozzle and the cooling water is drawn from the gap between the nozzle and the steel pipe. V 2 <V 1 by letting the remainder of the cooling water flow into the gap between the closing member and the steel pipe while flowing out a part, and let it flow out from the other end surface at an outflow flow rate V 2 (m 3 / sec). A method for quenching a steel pipe, characterized by that. 前記閉塞部材が、螺旋状の前記線状突起あるいは前記鋼管の軸芯に平行な前記線状突起を有することを特徴とする請求項1に記載の鋼管の焼入れ方法。   The method for quenching a steel pipe according to claim 1, wherein the closing member has the linear protrusion or the linear protrusion parallel to the axis of the steel pipe. 加熱された鋼管の長手方向の一部または全長にわたって前記鋼管の内部に挿入されかつ外面に線状突起を有する閉塞部材と、前記鋼管の片方の端面との間に空隙を有して配設されて冷却水を噴射することによって前記空隙から前記冷却水の一部を流出させかつ前記鋼管と前記閉塞部材との間の隙間に前記冷却水の残部を流し込むノズルと、を有し、前記ノズルから噴射される前記冷却水の噴射流量V1(m3/秒)および前記閉塞部材と前記鋼管の隙間を通って他方の端面から流出する前記冷却水の流出流量V2(m3/秒)がV2<V1を満足することを特徴とする鋼管の焼入れ装置。 A gap is provided between a closing member inserted into the steel pipe and having a linear protrusion on the outer surface thereof and a part of one end face of the steel pipe over a part or the entire length of the heated steel pipe in the longitudinal direction. A nozzle that causes a portion of the cooling water to flow out of the gap by injecting the cooling water and to flow the remainder of the cooling water into a gap between the steel pipe and the closing member, and from the nozzle An injection flow rate V 1 (m 3 / sec) of the injected cooling water and an outflow rate V 2 (m 3 / sec) of the cooling water flowing out from the other end face through the gap between the closing member and the steel pipe A steel pipe quenching device satisfying V 2 <V 1 . 前記閉塞部材が、螺旋状の前記線状突起あるいは前記鋼管の軸芯に平行な前記線状突起を有することを特徴とする請求項3に記載の鋼管の焼入れ装置。   The steel pipe hardening apparatus according to claim 3, wherein the closing member includes the spiral linear protrusion or the linear protrusion parallel to the axis of the steel pipe.
JP2014256296A 2014-12-18 2014-12-18 Method and apparatus for quenching steel pipe Active JP6187446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014256296A JP6187446B2 (en) 2014-12-18 2014-12-18 Method and apparatus for quenching steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014256296A JP6187446B2 (en) 2014-12-18 2014-12-18 Method and apparatus for quenching steel pipe

Publications (2)

Publication Number Publication Date
JP2016117916A JP2016117916A (en) 2016-06-30
JP6187446B2 true JP6187446B2 (en) 2017-08-30

Family

ID=56243831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014256296A Active JP6187446B2 (en) 2014-12-18 2014-12-18 Method and apparatus for quenching steel pipe

Country Status (1)

Country Link
JP (1) JP6187446B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221286Y2 (en) * 1972-12-21 1977-05-16
JPS59190328A (en) * 1983-04-08 1984-10-29 Nippon Steel Corp Method and device for cooling metallic pipe
JPS6033314A (en) * 1983-08-03 1985-02-20 Nippon Steel Corp Method of and apparatus for cooling metallic pipe having difference in level
JP2001032022A (en) * 1999-07-22 2001-02-06 Sumitomo Metal Ind Ltd Method for quenching steel pipe and quenching apparatus

Also Published As

Publication number Publication date
JP2016117916A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
US10400302B2 (en) Annealing furnace and method for annealing a steel strand
JP6187446B2 (en) Method and apparatus for quenching steel pipe
JP6187441B2 (en) Method and apparatus for quenching steel pipe
JP6330741B2 (en) Seamless steel pipe manufacturing method
JP6098773B2 (en) Steel pipe quenching method, steel pipe quenching apparatus, steel pipe manufacturing method, and steel pipe manufacturing equipment
JP6264274B2 (en) Method and apparatus for quenching steel pipe
JP7029458B2 (en) Lead-free patenting process and equipment
CN107653364B (en) The Forced water cooling of thicker wire
JP6923000B2 (en) Drilling machine and method for manufacturing seamless metal pipe using it
JP6939900B2 (en) A drilling machine, a mandrel bar, and a method for manufacturing a seamless metal tube using them.
JP6614189B2 (en) Steel pipe quenching apparatus and quenching method, and steel pipe manufacturing apparatus and manufacturing method
JP2018162480A (en) Hardening device and hardening method of steel pipe, and manufacturing device and manufacturing method of steel pipe
JP6583328B2 (en) Steel pipe quenching apparatus and quenching method, and steel pipe manufacturing apparatus and manufacturing method
JP2019143191A (en) Steel tube hardening method, and hardening device therefor
KR200328899Y1 (en) Cooling Apparatus of Turbine Roter
JPH07113124A (en) Method of heat treatment of wire
JP6686981B2 (en) Metal strip cooling system
JP2005238304A (en) Method for manufacturing hot-rolled steel sheet
RU2635114C2 (en) Method for manufacturing large-sized springs of steel
JPS6410571B2 (en)
KR20200073069A (en) Apparatus for heat treating of wire-rod coil
JP2015098036A (en) Duplex stainless steel structure manufacturing method and heat treatment device
JPS5852426A (en) Quenching method of metallic pipe
KR20200072735A (en) Cooling apparatus and in-line manufacturing device for wire rod having the same
JP2006283087A (en) Method for quenching outer surface of cylinder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R150 Certificate of patent or registration of utility model

Ref document number: 6187446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250