JPS59190328A - Method and device for cooling metallic pipe - Google Patents

Method and device for cooling metallic pipe

Info

Publication number
JPS59190328A
JPS59190328A JP6093383A JP6093383A JPS59190328A JP S59190328 A JPS59190328 A JP S59190328A JP 6093383 A JP6093383 A JP 6093383A JP 6093383 A JP6093383 A JP 6093383A JP S59190328 A JPS59190328 A JP S59190328A
Authority
JP
Japan
Prior art keywords
pipe
cooling
tube
water
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6093383A
Other languages
Japanese (ja)
Inventor
Kyohei Murata
村田 杏坪
Osayuki Mizushima
水島 「しゆう」行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6093383A priority Critical patent/JPS59190328A/en
Publication of JPS59190328A publication Critical patent/JPS59190328A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching

Abstract

PURPOSE:To cool uniformly and efficiently a metallic pipe and to prevent bending deformation due to cooling by applying a liquid cooling medium with high velocity on the metallic pipe of a high temp. in the internal axial direction thereof, providing an obstructive body on the releasing side of the cooling medium thereby applying fluid resistance thereto. CONSTITUTION:A high temp. steel pipe 1 is disposed on a turning roll in an adequate water tank, and a movable weir 15 is adjusted to lower a water level (b) down to the level of the steel pipe or below. High pressure water P1 is ejected from the inside pipe 9 of a double-pipe nozzle and low pressure water P2 from an outside pipe 10 to pass the cooling water with high velocity in the pipe 1 in the axial direction thereof. An obstructive body 21 is provided on the outlet side of the pipe 1 to apply adequate fluid resistance to the cooling water in the pipe 1. The cooling water is then filled fully in the pipe 1 without space from the front to the rear end thereof and the pipe 1 is uniformly and quickly cooled. If the free end of the pipe 1 is long, the parts within 500mm. respectively from the ends thereof are preferably restrained by pinch rolls, etc. to prevent oscillation.

Description

【発明の詳細な説明】 本発明は金属管特に鋼管の熱処理工程などにおける管の
冷却方法並びにその装置に関するものである。本発明は
、管内流冷却法とも総称すべき冷却法であるが、特に細
径、薄肉管の熱処理冷却による変形を防止するのに極め
て適している。管内流冷却法とは、管の一方端から、比
較的高速の冷却液を流し、管の内面から冷却する方法を
云う。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for cooling metal pipes, particularly steel pipes, in a heat treatment process and the like. The present invention is a cooling method that should be collectively referred to as the in-pipe flow cooling method, and is particularly suitable for preventing deformation of small-diameter, thin-walled pipes due to heat treatment and cooling. The pipe internal flow cooling method is a method in which a relatively high-speed cooling liquid flows from one end of a pipe to cool the pipe from its inner surface.

従来、細径、薄肉管の熱処理冷却は、外面から冷却液を
スプレーする所謂外面冷却法や水槽内で浸漬冷却する方
法が工業的に採用されて来たが、一般的に、曲がり、特
に端曲がりの発生が大きく、かつ頻発する等の欠点があ
り、その後の精整工程での作業量が増え、コスト高の原
因にもなっていた。
Conventionally, for heat treatment cooling of small-diameter, thin-walled pipes, the so-called external cooling method, in which a cooling liquid is sprayed from the outside surface, or the method of immersion cooling in a water tank have been adopted industrially. There are disadvantages such as large and frequent bending, which increases the amount of work in the subsequent finishing process and causes high costs.

本発明の管内流冷却法は、端曲がりを含む曲がりを極め
て防止できることの他に、管端入口における冷却液の充
満度を飛躍的に改善し、W縮入口部の焼入不良部及び管
後端部の焼入不良も完全に防止できることに、基本的特
徴がある。
In addition to being able to extremely prevent bending including end bending, the in-pipe flow cooling method of the present invention dramatically improves the degree of filling of the cooling liquid at the tube end inlet. The basic feature is that quenching defects at the edges can be completely prevented.

このように、本発明は、主として、この細径サイズの管
の冷却過程における曲がり変形を防止する効果的、かつ
、経済的な方法と工業的手段を提供しようとするもので
ある。以後の本発明の詳細な説明においては、鋼管の熱
処理冷却と浸漬式内外面冷却法を例に、比較対照しなが
ら記述する。
As described above, the present invention is primarily intended to provide an effective and economical method and industrial means for preventing bending and deformation of small-diameter tubes during the cooling process. In the following detailed description of the present invention, heat treatment cooling of steel pipes and immersion type inner and outer surface cooling methods will be used as examples to compare and contrast.

この浸漬式内列面冷却装置の特徴は、鋼管の冷却を内外
面はソ同時に行なうことN、曲がりや真円度不良の防止
に配慮がなされていることであるが、最新の開発例を挙
ければ、第1図及び第2図の如き構造となる。すなわち
、加熱された鋼管lは搬入コンベア2により転送しつつ
水槽3内に送られる。水槽内の冷却水面は位置a(鋼管
が完全に浸漬される位置)にあり、水槽3に搬送された
高温鋼管は水没し、核種のはソ゛中夫に設置されたター
ニングロール4により回転を与えられ、ピンチロール5
にて拘束される。同時に、内面ノズル6より高圧水を鋼
管軸方向に噴出させ、該鋼管の内面を冷却する。また、
外面ノズル7より低圧水を噴出させて鋼管の外面を攪拌
冷却する。
The features of this immersion-type internal surface cooling device are that the inner and outer surfaces of the steel pipe are cooled at the same time, and consideration is given to preventing bending and poor roundness. If not, the structure will be as shown in FIGS. 1 and 2. That is, the heated steel pipe 1 is transferred into the water tank 3 by the carry-in conveyor 2. The cooling water level in the water tank is at position a (the position where the steel pipe is completely immersed), the high-temperature steel pipe transported to the water tank 3 is submerged in water, and the nuclide is rotated by the turning roll 4 installed in the sow tank. Pinch roll 5
be restrained at. At the same time, high-pressure water is ejected from the inner nozzle 6 in the axial direction of the steel pipe to cool the inner surface of the steel pipe. Also,
Low-pressure water is ejected from the outer surface nozzle 7 to stir and cool the outer surface of the steel pipe.

鋼管の肉厚に応じた所要冷却時間後、ターニングロール
4の回転を停止し、ピンチロール5を開放した上で、搬
出コンベア8にて鋼管を槽外へ搬出して焼入れを完了す
る。
After the required cooling time according to the wall thickness of the steel pipe, the rotation of the turning rolls 4 is stopped, the pinch rolls 5 are opened, and the steel pipe is carried out of the tank by the carry-out conveyor 8 to complete the quenching.

該浸漬式内外面冷却法は、内外面から冷却するために、
極厚の鋼管においても、焼入性を向上させるための特殊
な合金成分を多量に添加することなく、非常に安定した
焼入マルテンサイl−i織が得られることから、コスト
的にも有利である。
The immersion type internal and external cooling method uses the following methods to cool from the internal and external surfaces.
Even in extremely thick steel pipes, an extremely stable hardened martensitic l-i weave can be obtained without adding large amounts of special alloy components to improve hardenability, so it is advantageous in terms of cost. be.

一方、本発明者等の行なった鋼管の冷却による変形に関
する実験結果によると、 (1)真円度すなわち偏平変形は、鋼管サイズが犬さい
程(外径/肉厚→犬)、大きくなる傾向があり、殆んど
外面冷却の不均一に起因している。
On the other hand, according to the experimental results conducted by the present inventors regarding the deformation of steel pipes due to cooling, (1) Roundness, or flattening deformation, tends to increase as the steel pipe size becomes smaller (outer diameter/wall thickness → smaller). This is mostly due to non-uniform cooling of the outer surface.

また、冷却過程でのスケールのはく離の不均一も、外面
冷却の不均一をもたらず原因の−っである。
In addition, non-uniform exfoliation of scale during the cooling process is also a cause of non-uniform cooling of the outer surface.

(2)曲がり変形は、鋼管サイズが小さい(細径、薄肉
)程、大きくなる傾向があり、真円度不良と同様に、主
として外面冷却の不均一に起因している。
(2) The bending deformation tends to increase as the steel pipe size becomes smaller (smaller diameter, thinner wall), and, like poor roundness, it is mainly caused by non-uniform cooling of the outer surface.

こと等が確認されている。This has been confirmed.

前記(1)及び(2)の外面冷却の均一化を図るべく、
従来から多くの工業的方法や手段が提案され、それなり
に進歩して来ている。−1しかし、現在でも、細径サイ
ズ鋼管の曲がり(特に端面がり)変形の問題は、実用上
も重要な技術的課題として残されている。
In order to achieve uniform external cooling in (1) and (2) above,
Many industrial methods and means have been proposed in the past and have made considerable progress. -1 However, even now, the problem of bending (particularly end-face bending) deformation of small-diameter steel pipes remains an important technical problem from a practical standpoint.

特に曲がり変形防止のむづかしいサイズは、80龍以下
の外径の細径の鋼管である。本発明は、主としてこの細
径サイズの冷却過程における曲がり変形を防止する工業
的な方法と手段を提供するこ吉である。
Particularly difficult to prevent bending and deformation is a small diameter steel pipe with an outer diameter of 80 mm or less. The present invention primarily aims to provide an industrial method and means for preventing bending deformation during the cooling process of this small diameter size.

曲がりが特に発生しやすい80mm以下の細径サイズの
肉厚は、特殊なアップセントパイプを除き、片面冷却で
十分焼入が可能である。また、管端肉厚を増肉加工した
アンプセント管については、片面冷却の限度を越える肉
厚のものもあるが、これについては後述する補助手段を
付加することで処理可能になる。
Thin wall thicknesses of 80 mm or less, where bending is particularly likely to occur, can be sufficiently hardened with single-sided cooling, except for special upcent pipes. Furthermore, some ampsent tubes whose end wall thickness has been increased have a wall thickness that exceeds the limit of single-sided cooling, but this can be handled by adding auxiliary means to be described later.

片面冷却として、大気中での管内流冷却法と外面冷却法
が考えられるが、後者は前述の理由で、焼入れ曲がりを
減少させるには限度があるので、管内流冷却法を実験的
に検討した。
For single-sided cooling, the tube internal flow cooling method in the atmosphere and the external surface cooling method are considered, but the latter method has a limit in reducing quench bending due to the reasons mentioned above, so we experimentally investigated the tube internal flow cooling method. .

本発明者等の管内法焼入冷却実験の結果を第3図に示す
が、これによって明らかな様に、管内流のみの冷却によ
る場合の曲がりは、極めて小さく、該法の曲がり防止効
果は極めて顕著であることが確認された。管内流のみの
冷却の場合、レイノズル数が105〜107の乱流であ
るため、円周方向の冷却の均一性が極めて高く、また、
管内長手方向には障害物もないので、円周方向及び長手
方向共均一な冷却が可能になる。更に、浸漬式内外面冷
却された鋼管の内、外面のスケールの厚さとが残留スケ
ール分布状態を調べた結果、内面のスケール厚さは外面
のそれより薄く、がっ、ゝアバタ状“に残留することも
殆んどなく、均一であることが確認された。それに反し
て、外面には、冷却過程で均一にはく離されず、スケー
ルが付着したまN″アバタ状になる場合が多く、このよ
うな場合、一般的に、鋼管が大きく曲がる傾向が顕著で
ある。
The results of the inventors' in-pipe quenching cooling experiment are shown in Figure 3, and as is clear from this, the bending caused by cooling only the in-pipe flow is extremely small, and the bending prevention effect of this method is extremely effective. It was confirmed that this was significant. In the case of cooling only through the flow inside the pipe, it is a turbulent flow with a Ray nozzle number of 105 to 107, so the uniformity of cooling in the circumferential direction is extremely high.
Since there are no obstacles in the longitudinal direction of the tube, uniform cooling is possible in both the circumferential and longitudinal directions. Furthermore, as a result of investigating the distribution of residual scale on the inner and outer surfaces of steel pipes subjected to immersion cooling on the inner and outer surfaces, it was found that the scale thickness on the inner surface was thinner than that on the outer surface, and remained in an ``avatar-like'' shape. It was confirmed that the scale was uniform with almost no peeling.On the other hand, scale was not peeled off uniformly on the outer surface during the cooling process, and scale remained attached to it in many cases, forming an N'' avatar shape. In such cases, there is generally a noticeable tendency for the steel pipe to bend significantly.

一般的に、浸漬式内外面冷却法における水中外面冷却や
通常の外面冷却法では、ノズル配置の幾何学的関係や鋼
管の支持(搬送)機構等に起因する不可避的な円周方向
や長手方向の不均一が必ず存在する。上記の2つに起因
する不均一冷却のため、外面からの冷却を利用する方法
では、曲がりや真円度不良を惹起しやすい傾向があるこ
とが確認された。
In general, in underwater external cooling in the immersion type internal and external cooling method and in ordinary external cooling methods, unavoidable circumferential and longitudinal There is always some non-uniformity. Due to non-uniform cooling caused by the above two factors, it has been confirmed that methods that utilize cooling from the outer surface tend to cause bending and poor roundness.

特に、曲がりは細径薄肉鋼管に、また、真円度不良は大
径薄肉鋼管に発生しやすい傾向がある。
In particular, bending tends to occur more easily in small-diameter, thin-walled steel pipes, and poor roundness tends to occur more easily in large-diameter, thin-walled steel pipes.

以上の理由により、細径薄肉の曲がりを防止するには、
大気中での管内流冷加法が、工業的に極めて優れた方法
であると云える。
For the above reasons, to prevent bending of small diameter thin walls,
It can be said that the tube flow cooling method in the atmosphere is an extremely superior method industrially.

管内流冷却の場合、第3図に示されている通り、曲がり
に対する鋼管回転の効果は、殆んどなかった。この理由
は、レイノズル数が大きい(]05〜107)ため十分
な乱流が得られ、鋼管を回転させなくても、均一な管内
流冷却が実現されているからである。
In the case of internal flow cooling, as shown in FIG. 3, there was almost no effect of steel pipe rotation on bending. The reason for this is that sufficient turbulence can be obtained due to the large Ray nozzle number (]05 to 107), and uniform flow cooling within the pipe can be achieved without rotating the steel pipe.

このような特徴のある管内流冷却を工業的規模で実現す
るには、いくつかの重大な問題点がある。
There are several serious problems in realizing such characteristic pipe flow cooling on an industrial scale.

第4図に、冷却中の鋼管1の端面と内面ノズル6の関係
を示しであるが、同図から分かるように、内面ノズル6
の孔径と鋼管のサイズあるいは両者の幾何学的関係によ
っては、#管端面の0部が冷却されない、あるいは、冷
却が不充分な場合が生じ、例えば、焼入不良となる。
FIG. 4 shows the relationship between the end surface of the steel pipe 1 and the inner nozzle 6 during cooling. As can be seen from the figure, the inner nozzle 6
Depending on the hole diameter, the size of the steel pipe, or the geometrical relationship between the two, the 0 part of the # pipe end face may not be cooled, or the cooling may be insufficient, resulting in, for example, poor quenching.

第4図において、ノズル6の孔径を鋼管】の内径と等し
くするか若干大きくすれば、この問題は解消されそうに
見えるが、本発明者等の実験によれば、特に自由端が長
い場合、冷却過程の鋼管は複雑な1首振り運動“をする
ので、孔径の大きなノズルから噴出した高圧水は、的を
外れ被冷却鋼管の外面にも、飛び散ること\なり、端面
がりその他の変形を生じやすいことが分かった。したが
って、冷却水の入口側の鋼管の管端拘束が必要で、その
位置は管端より50071m以下にして1首ふり運動“
を抑制すること、かつ、ノズル孔径は鋼管内径より小さ
いことが必要である。
In Fig. 4, this problem seems likely to be solved by making the hole diameter of the nozzle 6 equal to or slightly larger than the inner diameter of the steel pipe, but according to the experiments of the present inventors, especially when the free end is long, During the cooling process, the steel pipe makes a complex oscillating motion, so the high-pressure water ejected from the nozzle with a large hole misses its target and splashes onto the outside surface of the steel pipe to be cooled, causing end face warping and other deformations. Therefore, it is necessary to restrain the end of the steel pipe on the cooling water inlet side, and the position must be 50,071 m or less from the end of the pipe to allow one swinging motion.
It is necessary to suppress this and the nozzle hole diameter to be smaller than the inner diameter of the steel pipe.

本発明者等は、鋼管入口部での冷却水の充満度、管端部
の外面の偏冷却の問題を解決すべく種々の実験を重ねた
結果、第5図に示す2重管ノズルと鋼管の入口側管端に
冷却液の吸引促進機構を取付けることにより解決できる
こさを究明した。吸引促進機構は、任意の鋼管外径に対
応可能な第5図の構造が簡単で、実用上好ましい。管端
位置のバラツキに対する追随の方法として、空気圧また
は水圧を利用してピストンタイプのスライド方式を採用
した。
The inventors of the present invention have conducted various experiments to solve the problem of the degree of cooling water filling at the inlet of the steel pipe and the uneven cooling of the outer surface of the pipe end, and as a result, the double pipe nozzle and steel pipe shown in Fig. 5 have been developed. We have determined that this problem can be solved by installing a coolant suction promotion mechanism at the inlet end of the tube. The suction promoting mechanism has a simple structure as shown in FIG. 5, which can be adapted to any steel pipe outer diameter, and is preferable from a practical standpoint. A piston-type sliding system using air or water pressure was adopted as a method for tracking variations in the position of the tube ends.

該吸引促進機構を取付けることにより、入口部の冷却水
の充満度の向上の他に、管端近傍の鋼管外面に冷却水が
飛散するのを防ぐこともできる。
By installing the suction promotion mechanism, it is possible to not only improve the degree of filling of the inlet with cooling water but also to prevent the cooling water from scattering on the outer surface of the steel pipe near the pipe end.

2重管ノズルの内管9からは高圧水を、また、外輪管i
oと内管9間に形成される環状空間からは低圧水を噴出
させる。こうすると、鋼管入口で、高圧水による吸引効
果で低圧水が鋼管内部に巻込まれ、入口部で冷却水が十
分に充満し、管端の冷却不良の問題は解決された。また
、低圧水と高圧水の噴出圧力のバランスを調整すること
により、高圧水が管端は衝突し、周囲に飛散するのを防
止できる効果もあることが分った。
High pressure water is supplied from the inner pipe 9 of the double pipe nozzle, and the outer ring pipe i
Low-pressure water is ejected from the annular space formed between the inner tube 9 and the inner tube 9. In this way, low-pressure water is drawn into the steel pipe by the suction effect of high-pressure water at the inlet of the steel pipe, and the inlet is sufficiently filled with cooling water, solving the problem of poor cooling at the end of the pipe. It has also been found that by adjusting the balance between the ejection pressures of low-pressure water and high-pressure water, it is possible to prevent the high-pressure water from colliding with the pipe ends and scattering around.

2重管ノズルの外輪管の内径(−外管の内径)は、被冷
却鋼管の内径より犬1.きく、被冷却鋼管群の最大内径
の1.4倍位までが適当である。これは外輪管の内径が
被冷却鋼管の内径以下では、鋼管入口での冷却水の充満
が完全でない場合があり、また、14倍以上では、不必
要に低圧冷却液量が増えるからである。
The inner diameter of the outer ring tube of the double-pipe nozzle (-the inner diameter of the outer tube) is 1.5 mm smaller than the inner diameter of the steel tube to be cooled. It is appropriate that the diameter be up to 1.4 times the maximum inner diameter of the group of steel pipes to be cooled. This is because if the inner diameter of the outer ring tube is less than the inner diameter of the steel tube to be cooled, the cooling water may not be completely filled at the inlet of the steel tube, and if it is 14 times or more, the amount of low-pressure cooling liquid will increase unnecessarily.

高圧冷却液を噴出させるノズルの孔径は、被冷却鋼管の
内径より小さくするが、該被冷却鋼管群の最小内径の2
/3〜1/2程度まで許容される。
The hole diameter of the nozzle that spouts high-pressure cooling liquid is made smaller than the inner diameter of the steel pipes to be cooled, but
/3 to 1/2 is acceptable.

このため細径鋼管範囲内で、鋼管サイズ毎にノズルを交
換する必要がなくなり、操業上のメリットは多大である
。これ以下の孔径では、冷却液の平均管側流速が遅くな
るため、鋼管の後端部で水温が上昇し過ぎ、冷却能力不
足を惹起する場合がある。また、平均管内流速を高める
ためには、極めて高圧のポンプが必要になる等の問題が
生じ、経済的に不利である。
Therefore, within the range of small diameter steel pipes, there is no need to replace the nozzle for each steel pipe size, which has great operational advantages. If the hole diameter is smaller than this, the average tube-side flow velocity of the coolant will be slow, which may cause the water temperature to rise too much at the rear end of the steel pipe, resulting in insufficient cooling capacity. Furthermore, in order to increase the average flow velocity in the pipe, problems arise such as the need for an extremely high-pressure pump, which is economically disadvantageous.

前述の如く、本発明の基本的特徴の1つは、第5図に示
すように、管内流用ノズル(=内面ノズル)を2重管と
し、内管8より高圧水を噴出し、外輪管10からは低圧
水を噴出し、吸引促進機構との流体力学的作用により鋼
管端部内面に吸引させることで、入口における冷却液の
充満性を確保し、端部の冷却速度と冷却の均一性を確保
するものである。吸引促進機構は図示の如く、鋼管1に
接するラッパ状の吸引促進板11と、これを軸方向に変
位自在に保持するためのシリンダー12、ピストン13
およびスプリング14からなる機構とから構成される。
As mentioned above, one of the basic features of the present invention is that, as shown in FIG. Low-pressure water is ejected from the pipe and is sucked into the inner surface of the end of the steel pipe through a hydrodynamic action with the suction promotion mechanism, ensuring that the inlet is filled with cooling liquid and improving the cooling rate and uniformity of cooling at the end. It is to be ensured. As shown in the figure, the suction promotion mechanism includes a trumpet-shaped suction promotion plate 11 in contact with the steel pipe 1, a cylinder 12 and a piston 13 for holding the trumpet-shaped suction promotion plate 11 so as to be freely displaceable in the axial direction.
and a mechanism consisting of a spring 14.

シリンダー12部分は外輪管]0の軸方向端部に一体的
に設けられる。
The cylinder 12 portion is integrally provided at the axial end of the outer ring tube ]0.

管内流冷加法は、細径鋼管の焼入冷却に於いて最も威力
を発揮する冷却方法である。しかし鋼管の後端が自由に
開放されていると、特に細径の内で比較的径の太い鋼管
の場合、鋼管の後端部付近で空隙が生じ、管内が冷却水
で充満しないことがあり、焼入れ不良が発生する。
The tube flow cooling method is the most effective cooling method for quenching and cooling small diameter steel pipes. However, if the rear end of the steel pipe is freely open, especially in the case of a steel pipe with a relatively large diameter among small diameters, a gap may occur near the rear end of the steel pipe, and the inside of the pipe may not be filled with cooling water. , quenching defects occur.

管の後端まで冷却水を充満させるためには、管内流速を
更に高速化すればかなり改善されるが、管内流速の過度
の高速化の為に非常に大きな高圧ポンプが必要になりコ
スト高を招く。
In order to fill the rear end of the pipe with cooling water, it would be much better to further increase the flow velocity in the pipe, but this would require a very large high-pressure pump to increase the flow velocity in the pipe, resulting in high costs. invite

管の後端部まで冷却水を充満させ均一かつ完全な焼入を
実現する為の方策を種々実験的に検討した結果、前後端
部背後に管内流に対(〜て流動抵抗を与える障害物を設
置すると、管内流速を過度に高速化しなくても背後端ま
で冷却水が充満し均一かつ完全な焼入れを実現できるこ
とを見出した。
As a result of various experimental studies on ways to achieve uniform and complete quenching by filling cooling water up to the rear end of the pipe, we found that there are obstacles behind the front and rear ends that create flow resistance. It was discovered that by installing a pipe, the cooling water can be filled to the rear end of the pipe without increasing the flow velocity excessively, and uniform and complete quenching can be achieved.

本発明の実施態様の1つを第1O図に示した。第10図
中の21は管内流に対して流動抵抗を与える為の障害物
である。該障害物21の存在によって、背後端まで冷却
水が充満することがわかる。図中太字点線は、障害物が
付設されない場合の前後端内での水位を示し、空隙が形
成されることがわかる。
One embodiment of the invention is shown in FIG. 1O. 21 in FIG. 10 is an obstacle for providing flow resistance to the flow inside the pipe. It can be seen that due to the presence of the obstacle 21, the cooling water is filled to the rear end. The bold dotted line in the figure indicates the water level within the front and rear ends when no obstruction is attached, and it can be seen that a void is formed.

なお、該障害物を付設すると、被冷却鋼管より吐き出さ
れる冷却水の飛散防止対策が必要になる。
In addition, when such an obstacle is attached, measures are required to prevent the cooling water discharged from the steel pipe to be cooled from scattering.

つぎに、本発明の実施態様と応用例につき説明する。第
6図は、第1図及び第2図の浸漬式内外面冷却装置で、
水槽3内の水位をb位置(鋼管が大気中に露出する水準
位置)以下に下げ、内面ノズルを2重管とした状態を示
しており、図中P1には高圧水、P2には低圧水が供給
される。第6図の実施例においては、P2に供給する低
圧水は、第1図における水中外面ノズル7を止めている
ので、これを切替えて使用した。また、水位aをbに下
げるためには、水槽3の端末に可動せき15を駆動装置
】6及びスクリュージヤツキ17によって上下動さセる
ことにより容易に行なえる。第6図の実施例は、浸漬式
内外面冷却装置でのそれであるが、浸漬式内外面冷却装
置と兼用する必要はなく、細径専用の冷却設備としても
実施できる。
Next, embodiments and application examples of the present invention will be explained. Figure 6 shows the immersion type internal and external cooling device shown in Figures 1 and 2.
The water level in the water tank 3 is lowered below position b (the level position where the steel pipe is exposed to the atmosphere), and the internal nozzle is double piped. In the figure, P1 shows high-pressure water and P2 shows low-pressure water. is supplied. In the embodiment shown in FIG. 6, since the underwater external nozzle 7 in FIG. 1 was stopped, the low-pressure water supplied to P2 was switched and used. Further, lowering the water level a to b can be easily done by moving a movable weir 15 up and down at the end of the water tank 3 using a drive device 6 and a screw jack 17. Although the embodiment shown in FIG. 6 is an immersion type inner and outer cooling device, it does not need to be used also as an immersion type inner and outer cooling device, and can also be implemented as a cooling equipment exclusively for small diameters.

しかし、通常、1つの生産ラインで製造される鋼管サイ
ズは、ある外径範囲を持っており、お〜よそ200 m
rn以上の外径の鋼管は中径ラインで、200m7n以
下は小径ラインで処理されることを考えると、該細径薄
肉サイズ専用の管内流冷却設備を新たに設けることなく
、浸漬式内外面冷却装置と兼用可能とするこ七により、
同−設備で、外径、肉厚共に広い範囲の熱処理冷却が経
済的に実施できることになる。すなわち、同一の浸漬式
内外面冷却装置で、細径薄肉管から太径厚肉管まで熱処
理冷却可能な機能を具備することにより、新たに、細径
薄肉管専用の熱処理冷却設備を設置する必要がなく、か
つ、加熱炉や設置場所の節約並びにレイアウト上も有利
になる等の工業的利点は非常に太きい。
However, usually the steel pipe sizes produced on one production line have a certain outer diameter range, approximately 200 m
Considering that steel pipes with an outer diameter of rn or more are processed in a medium-diameter line, and steel pipes with an outer diameter of 200m7n or less are processed in a small-diameter line, it is possible to use immersion type inner and outer cooling without the need to newly install internal flow cooling equipment for the small diameter and thin wall size. By making it possible to use it also as a device,
With the same equipment, heat treatment and cooling can be performed economically over a wide range of outer diameters and wall thicknesses. In other words, by equipping the same immersion-type internal and external cooling device with the ability to heat-treat and cool both small-diameter, thin-walled pipes and large-diameter, thick-walled pipes, it is necessary to newly install heat treatment and cooling equipment exclusively for small-diameter, thin-walled pipes. It has great industrial advantages, such as saving space for heating furnaces and installation space, and being advantageous in terms of layout.

本発明のもう一つの実施例は、管端部を増肉したアンプ
セット管についても、アンプセット部のみの管端外面冷
却装置を設けることにより、前述の管内流のみの場合と
同等な曲がり防止効果と増肉部の冷却能力の向上効果が
得られる様にしたもので、装置としての特徴は、種々の
管長に対し管端外面冷却装置を適切に配置したことにあ
る。すなわち、管端の基準位置毎に設置し、かつ、選択
使用する管端外面冷却装置と管の他方端にあっては、2
重管式内面ノズル及び1組の管保持装置と共に移動可能
な1対の管端外面冷却装置を具備したことを特徴として
おり、該装置の発明により、アップセット管についても
曲がり変形が少なく、かつ、アンプセット部において安
定した焼入性能が得られることになった。また、任意の
管長のアンプセント管に対応できるようになり、工業上
の利点は多大である。
Another embodiment of the present invention is that even for amplifier set tubes with thickened tube ends, by providing a tube end outer surface cooling device only for the amplifier set portion, bending can be prevented in the same way as in the case of only the internal flow described above. This device is designed to improve the cooling capacity of the thickened portion, and the feature of the device is that the tube end outer surface cooling device is appropriately arranged for various tube lengths. In other words, for the tube end external cooling device installed at each reference position of the tube end and selectively used, and the other end of the tube, two
It is characterized by being equipped with a pair of tube end outer surface cooling devices that are movable together with a double tube type inner nozzle and a set of tube holding devices.With the invention of this device, there is little bending deformation of upset tubes, and , stable hardening performance was obtained in the amplifier set section. In addition, it becomes possible to deal with amplifier cent tubes of arbitrary tube lengths, which is a great industrial advantage.

本発明による実施例を第7図によって説明すると、管端
外面冷却装置18は、鋼管の搬入基準e。
An embodiment according to the present invention will be described with reference to FIG. 7. The tube end outer surface cooling device 18 has a steel tube carrying-in standard e.

f、 g+ h毎に複数個所設ける。アンプセット管1
9eは長さが比較的短い場合を示すが、この場合搬入基
準位置eを使用し、管端外面冷却装置18eを使用する
。アップセット管]、9eの第7図中左側の管端につい
ては、搬入基準eからfまでの寸法差の分だけ位置が変
わることから、管端外面冷却装置18iは移動が必要で
ある。本実施例においては、内面ノズルの内管9、外輪
管10及び1組のターニングロール4、ビンチロール5
 (!: 共K S! 端外面冷却装置]81を移動台
車20に取りつける方法を採用した。
Provide multiple locations for each f, g+h. Amp set tube 1
9e shows a case where the length is relatively short; in this case, the carry-in reference position e is used and the tube end outer surface cooling device 18e is used. Upset pipe], the tube end on the left side in FIG. 7 of 9e changes in position by the dimensional difference between the carry-in standards e to f, so the tube end outer surface cooling device 18i needs to be moved. In this embodiment, an inner pipe 9 of an inner nozzle, an outer ring pipe 10, a set of turning rolls 4, and a vinyl roll 5 are used.
(!: Common KS! End outer surface cooling device) 81 was attached to the movable trolley 20.

第8図は、アンプセット管長が中程度の場合を示すが、
アップセント管19 gに対して、管端外面冷却装置1
.8gを使用する。第9図は、アンプセント管長が長い
場合を示すが、アンプセット管19hに対して、管端外
面冷却装置18hを使用する。
Figure 8 shows the case where the amplifier set tube length is medium.
For upcent tube 19 g, tube end outer surface cooling device 1
.. Use 8g. FIG. 9 shows a case where the amplifier set tube is long, and a tube end outer surface cooling device 18h is used for the amplifier set tube 19h.

以上説明したように、本発明の2重管式内面ノズルと吸
引促進機構による管内流冷却法及び本発明の装置によれ
ば、特に細径薄肉管の冷却的がりを殆んど防止可能とな
り、その他、詳述した通り、工業的に利点の多い応用が
出来る。
As explained above, according to the in-pipe flow cooling method using the double-pipe internal nozzle and the suction promotion mechanism of the present invention, and the device of the present invention, it is possible to almost prevent the cooling of narrow-diameter thin-walled pipes. In addition, as described in detail, many industrially advantageous applications are possible.

尚、本発明の管内流冷却法は、細径鋼管の熱処理能力(
本数/時間)を飛躍的に向上させる為に、鋼管を複数本
同時に冷却する熱処理装置への適用も可能である。また
、本発明の2重管式ノズルは、浸漬式内外面冷却装置の
内面噴流用ノズルとしても利用可能である。
Note that the in-pipe flow cooling method of the present invention has a high heat treatment capacity (
In order to dramatically improve the number of steel pipes/hour), it is also possible to apply this method to a heat treatment device that cools multiple steel pipes at the same time. Furthermore, the double tube nozzle of the present invention can also be used as an inner jet nozzle for an immersion type inner and outer cooling device.

又、本発明の説明において、浸漬式内外面冷却装置にお
いて、管内流冷却法を実施するに際しては二重管式内面
ノズルを用いる態様について説明したけれども、この場
合、必ずしも二重管式内面ノズル(吸引促進機構を含む
)でなくても目的を達することができる。
Furthermore, in the description of the present invention, an embodiment has been described in which a double-pipe internal nozzle is used when carrying out the intra-pipe flow cooling method in an immersion-type internal and external cooling device. The purpose can be achieved even without a suction promotion mechanism (including a suction promotion mechanism).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は浸漬式内外面冷却装置の横断面図。第2図は浸
漬式内外面冷却装置の縦断面図。第3図は管内流のみの
冷却による曲がり防止効果を示すグラフ。第4図は内面
冷却ノズルと管端部内での冷却水の流れ状況の説明図。 第5図は本発明による2重管式内面ノズルと吸引機構に
よる管端部の冷却液の充満の様子を示す説明図。第6図
は本発明の一実施例で、浸漬式内外面冷却装置との兼用
も可能であることを示す装置の縦断面図。第7図、第8
図及び第9図は本発明によるアンプセット管のアンプセ
ント部用管端外面冷却装置の配置を示す図。第10図は
前後端部出口付近に障害物を付設することによって、前
後端付近の冷却水の充満度を向上させた]実施態様の説
明図。 1・・・鋼管、  2・・搬入コンベア、  3・・水
槽、4・・・ターニングロール、  5・・・ピンチロ
ール、6・・・内面ノズル、  7・・・水中外面ノズ
ル、 8・・・搬出コンベア、  9・・内管、 10
・・外輪管、11・・・吸引促進板(機構)、 12・
・・シリンダー、13・・・ピストン、  14・・・
スプリング、 】5・・・可動せき、 16・・・駆動
装置、 17・・・スクリュージヤツキ、18・・・管
端外ml冷却装置、 19・・アップセット管、20・
・移動台車、 21・・管内流動抵抗付加用障害物特許
出願人代理人 弁理士 矢 葺 知 之 (ほか1名) 手糸売ネ市正書  (自発) 昭和58年5り/?日 特許庁長官若杉和夫殿 1、事件の表示 昭和58年特許願第60933号 2゜発明の名称 金属管の冷却方法および装置 3補正をする者 事件との関係 出願人 住所 東京都千代田区大手町二丁目6番3号名称  (
665)新日本製鐵株式会社4、代 理 人 住所 東京都港区赤坂6丁目4番21号704置  (
584) 7022 6、補正の内容 (1)明細書第2頁15行の「管端入口に」を[管端入
口および出口に」に訂正する。 (2)回書第12頁14行の「わかる。」の次に「本願
発明の管径端に、管内流に対して流動抵抗を付与する障
害物を設置すると、管径が比較的大きくなった場合に、
管内流速を比較的低速でよい等の効果が明瞭である。」
を挿入する。
FIG. 1 is a cross-sectional view of an immersion type internal and external cooling device. FIG. 2 is a longitudinal sectional view of the immersion type internal and external cooling device. FIG. 3 is a graph showing the effect of preventing bending by cooling only the flow inside the pipe. FIG. 4 is an explanatory diagram of the internal cooling nozzle and the flow of cooling water within the pipe end. FIG. 5 is an explanatory view showing how the tube end is filled with cooling liquid by the double-tube inner nozzle and suction mechanism according to the present invention. FIG. 6 is a longitudinal cross-sectional view of an apparatus according to an embodiment of the present invention, showing that it can also be used as an immersion type internal and external cooling apparatus. Figures 7 and 8
9 and 9 are diagrams showing the arrangement of the tube end outer surface cooling device for the amplifier center portion of the amplifier set tube according to the present invention. FIG. 10 is an explanatory diagram of an embodiment in which the degree of filling of cooling water near the front and rear ends is improved by attaching obstacles near the front and rear end exits. DESCRIPTION OF SYMBOLS 1...Steel pipe, 2...Carry-in conveyor, 3...Water tank, 4...Turning roll, 5...Pinch roll, 6...Inner nozzle, 7...Underwater outer nozzle, 8... Unloading conveyor, 9...inner pipe, 10
... Outer ring pipe, 11... Suction promotion plate (mechanism), 12.
...Cylinder, 13...Piston, 14...
Spring, ]5... Movable weir, 16... Drive device, 17... Screw jack, 18... Tube end outside ml cooling device, 19... Upset tube, 20...
・Moving trolley, 21...Obstacle for adding flow resistance in a pipe Patent attorney representing the applicant Tomoyuki Yafuki (and 1 other person) Teitouri Neichi Masho (self-motivated) May 1980/? Mr. Kazuo Wakasugi, Commissioner of the Japanese Patent Office 1. Indication of the case Patent Application No. 60933 of 1982 2. Name of the invention Method and device for cooling metal tubes 3. Person making amendments Relationship to the case Applicant's address Otemachi, Chiyoda-ku, Tokyo 2-chome 6-3 name (
665) Nippon Steel Corporation 4, Agent Address: 704, 6-4-21 Akasaka, Minato-ku, Tokyo (
584) 7022 6. Contents of the amendment (1) "At the tube end inlet" on page 2, line 15 of the specification is corrected to "at the tube end inlet and outlet." (2) On page 12, line 14 of the circular, next to “I understand.” “If an obstacle is installed at the end of the pipe according to the present invention to provide flow resistance to the flow inside the pipe, the pipe diameter will become relatively large. If
The effects such as the fact that the flow velocity in the pipe can be kept relatively low are clear. ”
Insert.

Claims (1)

【特許請求の範囲】 1 高温の金属管を冷却するに際し、管内軸方向に高速
の液状冷却媒体を適用するとともに、前記金属管におけ
る液状冷却媒体放出側に障害物を設け、該液状冷却媒体
に流動抵抗を付与するようにしたことを特徴とする金属
管の冷却方法。 2 高温の金属管を冷却する装置であって、前記金属管
の軸方向端部からそれぞれ500朋以内の箇所に、金属
管を回転自在に、金属管半径方向変位を拘束する手段を
設けるとともに、前記金属管内軸方向に高速の液状冷却
媒体を適用する液状冷却媒体供給手段を設けさらに、前
記金属管における冷却媒体放出側に、該液状冷却媒体に
流動抵抗を付与する障害物を設けてなる金属管の冷却装
置。
[Claims] 1. When cooling a high-temperature metal tube, a high-speed liquid cooling medium is applied in the axial direction inside the tube, and an obstacle is provided on the liquid cooling medium discharge side of the metal tube, so that the liquid cooling medium is A method for cooling a metal tube, characterized by imparting flow resistance. 2. A device for cooling a high-temperature metal tube, which is provided with means for freely rotating the metal tube and restraining displacement in the radial direction of the metal tube at locations within 500 mm from each axial end of the metal tube, and A metal pipe comprising: a liquid cooling medium supply means for applying a high-speed liquid cooling medium in the axial direction within the metal tube; and an obstacle that imparts flow resistance to the liquid cooling medium on the cooling medium discharge side of the metal tube. tube cooling system.
JP6093383A 1983-04-08 1983-04-08 Method and device for cooling metallic pipe Pending JPS59190328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6093383A JPS59190328A (en) 1983-04-08 1983-04-08 Method and device for cooling metallic pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6093383A JPS59190328A (en) 1983-04-08 1983-04-08 Method and device for cooling metallic pipe

Publications (1)

Publication Number Publication Date
JPS59190328A true JPS59190328A (en) 1984-10-29

Family

ID=13156671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6093383A Pending JPS59190328A (en) 1983-04-08 1983-04-08 Method and device for cooling metallic pipe

Country Status (1)

Country Link
JP (1) JPS59190328A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280327A (en) * 1986-05-30 1987-12-05 Toshiba Corp Improvement of residual stress of double metallic pipe or the like
JP2016113633A (en) * 2014-12-11 2016-06-23 Jfeスチール株式会社 Hardening method and hardening device for steel pipe
JP2016113634A (en) * 2014-12-11 2016-06-23 Jfeスチール株式会社 Hardening method and hardening device for steel pipe
JP2016117916A (en) * 2014-12-18 2016-06-30 Jfeスチール株式会社 Method and apparatus for hardening steel pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114406A (en) * 1978-02-27 1979-09-06 Chugai Ro Kogyo Kaisha Ltd Tempering method and apparatus of steel tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114406A (en) * 1978-02-27 1979-09-06 Chugai Ro Kogyo Kaisha Ltd Tempering method and apparatus of steel tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280327A (en) * 1986-05-30 1987-12-05 Toshiba Corp Improvement of residual stress of double metallic pipe or the like
JP2016113633A (en) * 2014-12-11 2016-06-23 Jfeスチール株式会社 Hardening method and hardening device for steel pipe
JP2016113634A (en) * 2014-12-11 2016-06-23 Jfeスチール株式会社 Hardening method and hardening device for steel pipe
JP2016117916A (en) * 2014-12-18 2016-06-30 Jfeスチール株式会社 Method and apparatus for hardening steel pipe

Similar Documents

Publication Publication Date Title
EP0206048B1 (en) Thermoplastic method of reducing the diameter of a metal tube
JP6249929B2 (en) Continuous surface treatment method for steel wire
JPH06182455A (en) Method for bending metallic tube
CN1035747C (en) Process, vessel and installation for continuous/intermittent coating of objects by passage of said objects in bath of liquid coating product
JPS59190328A (en) Method and device for cooling metallic pipe
KR19990008045A (en) Homogeneous Quench Board
JPH07256450A (en) Production of composite steel tube
JPS5835574B2 (en) How to harden steel pipes
JPS59205418A (en) Cooling process and device of metal tube
JPS5887226A (en) Method and device for cooling steel pipe
JPS6059286B2 (en) Metal tube cooling method and device
JP2006183874A (en) Heat treating apparatus and method of manufacturing heat treated parts
JP2986305B2 (en) Plasma spray gun for inner surface
JP6904370B2 (en) Gas jet cooling device and cooling method
US7520946B2 (en) Apparatus and process for the dry removal of the scale found on the surface of metal products
JPH08290213A (en) Production of metal double tube
JP2792420B2 (en) Top roll for continuous hot-dip plating
KR20220038758A (en) Compact aluminum alloy heat treatment method
US1986704A (en) Protective coating for metals
JP2000351015A (en) Method for drawing metallic tube
JPS6261722A (en) Production of double pipe
JPS5852426A (en) Quenching method of metallic pipe
JP3065218B2 (en) Method and apparatus for transporting cooling fog to cooling object
JP3025140B2 (en) Method for producing metal curved material having metal lining layer on outer surface
JPS6033314A (en) Method of and apparatus for cooling metallic pipe having difference in level