JPH0347710A - Manufacture of thermoplastic resin composition and molded material - Google Patents

Manufacture of thermoplastic resin composition and molded material

Info

Publication number
JPH0347710A
JPH0347710A JP1137349A JP13734989A JPH0347710A JP H0347710 A JPH0347710 A JP H0347710A JP 1137349 A JP1137349 A JP 1137349A JP 13734989 A JP13734989 A JP 13734989A JP H0347710 A JPH0347710 A JP H0347710A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fine particles
kneading
particulate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1137349A
Other languages
Japanese (ja)
Inventor
Kentaro Noguchi
健太郎 野口
Junzo Shimokawa
順造 下川
Koji Hisatama
久玉 耕二
Toshio Yamauchi
山内 敏夫
Kazuto Kiyohara
一人 清原
Toshiyuki Hagiwara
俊幸 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Konica Minolta Inc
Original Assignee
Kanebo Ltd
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd, Konica Minolta Inc filed Critical Kanebo Ltd
Priority to US07/503,194 priority Critical patent/US5281379A/en
Priority to EP90106401A priority patent/EP0391372B1/en
Priority to DE69023794T priority patent/DE69023794T2/en
Publication of JPH0347710A publication Critical patent/JPH0347710A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To improve drastically a quality, a cost and productivity, by a method wherein at the time of melting and kneading of thermoplastic resin and a particulate, a liquid containing the particulate whose diameter is specific or smaller is introduced into a moving layer of a granular matter in an unmolten state, the liquid is discharged by turning it into gas while sticking or accumulating the particulate to the moving layer of the granular matter and a mixture is melted and kneaded. CONSTITUTION:A loading hopper where a resin granular matter is closed up tightly is fitted to a resin feed port A through a chute. A suction blower is connected with a gas discharge port B through a filter. A particulate such as a titanium oxide or silica having a mean particle diameter of not exceeding 10mum, which has passed through, for example, a loading device, a classification device and a crushing device for an aggregate particle is mixed into a liquid and then the liquid containing the particulate is pressed into an introduction port C with a slurry pump. A nitrogen flowing device and vacuum pump are connected respectively with vent ports D1, D2. A cylinder outlet 3 is connected with a mouthpiece 6 having a slit hole through a gear pump 5. A resin composition is extruded on a rotary cooling drum, quenched and a sheet is obtained. Then the sheet is made into a film through biaxial orientation, cooled after thermal fixation and wound up.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微粒子や添加剤を混合したプラスチック製品、
例えば繊維、成形品や二軸延伸フィルム等に成形加工さ
れる機能性プラスチック材料を製造する為の方法を提供
するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to plastic products mixed with fine particles and additives,
For example, the present invention provides a method for manufacturing functional plastic materials that can be molded into fibers, molded products, biaxially stretched films, and the like.

(従来の技術) 成形品等に加工されるプラスチック材料は、従来、ガラ
ス繊維、カーボン繊維やウィスカ等1ミクロン程度以上
の大きさの充填剤を熱可塑性樹脂に溶融混練して複合化
したものが主流で(例えば特開昭61−277421号
公報参照)、成形品の外観や成形品の耐衝撃性の向上環
の問題がある。一方、酸化チタン、カーボンブラック、
磁性体等1ミクロン程度以下の大きさの微粒子を分散す
る場合には、熱可塑性樹脂の重合時に微粒子を混合して
均一に分散した方法が主流であるが、反応系が高温であ
るために実用上使用されているものは酸化チタンやカー
ボンブラックなどの耐熱性の良い微粒子に限られており
、また重合装置を汚染するため専用に設備したり、洗浄
に多大の労力と経費を必要とするなどの問題がある。ま
た微粒子や添加剤を高濃度に混練したマスターバッチ方
式も良く知られているが、混練前の樹脂の乾燥と混練後
のマスターバッチの乾燥を必要としエネルギー消費量と
労力が多大であり、更に混練工程における熱履歴のため
成形品の物性低下も問題となる。
(Prior art) Plastic materials processed into molded products have traditionally been made by melting and kneading fillers such as glass fibers, carbon fibers, whiskers, etc. with a size of about 1 micron or more into a thermoplastic resin. In mainstream methods (for example, see Japanese Patent Laid-Open No. 61-277421), there are problems in improving the appearance of molded products and the impact resistance of molded products. On the other hand, titanium oxide, carbon black,
When dispersing fine particles with a size of about 1 micron or less, such as magnetic materials, the mainstream method is to mix the fine particles during polymerization of thermoplastic resin and disperse them uniformly, but this method is not practical due to the high temperature of the reaction system. The materials used are limited to fine particles with good heat resistance, such as titanium oxide and carbon black, and they contaminate the polymerization equipment, requiring special equipment and a great deal of effort and expense for cleaning. There is a problem. In addition, a masterbatch method in which fine particles and additives are kneaded at high concentrations is well known, but it requires drying of the resin before kneading and drying of the masterbatch after kneading, which consumes a lot of energy and labor. Deterioration of the physical properties of the molded product due to the thermal history during the kneading process also poses a problem.

(発明が解決しようとする課題) このような従来のプラスチック材料からの成形品の問題
について、10〜数10ミクロン級の従来の充填剤では
なく、サブミクロン乃至ミクロン級の微粒子を充填した
プラスチック材料による各種成形品や従来はなかったか
ような二輪延伸フィルムやシート、繊維等、より高度な
製品を製造する技術が要望されている。すなわち、サブ
ミクロン乃至ミクロン級の微粒子を取扱う粉体プロセス
とポリマープロセスとを一体化した新規技術の開発が必
要となる。本来、粉体プロセスとポリマープロセスは異
種技術であり、これらを調和した技術の構築は、サブミ
クロン級微粒子の空気輸送技術とポリマープロセスの調
和によって達成される。それには、ポリマープロセスに
マツチしたサブミクロン級の微粒子の処理技術が必要で
ある。
(Problems to be Solved by the Invention) Regarding the problems of molded products made from conventional plastic materials, we have developed a plastic material filled with submicron to micron-sized fine particles instead of the conventional filler of 10 to several tens of microns. There is a demand for technology to manufacture more advanced products, such as various molded products made by wafers, as well as two-wheeled stretched films, sheets, and fibers that have never existed before. In other words, it is necessary to develop a new technology that integrates a powder process that handles submicron to micron-sized particles and a polymer process. Originally, powder processes and polymer processes are different technologies, and the creation of a technology that harmonizes them can be achieved by harmonizing pneumatic transport technology for submicron-sized particles and polymer processes. This requires a technology for processing submicron particles that is compatible with polymer processes.

一般に、粉体プロセスに於いて、工業的に実施されてい
る技術は、例えばサンドミルによる微粒子化やバッグフ
ィルターによる集塵が代表的である。しかし、粉体プロ
セスとして完全連続とすることは困難であるばかりでは
なく、集塵された微粒子の吸湿や再凝集等の問題点もあ
る。このようなことから、サブミクロン級の微粒子を工
業的に、かつ連続的に微粒子化して集塵し、かつ、ポリ
マープロセスに取り込んだ新規な生産技術の確立が本発
明の解決しようとする問題点である。
Generally, in the powder process, typical industrially implemented techniques include, for example, atomization using a sand mill and dust collection using a bag filter. However, it is not only difficult to achieve complete continuity as a powder process, but there are also problems such as moisture absorption and reaggregation of collected fine particles. Therefore, the problem to be solved by the present invention is to establish a new production technology that industrially and continuously micronizes and collects submicron-sized particles and incorporates them into the polymer process. It is.

(課題を解決する為の手段) ポリマープロセスに取り込める微粒子化とその集塵技術
としては、サンドミルによる粒子の湿式粉砕とグラニュ
ラ−移動層による集塵によって、粉体プロセスとポリマ
ープロセスの一体化が可能になり、この問題が解決可能
になった。すなわち第一の本発明は、熱可塑性樹脂と微
粒子とを溶融混練するに際し、粒径10μm以下の微粒
子を含む液体を未溶融状態の熱可塑性樹脂の粒状物移動
層に導入して該粒状物移動層に微粒子を付着又は堆積さ
せつつ前記液体を気体にして排出し、そして前記粒状物
と微粒子との混合物を溶融及び混練することを特徴とす
る熱可塑性樹脂組成物の製造方法である。また第二の本
発明は、熱可塑性樹脂と添加剤とを溶融混練するに際し
、該添加剤の溶液又はエマルジョンを未溶融状態の熱可
塑性樹脂の粒状物移動層に導入して該粒状物移動層に添
加剤を付着又は堆積させつつ溶媒又は分散媒を気体にし
て排出し、そして前記粒状物と添加剤との混合物を溶融
及び混練することを特徴とする熱可塑性樹脂組成物の製
造方法である。第三の発明は、上記第一、第二発明の溶
融及び混練に連続して、熱可塑性樹脂組成物を成形する
ことを特徴とする成形物の製造方法である。
(Means for solving the problem) As for microparticle formation and its dust collection technology that can be incorporated into the polymer process, it is possible to integrate the powder process and the polymer process by wet grinding of particles using a sand mill and dust collection using a granular moving bed. This problem is now solvable. That is, the first aspect of the present invention, when melt-kneading a thermoplastic resin and fine particles, introduces a liquid containing fine particles with a particle size of 10 μm or less into a particle transfer layer of an unmolten thermoplastic resin to transfer the particles. This method of producing a thermoplastic resin composition is characterized in that the liquid is discharged as a gas while fine particles are attached or deposited on a layer, and the mixture of the granules and fine particles is melted and kneaded. The second invention also provides a method for melting and kneading a thermoplastic resin and an additive by introducing a solution or emulsion of the additive into a particulate matter transfer layer of an unmolten thermoplastic resin. A method for producing a thermoplastic resin composition, which comprises: adhering or depositing an additive to the mixture, discharging the solvent or dispersion medium as a gas, and then melting and kneading the mixture of the granules and the additive. . A third invention is a method for producing a molded article, characterized in that the thermoplastic resin composition is molded following the melting and kneading of the first and second inventions.

本発明に使用する熱可塑性樹脂とは、ポリエチレンテレ
フタレート、ポリエチレンテレフタレートなどのポリエ
ステル、ナイロン6、ナイロン66、ナイロン12など
のポリアミド、ポリエチレン、ポリプロピレンなどのポ
リオレフィン、塩化ビニル、ポリカーボネート、ポリウ
レタン、^BS樹脂、及びこれらの共重合体や混合物等
公知の熱可塑性樹脂をいう。
Thermoplastic resins used in the present invention include polyesters such as polyethylene terephthalate and polyethylene terephthalate, polyamides such as nylon 6, nylon 66, and nylon 12, polyolefins such as polyethylene and polypropylene, vinyl chloride, polycarbonate, polyurethane, ^BS resin, Also refers to known thermoplastic resins such as copolymers and mixtures thereof.

本発明における微粒子とは、室温で好ましくは100℃
以下で平均粒径が10μm〜inn、好ましくはluI
ll−1nm、更に好ましくは0.5 am 〜10n
mの固体粒子をいう。また微粒子や添加剤としては酸化
チタン、炭酸カルシウム、シリカ、タルク、リトポン、
酸化亜鉛、マイカ、硫酸バリウム、アルミナ、カオリン
、カーボンブラック、酸化錫、ガラスピーズ、金、銀、
銅、鉄、鉛、アルミニウムなどの金属粉、珪酸カルシウ
ム、酸化ジルコニウム、炭化ジルコニウム、7 Fez
O3や二酸化クロムなどのフェライト、三酸化アンチモ
ン、五酸化アンチモン、ブロム系化合物、染顔料(けい
光増白剤も含む)、制電剤、抗菌剤、架橋剤、安定剤な
ど、例えば「プラスチックおよびゴム用添加剤実用便覧
」、後藤邦夫編、■化学工業社昭和45年発行に記載さ
れた公知の添加剤や微粒子を挙げることができる。
The fine particles in the present invention are at room temperature, preferably at 100°C.
The average particle size is 10 μm to inn, preferably luI
ll-1 nm, more preferably 0.5 am to 10n
m solid particles. In addition, fine particles and additives include titanium oxide, calcium carbonate, silica, talc, lithopone,
Zinc oxide, mica, barium sulfate, alumina, kaolin, carbon black, tin oxide, glass beads, gold, silver,
Metal powder such as copper, iron, lead, aluminum, calcium silicate, zirconium oxide, zirconium carbide, 7 Fez
Ferrites such as O3 and chromium dioxide, antimony trioxide, antimony pentoxide, bromine compounds, dyes and pigments (including fluorescent whitening agents), antistatic agents, antibacterial agents, crosslinking agents, stabilizers, etc. Examples include known additives and fine particles described in "Practical Handbook of Additives for Rubber", edited by Kunio Goto, published by Kagaku Kogyosha in 1972.

熱可塑性樹脂に配合される微粒子や添加剤の量は、通常
樹脂粒状体に対して50体積%以下であるが、本発明は
1〜50体積%、特に5〜40体積%の範囲の多量に配
合する場合に効果的である。
The amount of fine particles and additives blended into the thermoplastic resin is usually 50% by volume or less based on the resin granules, but in the present invention, the amount of fine particles and additives added to the thermoplastic resin is in the range of 1 to 50% by volume, particularly 5 to 40% by volume. It is effective when combined.

本発明に使用する液体、溶媒又は分散媒としては、水、
アセトン、クロロホルム、四塩化エタン、シクロヘキサ
ン、ベンゼン、トルエン、キシレン、アルコール類、エ
ーテル類などが挙げられ、熱可塑性樹脂の軟化点より低
い沸点をもつ液体、溶剤が好ましい。また、熱可塑性樹
脂を溶融させずかつ冷却させない温度に加熱して用いる
と、樹脂の加熱エネルギーを減らすことができるので好
ましい。
The liquid, solvent or dispersion medium used in the present invention includes water,
Examples include acetone, chloroform, ethane tetrachloride, cyclohexane, benzene, toluene, xylene, alcohols, ethers, etc., and liquids and solvents having a boiling point lower than the softening point of the thermoplastic resin are preferred. Further, it is preferable to heat the thermoplastic resin to a temperature that does not melt it or cool it, since the heating energy for the resin can be reduced.

液体中の微粒子や溶液又は分散液中の添加剤の濃度は通
常1〜80重世%、多くの場合10〜60重量%である
。尚、微粒子を含む液体の輸送速度(流速)は通常0.
01〜10m/秒である。流速が低い場合は微粒子の再
凝集、配管の閉塞等の点で、一方高い場合は装置、配管
の摩耗の点で好ましくない。
The concentration of the fine particles in the liquid or the additive in the solution or dispersion is usually 1 to 80% by weight, often 10 to 60% by weight. Note that the transport speed (flow speed) of liquid containing fine particles is usually 0.
01 to 10 m/sec. If the flow rate is low, it is unfavorable in terms of reagglomeration of particles and clogging of piping, while if it is high, it is unfavorable in terms of wear of the equipment and piping.

また安定な或いは濃いエマルジゴンをつくる場合には、
必要に応じ、各種表面活性、ゼラチン、アラビアゴム、
アルギン酸類、脂肪酸エステル、金属塩など公知の乳化
剤を使用する。
In addition, when creating a stable or dense emulsion,
If necessary, various surface active agents, gelatin, gum arabic, etc.
Known emulsifiers such as alginic acids, fatty acid esters, and metal salts are used.

微粒子や添加剤の分散又は溶解は、通常撹拌翼や邪魔板
等による機械的撹拌、超音波などによる振とう、スタテ
ックミキサーによる混合、狭い間隙からの噴射などで実
施する。例えば、微粒子を含む液体は通常ボールミル、
振動ミル、サンドミル等の湿式粉砕機によって適宜調整
するが、必要に応じて湿式の分級操作あるいはフィルタ
ーによる濾過も組合せることができる。またメディア撹
拌ミルによる場合、メディアとしてガラスピーズ、アル
ミナビーズの充填量、粒径、処理時間及びパス回数等を
適宜選択する。液体中の微粒子が凝結しやすい場合は、
均一にかつ安定に分散させるため懸濁剤を用いることが
好ましい。懸濁剤としては、アラビアゴム、ゼラチン、
カルボキシメチルセルロース、アルギン酸ナトリウム、
硫酸バリウム、タルク、膠などが挙げられ、適宜選択す
る。
Dispersion or dissolution of fine particles and additives is usually carried out by mechanical stirring using stirring blades, baffles, etc., shaking using ultrasonic waves, mixing using a static mixer, injection through a narrow gap, or the like. For example, liquids containing fine particles are usually ball milled,
The mixture is suitably adjusted using a wet pulverizer such as a vibration mill or a sand mill, but wet classification operation or filtration using a filter can be combined as necessary. When using a media stirring mill, the filling amount of glass beads or alumina beads as the media, particle size, processing time, number of passes, etc. are appropriately selected. If fine particles in the liquid tend to condense,
It is preferable to use a suspending agent for uniform and stable dispersion. Suspending agents include gum arabic, gelatin,
carboxymethylcellulose, sodium alginate,
Examples include barium sulfate, talc, glue, etc., and are selected as appropriate.

こうして調整された微粒子を含む液体は微粒子の性状、
微粒子と液体の混合比(重量濃度)、液流速度、輸送距
離などにより、うす巻きポンプ、ピストンポンプ、ウル
リッヒポンプ等の適当な計量送液機構と配管を通じて、
樹脂の粒状物移動層に導入される。
The liquid containing fine particles adjusted in this way has the properties of the fine particles,
Depending on the mixing ratio (weight concentration) of fine particles and liquid, liquid flow rate, transport distance, etc., the liquid is delivered through an appropriate metering liquid pump, piston pump, Ulrich pump, etc., and piping.
The resin particles are introduced into the transfer layer.

本発明における粒状物とは、3方向の長さが0.1〜1
0閣の大きさである粒状物又は粉末をいい、好ましくは
1〜5mmの粒状物である。熱可塑性樹脂の粒状物移動
層は、熱可塑性樹脂の粒状物を供給して充填し排出する
作用をもつ機構によって得られる。例えば熱可塑性樹脂
の融点又は軟化点以下かつ液体の沸点以上に加熱された
単軸或いは二軸スクリュー混練押出機により容易に得ら
れるし、また熱可塑性樹脂粒状物の給排出機構を設けた
配管或いは静止型管状混合装置によっても得られる。
In the present invention, the granular material has a length of 0.1 to 1 in three directions.
It refers to granules or powders with a size of 0 mm, preferably 1 to 5 mm. The thermoplastic resin particulate transfer layer is obtained by a mechanism having the function of supplying, filling, and discharging thermoplastic resin particulates. For example, it can be easily obtained using a single-screw or twin-screw kneading extruder heated to a temperature below the melting point or softening point of the thermoplastic resin and above the boiling point of the liquid. It can also be obtained with a static tubular mixing device.

二軸スクリュー混練押出機によりかような熱可塑性樹脂
の粒状物移動層を形成する場合には、スクリュー径をD
とすると、樹脂粒状物の供給口から3〜15Dの間に滞
留時間が1〜3分程度になるように形成することが好ま
しい。2D未満では微粒子の集塵又は添加剤の付着が充
分でなく、一方20Dを超えると集塵効果は飽和し装置
が長大となり、好ましくない。また粒状物移動層に導入
された微粒子や添加剤を含む液体、溶媒又は分散媒はこ
こで加熱されて気体になる。
When forming such a thermoplastic resin particle transfer layer using a twin-screw kneading extruder, the screw diameter should be set to D.
In this case, it is preferable to form the resin particles so that the residence time is about 1 to 3 minutes between 3 and 15D from the supply port. If it is less than 2D, collection of fine particles or adhesion of additives will not be sufficient, while if it exceeds 20D, the dust collection effect will be saturated and the device will become long, which is not preferable. Further, the liquid, solvent, or dispersion medium containing fine particles and additives introduced into the particulate matter transfer layer is heated here and becomes a gas.

熱可塑性樹脂の粒状物移動層による例えば微粒子の付着
又は堆積は、所謂慣性集塵作用による、すなわち樹脂粒
状物の表面に次第に微粒子が付着してくると、微粒子が
相互に付着し合い、更にはブリッジを形成し、樹脂粒状
物層中に微粒子の堆積層が形成される。この堆積微粒子
層による濾過作用が本発明の要点である。この濾過作用
は、気体又は液体の流速、樹脂粒状物の移動速度、粒径
、性状、比重に依存する。また、微粒子の堆積と共に、
圧力損失が増大するが、本発明では樹脂粒状体と微粒子
との混合物は後次工程の方向につねに移動して更新され
るので、圧力損失をほぼ一定に保つことができ、能率よ
くかつ安定した微粒子の集塵が可能となる。微粒子は通
常50重景%以上、多くの場合80重量%以上が樹脂粒
状物に集塵される。
For example, the adhesion or accumulation of fine particles by the thermoplastic resin particle movement layer is due to the so-called inertial dust collection effect, that is, as the fine particles gradually adhere to the surface of the resin granules, the fine particles adhere to each other, and furthermore. A bridge is formed, and a deposited layer of fine particles is formed in the resin granule layer. The filtration effect of this deposited fine particle layer is the key point of the present invention. This filtration effect depends on the flow rate of the gas or liquid, the moving speed of the resin particles, the particle size, properties, and specific gravity. In addition, along with the accumulation of fine particles,
Although the pressure loss increases, in the present invention, the mixture of resin granules and fine particles is constantly moved in the direction of the subsequent process and renewed, so the pressure loss can be kept almost constant, resulting in an efficient and stable process. It becomes possible to collect fine particles. Generally, 50% by weight or more, and in many cases 80% by weight or more, of the fine particles are collected in resin granules.

微粒子や添加剤が除去された気体の排出は、熱可塑性樹
脂の粒状物を供給する部位の側でも溶融混練する部位の
側のどちらで行ってもよいが、好ましくは供給側で行い
、更に樹脂粒状物の供給口と共通にすることもできる(
第3図参照)。またブロア等で負圧をかけて吸引し排出
することもできる。
The gas from which fine particles and additives have been removed may be discharged from either the part that supplies the thermoplastic resin granules or the part that melts and kneads it, but it is preferably done on the supply side, and then the resin It can also be shared with the granular material supply port (
(See Figure 3). It is also possible to suction and discharge by applying negative pressure with a blower or the like.

本発明における熱可塑性樹脂の粒状物と微粒子や添加剤
との混合物の溶融及び混練は、例えばスクリュー又はロ
ータを内嵌したシリンダを有する混練押出機によって行
われる(改正石版化学工学便覧、p916〜919、化
学工学協会編丸善■昭和63年発行、参照)。熱可塑性
樹脂が水分を含んでいる場合或いは溶融混線に伴って混
入した一部の液体、溶媒、分散媒又は気体を除去したい
場合には、ベントロを配設し負圧をがけたり窒素フロー
して脱気することが好ましい、更に、溶融混練に伴い、
熱可塑性樹脂が変質したり揮発物が発生するポリエステ
ル樹脂、ナイロン樹脂、ポリエチレン樹脂などの場合は
、2ヶ以上のベントロを配設した同方向または異方向回
転のスクリューをもっ二軸混練押出機を使用すれば、高
真空で操作可能な脱揮作用を有するので好ましい。
Melting and kneading of the mixture of thermoplastic resin granules, fine particles, and additives in the present invention is carried out, for example, using a kneading extruder having a cylinder fitted with a screw or rotor (Revised Lithographic Chemical Engineering Handbook, p. 916-919). , edited by the Chemical Engineering Society, Maruzen ■, published in 1986, reference). If the thermoplastic resin contains moisture, or if you want to remove some liquid, solvent, dispersion medium, or gas mixed in with melting, install a vent and apply negative pressure or nitrogen flow. It is preferable to deaerate, and further, along with melting and kneading,
For polyester resins, nylon resins, polyethylene resins, etc. where the thermoplastic resin deteriorates or volatile matter is generated, use a twin-screw kneading extruder equipped with two or more vents and screws rotating in the same or different directions. If used, it is preferable because it has a devolatilizing effect that can be operated in high vacuum.

溶融混練された微粒子分散又は添加剤配合の熱可塑性樹
脂組成物は、シリンダの先端に設けられた出口より押出
され、直接繊維、シートやフィルムを得るための口金又
は成形物を得るための金型に導かれるなど公知の方法に
より成形されるが、又は−旦チツブや粉末にした後成形
に供せられる。
The melt-kneaded thermoplastic resin composition containing dispersed fine particles or additives is extruded from an outlet provided at the tip of the cylinder, and is directly passed through a die for obtaining fibers, sheets or films, or a mold for obtaining molded products. It can be molded by a known method such as being introduced into a mold, or it can be first made into a chip or powder and then subjected to molding.

次に、本発明を装置図により説明する。Next, the present invention will be explained with reference to device diagrams.

第1図において、1は二軸混練押出機のシリンダである
。このシリンダlに同方向回転の2本のスクリュー2が
内嵌されている。シ・リンダlには、その長手方向に離
間して樹脂供給ロA、気体排出口B、微粒子を含む液体
や添加剤の溶液又はエマルジョンの導入口C1及び2つ
のベントロDl。
In FIG. 1, 1 is a cylinder of a twin-screw kneading extruder. Two screws 2 rotating in the same direction are fitted into this cylinder l. The cylinder L has a resin supply hole A, a gas outlet B, an inlet C1 for a liquid containing fine particles, an additive solution or an emulsion, and two vent holes Dl spaced apart in the longitudinal direction of the cylinder L.

D2が順に配設されている。樹脂供給口Aはシリンダl
の上流側端部に位置し、下、流側の端部は出口3である
。また本発明においては、樹脂粒状物の溶融開始部は前
記導入口CとベントロD1との間に位置している。スク
リュー2は直径が65mmであり、導入口Cより上流側
は15III11の深溝2aに、溶融開始部はニーディ
ングデスクで深溝がら浅深2dとなり、混練部は4閣の
浅溝2cに、また混練部に設けられたベントロの部分は
6m+aの若干深い溝2dになっている。シリンダには
図示省略のヒータが取付られている。また深溝部2aの
長さは780 m、溶融開始部2bは195 m、ベン
ト部を含む浅溝部2c。
D2 are arranged in order. Resin supply port A is cylinder L
The lower, downstream end is the outlet 3. Further, in the present invention, the melting start portion of the resin granules is located between the introduction port C and the vent hole D1. The screw 2 has a diameter of 65 mm, and the upstream side of the inlet C is in the deep groove 2a of 15III11, the melting start part is the kneading desk and the deep groove becomes shallow and deep 2d, and the kneading part is in the shallow groove 2c of the 4 kneading desk. The ventro part provided in the section is a slightly deep groove 2d of 6m+a. A heater (not shown) is attached to the cylinder. Further, the length of the deep groove portion 2a is 780 m, the length of the melting start portion 2b is 195 m, and the shallow groove portion 2c including the vent portion.

2dは585閣であり、B−C間は585 mである。2d is 585 towers, and the distance between B and C is 585 m.

樹脂供給口Aにはシュートを介して樹脂粒状物の密閉さ
れた投入ホッパが取付けられている。気体排気口Bには
フィルターを通して吸気プロアが接続されている。導入
口Cには、例えば図示省略の微粒子の投入装置と分級装
置及び凝集粒子の粉砕装置を経た微粒子を液体に混合し
、次いでスラリーポンプにより微粒子を含む液体が圧入
される。
A closed charging hopper for resin granules is attached to the resin supply port A via a chute. An intake proer is connected to the gas exhaust port B through a filter. For example, fine particles that have passed through a fine particle input device, a classification device, and an agglomerated particle crushing device (not shown) are mixed into a liquid, and then a liquid containing fine particles is forced into the inlet C by a slurry pump.

ペン、トロD1には図示省略の窒素フロー装置、ベント
ロD2には図示省略の真空ポンプが接続されている。
A nitrogen flow device (not shown) is connected to the pen and trolley D1, and a vacuum pump (not shown) is connected to the venturo D2.

更にシリンダ出口3は、ギアポンプ5を介してスリット
孔を有する口金6に接続しており、スリット孔から樹脂
組成物を回転冷却ドラム上に押出し急冷してシートを得
る。次にこのシートを2軸延伸してフィルムとし、つい
で熱固定した後冷却して巻取る。
Further, the cylinder outlet 3 is connected to a mouthpiece 6 having a slit hole through a gear pump 5, and the resin composition is extruded from the slit hole onto a rotating cooling drum and rapidly cooled to obtain a sheet. Next, this sheet is biaxially stretched to form a film, which is then heat-set, cooled, and rolled up.

第2図において、1は単軸押出機のスクリューであり、
長手方向に離間して上流側から樹脂供給口A、微粒子を
含む液体や添加剤の溶液又はエマルジョンの導入口C1
気体排気口B及びペントロDが順に配設されている。ま
た本発明においては、樹脂粒状体の溶融開始部は前記排
気口BとベントロDとの間に位置している。スクリュー
2は直径が70mmであり、排気口Bより上流側は16
mmの深溝2aに、溶融開始部は徐々に浅溝2bとなり
、混練部は4IIII11の浅溝2cに、またベントロ
の部分は6酎のやや深い溝2dになっている。シリンダ
には図示省略のヒータが取付けられている。
In FIG. 2, 1 is a screw of a single screw extruder,
Separated in the longitudinal direction, from the upstream side, a resin supply port A, an inlet C1 for a liquid containing fine particles, an additive solution, or an emulsion.
A gas exhaust port B and a pentro D are arranged in this order. Further, in the present invention, the melting start portion of the resin granules is located between the exhaust port B and the vent hole D. The screw 2 has a diameter of 70 mm, and the diameter of the screw 2 is 16 mm on the upstream side of the exhaust port B.
The melting start part gradually becomes a shallow groove 2b, the kneading part becomes a 4III11 shallow groove 2c, and the vent hole part becomes a slightly deeper groove 2d. A heater (not shown) is attached to the cylinder.

樹脂供給口Aには例えば図示省略のシュートを介して樹
脂粒状物の密閉された投入ホッパが取付けられ、気体排
気口Bにはフィルターを通して吸気ブロアが接続されて
いる。導入口Cには微粒子を含む液体が圧入され、ベン
トロDには真空ポンプが接続されている。
For example, a closed charging hopper for resin particles is attached to the resin supply port A via a chute (not shown), and an intake blower is connected to the gas exhaust port B through a filter. A liquid containing fine particles is pressurized into the inlet C, and a vacuum pump is connected to the vent D.

更にシリンダの出口3は、分配管4及びギアポンプ5を
介して紡糸口金6に接続しており、細孔から樹脂組成物
を押出して巻取り、繊維を得る。
Further, the outlet 3 of the cylinder is connected to a spinneret 6 via a distribution pipe 4 and a gear pump 5, and the resin composition is extruded from the pores and wound up to obtain fibers.

第3図は、第1図において気体を樹脂供給口Aを経由し
て例えば金網状のフィルターで樹脂粒状物と分離した後
布状のバッグから排気する例を示す。
FIG. 3 shows an example in which, in FIG. 1, the gas is separated from resin particles through the resin supply port A using, for example, a wire mesh filter, and then exhausted from a cloth bag.

第4図は、樹脂粒状物をAから粉末状の樹脂粒状物をA
′から投入してスクリューフィーダーで連続供給し、3
〜12ケの静止型混合素子8を配設して粒状物移動層を
形成する例を示す。尚、導入口Cは二軸の深溝部2aに
配設することもできる。
Figure 4 shows resin granules at A and powdery resin granules at A.
’ and continuously fed with a screw feeder, 3
An example will be shown in which ~12 stationary mixing elements 8 are arranged to form a particulate matter moving layer. Incidentally, the inlet C can also be arranged in the biaxial deep groove portion 2a.

(実施例) 以下、本発明を実施例により説明する。(Example) The present invention will be explained below using examples.

実施例1 第1図の二軸混練押出機の樹脂供給口AにIVO074
、大きさ3.0 mmφX3.OmmLのポリエチレン
テレフタレートチップを83kg/時で供給し、導入口
Cに平均粒径0.3μmのアナターゼ型酸化チタンを含
む熱水(1度40重量%、温度90″C1水スラリー)
を42.5kg/時で導入し、排気口Bより水蒸気を排
出しシリンダー温度を深溝部120→210″C1溶融
開始部280″c、混練部及びベント部290″Cに設
定し、ベントロDIは10TorrにベントロD2は5
 Torrに減圧して混練した後、290″Cのスリッ
ト型口金から回転冷却ドラム上に押出し急冷して厚さ1
.1印の非晶質のシートを得た。次に、このシートを1
00°Cで縦方向に3.0倍延伸しついで横方向に11
0°Cで3.0倍延伸しついで200°Cで熱固定した
後、冷却して巻取った。得られたフィルムは厚さ125
μmで白色不透明であり、TVは0.60であった。な
お延伸成形は連続して安定して行うことができた。
Example 1 IVO074 was installed in the resin supply port A of the twin-screw kneading extruder shown in Figure 1.
, size 3.0 mmφX3. 0 mmL of polyethylene terephthalate chips were supplied at a rate of 83 kg/hour, and hot water containing anatase-type titanium oxide with an average particle size of 0.3 μm was introduced into the inlet C (40% by weight at 1 degree, temperature 90'' C1 water slurry).
was introduced at a rate of 42.5 kg/hour, steam was discharged from the exhaust port B, and the cylinder temperature was set at the deep groove section 120→210"C1 melting start section 280"C, kneading section and vent section 290"C, and the ventro DI was Ventro D2 is 5 to 10 Torr
After kneading under reduced pressure to Torr, it is extruded from a 290"C slit-type nozzle onto a rotating cooling drum and rapidly cooled to a thickness of 1.
.. An amorphous sheet with a mark of 1 was obtained. Next, make this sheet 1
Stretched 3.0 times in the machine direction at 00°C and stretched 11 times in the transverse direction.
The film was stretched 3.0 times at 0°C, heat-set at 200°C, cooled, and wound. The resulting film has a thickness of 125
It was white and opaque in μm, and the TV was 0.60. Note that stretch forming could be performed continuously and stably.

得られたフィルムはポリマーの分解副生物による着色や
凝集塊が認められず良好な白色であり、反射写真用支持
体としてきわめて有用なものであった。
The obtained film had a good white color with no discoloration or agglomerates due to polymer decomposition by-products, and was extremely useful as a support for reflective photography.

実施例2 酸化チタンを含む熱水スラリーに蛍光増白削りューコフ
ァBGM  (サンド社製)を濃度0.11重量%で懸
濁しこれを導入口Cに導入する以外、実施例1と同様に
してフィルム成形した。得られたフィルムは輝(ような
優れた白色度を呈しかつどの部分も同じような白色度で
あり、蛍光増白剤が均一に混合されていることが判った
Example 2 A film was prepared in the same manner as in Example 1, except that fluorescent whitening shaved Eucopha BGM (manufactured by Sandoz) was suspended in a hot water slurry containing titanium oxide at a concentration of 0.11% by weight, and this was introduced into the inlet C. Molded. The obtained film exhibited an excellent whiteness similar to brilliance, and the whiteness was the same in all parts, indicating that the optical brightener was mixed uniformly.

実施例3 酸化チタンを含む熱水スラリーに蛍光増白剤ヂューコフ
ァーS(サンド社製)を濃度0.11重量%で溶解しこ
れを導入口Cに導入する以外、実施例1と同様にしてフ
ィルム成形した。得られたフィルムは、実施例2と同様
、輝くような優れた白色度を呈しかつどの部分も同じよ
うな白色度であり、蛍光増白剤が均一に混合されている
ことが判った。
Example 3 A film was prepared in the same manner as in Example 1, except that the fluorescent brightener Ducofer S (manufactured by Sandoz) was dissolved in a hot water slurry containing titanium oxide at a concentration of 0.11% by weight and introduced into the inlet C. Molded. As in Example 2, the obtained film exhibited brilliant and excellent whiteness, and the whiteness was the same in all parts, indicating that the fluorescent whitening agent was mixed uniformly.

実施例4 第2図の一軸混練押出機の樹脂供給口Aにη。Example 4 η to the resin supply port A of the uniaxial kneading extruder in FIG.

=2.70で(95,7%硫酸、25°Cで測定)大き
さ2.0閣φX2.OmmLのナイロン6チップを19
.8kg/時で供給し、導入口Cに平均粒径20nmの
カーボンブラックを含む水(10重量%、温度室温、膠
2重星%含有)を2kg/時で導入し、水蒸気を排気口
Bより排出した。シリンダー温度を深い溝部で120→
180°C1溶融開始部250°C1混練部及びベント
部260°Cに設定し、ベントロDは10Torrに減
圧して混練した後、265°Cの紡糸口金から押出し、
オイリングして未延伸糸を1000m/分で巻取った。
= 2.70 (measured in 95.7% sulfuric acid, 25°C) size 2.0 mm φX2. 19 OmmL nylon 6 tips
.. 8 kg/hour, water containing carbon black with an average particle size of 20 nm (10% by weight, room temperature, glue double star content) was introduced into the inlet C at a rate of 2 kg/hour, and water vapor was introduced from the exhaust port B. It was discharged. Cylinder temperature at deep groove part 120→
The temperature was set at 180°C1 melting start part 250°C1 kneading part and vent part 260°C, and after kneading under reduced pressure of Ventro D to 10 Torr, it was extruded from a spinneret at 265°C.
The undrawn yarn was oiled and wound at 1000 m/min.

次に、この未延伸糸を3.6倍延伸して208デニール
/96フイラメントの黒原着ナイロン繊維を製造した。
Next, this undrawn yarn was drawn 3.6 times to produce a 208 denier/96 filament black spun-dyed nylon fiber.

尚、混練〜延伸は安定して操業することができた。Note that the operations from kneading to stretching could be performed stably.

得られた黒原着ナイロン繊維は強度3.3g/d、伸度
40%と均一な着色を有していた。
The obtained black spun-dyed nylon fiber had a strength of 3.3 g/d, an elongation of 40%, and uniform coloring.

実施例5 第1図の二軸混練押出機の樹脂供給口Aに平均分子量8
0000で大きさ3.0閣φ×3.0閣りのポリエチレ
ンチップを80kg/時で供給し、導入口Cに表面に酸
化錫の皮膜15重量%を有する酸化チタン粒子に対して
0.75重量%の酸化アンチモンを混合焼成して得られ
た平均粒径0.25μmの導電性微粒子(以下導電粒子
Xという、比抵抗6.3Ω・cn+)を含む水Y(濃度
40重量%、温度室温、水スラリー)を50kg/時で
導入し、水蒸気を排気口Bより排出した(特開昭58−
104642参照)。シリンダー温度を深溝部50°C
1溶融開始部230℃、混練部及びベント部240℃に
設定し、ベントロDi、 02は10Torrに減圧し
て混練した後、押出して3.0IIIIIlφ×3.0
 mmL (DチップZzoに成形した。
Example 5 An average molecular weight of 8 was added to the resin supply port A of the twin screw kneading extruder in Figure 1.
0000, polyethylene chips with a size of 3.0 mm x 3.0 mm are supplied at a rate of 80 kg/hour, and a titanium oxide particle having a tin oxide film of 15% by weight on the surface is introduced into the inlet C at a rate of 0.75 mm. Water Y (concentration 40% by weight, temperature room temperature) containing conductive fine particles (hereinafter referred to as conductive particles , water slurry) was introduced at a rate of 50 kg/hour, and water vapor was discharged from exhaust port B (Japanese Patent Application Laid-open No. 1983-
104642). Cylinder temperature at deep groove part 50°C
1 The melting start part was set at 230°C, the kneading part and the vent part were set at 240°C, and the ventro Di, 02 was kneaded under a reduced pressure of 10 Torr, and then extruded to form 3.0IIIIIIlφ×3.0.
mmL (Molded into D chip Zozo.

次に、得られたチップZ2゜を75kg/時で樹脂供給
口Aに供給し、導入口Cに前記導電粒子Xを含む水スラ
リーYを62.5kg/時で導入し、前記条件で混練し
てチップZaoに成形した。
Next, the obtained chips Z2° were supplied to the resin supply port A at a rate of 75 kg/hour, and the water slurry Y containing the conductive particles X was introduced to the introduction port C at a rate of 62.5 kg/hour, and kneaded under the above conditions. It was molded into a chip Zao.

次に、チップZ4゜を66.7kg/時で供給し、導電
粒子Xを含む水スラリーYを83.25 kg/時で導
入し、前記条件で混練してチップZ、。に成形した。
Next, chips Z4° were supplied at a rate of 66.7 kg/hour, water slurry Y containing conductive particles X was introduced at a rate of 83.25 kg/hour, and the chips Z4 were kneaded under the above conditions. It was molded into.

次に、チップZ、。を62.5kg/時で供給し、導電
粒子Xを含む水スラリーYを93.75 kg/時で導
入し、前記条件で混練して導電粒子Xを75重量%分散
させたポリエチレン組成物のチップ27%を成形した。
Next, Chip Z. was supplied at a rate of 62.5 kg/hour, water slurry Y containing conductive particles 27% was molded.

次いで、チップZwsを導電性芯成分として用いる以外
、特開昭60−224812号公報に記載された実施例
2のY、と同様にして導電性複合繊維を製造した。紡糸
延伸の操業性は良好であり、また得られた導電性複合繊
維の糸質及び導電性と制電性も同様良好であった。
Next, a conductive composite fiber was produced in the same manner as in Example 2 Y described in JP-A-60-224812, except that the chip Zws was used as the conductive core component. The operability of spinning and drawing was good, and the yarn quality, conductivity, and antistatic properties of the obtained conductive composite fibers were also good.

実施例6 ナイロン6チップを19.4kg/時で樹脂供給口Aに
供給し、グリセリンのエチレンオキシド/プロピレンオ
キシド付加物(付加重合重量比率80/20゜平均分子
17.000 )と、ジメチルテレフタレートとの反応
生成物を30重量%溶解した水を2kg/時で導入口C
に導入し、排気口Bより水蒸気を排出する以外、実施例
4と同様にして制電性ナイロン繊維を製造した。混練、
紡糸、延伸は安定して操業することができた。得られた
繊維は強度3.28/d。
Example 6 Nylon 6 chips were supplied to the resin supply port A at a rate of 19.4 kg/hour, and a mixture of glycerin ethylene oxide/propylene oxide adduct (addition polymerization weight ratio 80/20°, average molecular weight 17.000) and dimethyl terephthalate was added. 2 kg/hour of water in which 30% by weight of the reaction product was dissolved was introduced into the inlet C.
An antistatic nylon fiber was produced in the same manner as in Example 4, except that the water vapor was introduced into the air and the water vapor was discharged from the exhaust port B. kneading,
Spinning and drawing could be operated stably. The strength of the obtained fiber was 3.28/d.

伸度44%と良好な制電性能を有していた。It had an elongation of 44% and good antistatic performance.

実施例7 第4図の混練押出機(2重部分・のみ二軸で内径60m
m)の樹脂供給口Aに大きさ約3+nmφ×311II
IILのポリブチレンテレフタレートチップ(三菱化成
■ツバドール5010)を65kg/時、大きさ約31
1IIlφ×3mmLのスチレン−ブタジェンブロック
共重合体チップ(電気化学工業■デンカ5TR1602
)を20kg1時、A′に平均粒径約0.1mmの臭化
ポリスチレン粉末(日産フェロ有機化学■パイロチエツ
ク68PH) 15kg/時で供給し、粒径分布20〜
50μm〇五酸化アンチモンを含む熱水コロイド(1度
50重量%、温度90℃、懸濁剤トリエタノ−ルアミツ
1重量%含存)を10 kg /時で導入し、布製フィ
ルターを介してブロアで吸引して水蒸気を排出した。静
止型混合素子(内径80m、6素子、長さ480鴫)及
びシリンダー温度を2軸部150°C1混練部2b。
Example 7 The kneading extruder shown in Fig. 4 (double section, only twin shafts, inner diameter 60 m)
m) resin supply port A with a size of approximately 3+nmφ×311II
65 kg/hour of IIL polybutylene terephthalate chips (Mitsubishi Kasei Tubadol 5010), size approximately 31
1IIlφ x 3mmL styrene-butadiene block copolymer chip (Denka Kagaku Kogyo Denka 5TR1602
) was supplied to A' at a rate of 15 kg/hour of polystyrene bromide powder (Nissan Ferro Organic Chemical ■Pyrocheck 68PH) with an average particle size of about 0.1 mm, and the particle size distribution was 20~
A hydrothermal colloid containing 50 μm antimony pentoxide (50% by weight at 1 degree, temperature 90°C, containing 1% by weight of triethanolamine as a suspending agent) was introduced at a rate of 10 kg/hour and suctioned with a blower through a cloth filter. The water vapor was discharged. Static mixing element (inner diameter 80 m, 6 elements, length 480 m) and cylinder temperature 150°C in 2 shaft parts 1 kneading part 2b.

240℃、ベント2dと計量部2Cを260°Cに設定
し、ベントロDは10Torrに減圧して混練した後、
押出して3.0mφX3.OmLのチップにした。
After kneading at 240°C, set the vent 2d and measuring part 2C at 260°C, and reduce the pressure in the ventro D to 10 Torr,
Extrude to 3.0mφX3. I made it into an OmL chip.

次いで通常の条件で各種試験片を射出成形した。Various test pieces were then injection molded under normal conditions.

射出成形は安定して行うことができた。また試験片は高
度の難燃性に加え、優れた耐衝撃性を有していた。
Injection molding could be performed stably. In addition to a high degree of flame retardancy, the test piece also had excellent impact resistance.

実施例日 ポリエチレンテレツクレートチップを100 kg/時
で供給し、青色のアントラキノン系染料を濃度2.0重
量%で懸濁した熱水を1.5 kg/時で導入する以外
、実施例1と同様にフィルムを製造した。得られたフィ
ルムは、透明でどの部分も同じような青色を呈しており
、レントゲン用のベースフィルムとして使用することが
できた。
Example Day The same procedure as Example 1 was carried out, except that polyethylene terecrate chips were fed at a rate of 100 kg/hour, and hot water in which a blue anthraquinone dye was suspended at a concentration of 2.0% by weight was introduced at a rate of 1.5 kg/hour. A film was produced in the same manner. The obtained film was transparent and exhibited a similar blue color in all parts, and could be used as a base film for X-rays.

(発明の効果) 以上詳細に説明したように本発明は、10μm以下の微
粒子や添加剤殊にサブミクロン級の微粒子を高濃度に分
散させた熱可塑性樹脂組成物及び成形物を製造する新規
な技術を提供するものである。
(Effects of the Invention) As explained in detail above, the present invention provides a novel method for producing thermoplastic resin compositions and molded articles in which fine particles of 10 μm or less and additives, particularly submicron fine particles, are dispersed at a high concentration. It provides technology.

すなわち本発明によれば、微粒子の湿式処理工程を溶融
混練工程と成形工程に直結して実施することが可能とな
り、従来法では解決困難とされた品質、コスト及び生産
性を大巾に改善することができる。また本発明方法は、
多品種小量生産にも適した方法でもあり、産業上極めて
有用なポリマープロセスを提供するものである。
In other words, according to the present invention, it is possible to carry out the wet processing step of fine particles directly connected to the melt-kneading step and the molding step, thereby significantly improving quality, cost, and productivity, which were difficult to solve with conventional methods. be able to. Further, the method of the present invention
It is also a method suitable for high-mix, low-volume production, and provides an industrially extremely useful polymer process.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図は本発明方法の実施に好適な装置の縦断面概
要図であり、 第1図は二軸混練押出機、 第2図は単軸押出機、 第3図は樹脂供給口を経由して布状のバッグから気体を
排出する例、 第4図は粒状物移動層が静止型混合素子部に形成されて
いる例である。 コ  ニ
Figures 1 to 4 are longitudinal cross-sectional schematic diagrams of equipment suitable for carrying out the method of the present invention. Figure 1 is a twin-screw kneading extruder, Figure 2 is a single-screw extruder, and Figure 3 is a resin feed port. FIG. 4 shows an example in which a particulate matter moving layer is formed in a stationary mixing element section. Connie

Claims (1)

【特許請求の範囲】 1、熱可塑性樹脂と微粒子とを溶融混練するに際し、粒
径10μm以下の微粒子を含む液体を未溶融状態の熱可
塑性樹脂の粒状物移動層に導入して該粒状物移動層に微
粒子を付着又は堆積させつつ前記液体を気体にして排出
し、そして前記粒状物と微粒子との混合物を溶融及び混
練することを特徴とする熱可塑性樹脂組成物の製造方法
。 2、熱可塑性樹脂と添加剤とを溶融混練するに際し、該
添加剤の溶液又はエマルジョンを未溶融状態の熱可塑性
樹脂の粒状物移動層に導入して該粒状物移動層に添加剤
を付着又は堆積させつつ溶媒又は分散媒を気体にして排
出し、そして前記粒状物と添加剤との混合物を溶融及び
混練することを特徴とする熱可塑性樹脂組成物の製造方
法。 3、請求項1、2記載の溶融及び混練に連続して、微粒
子分散熱可塑性樹脂組成物を成形することを特徴とする
成形物の製造方法。 4、気体の排出を、微粒子を含む液体、添加剤の溶液又
はエマルジョンを導入する部位より熱可塑性樹脂の粒状
物を供給する部位の側で行うことを特徴とする請求項1
、2記載の方法。
[Claims] 1. When melt-kneading a thermoplastic resin and fine particles, a liquid containing fine particles with a particle size of 10 μm or less is introduced into a particle transfer layer of an unmolten thermoplastic resin to move the particles. A method for producing a thermoplastic resin composition, comprising: discharging the liquid as a gas while attaching or depositing fine particles to a layer; and melting and kneading the mixture of the fine particles and the fine particles. 2. When melt-kneading a thermoplastic resin and an additive, a solution or emulsion of the additive is introduced into a particulate transfer layer of an unmolten thermoplastic resin, and the additive is attached to the particulate transfer layer. A method for producing a thermoplastic resin composition, which comprises discharging a solvent or dispersion medium as a gas while depositing the same, and then melting and kneading the mixture of the granules and additives. 3. A method for producing a molded article, which comprises molding the fine particle-dispersed thermoplastic resin composition following the melting and kneading according to claims 1 and 2. 4. Claim 1, characterized in that the gas is discharged closer to the part to which the thermoplastic resin particles are supplied than to the part to which the liquid containing fine particles, solution or emulsion of additives is introduced.
, 2. The method described in .
JP1137349A 1989-04-05 1989-06-01 Manufacture of thermoplastic resin composition and molded material Pending JPH0347710A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/503,194 US5281379A (en) 1989-04-05 1990-04-02 Processes for manufacturing thermoplastic resin compositions
EP90106401A EP0391372B1 (en) 1989-04-05 1990-04-04 Processes for manufacturing thermoplastic resin compositions and shaped articles thereof
DE69023794T DE69023794T2 (en) 1989-04-05 1990-04-04 Process for the preparation of thermoplastic synthetic resin mixtures and articles molded therefrom.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10345589 1989-04-25
JP1-103455 1989-04-25

Publications (1)

Publication Number Publication Date
JPH0347710A true JPH0347710A (en) 1991-02-28

Family

ID=14354503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1137349A Pending JPH0347710A (en) 1989-04-05 1989-06-01 Manufacture of thermoplastic resin composition and molded material

Country Status (1)

Country Link
JP (1) JPH0347710A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691635A (en) * 1992-09-09 1994-04-05 Toray Ind Inc Preparation of polyester composition
EP0645232A1 (en) * 1993-09-29 1995-03-29 Union Carbide Chemicals & Plastics Technology Corporation Method for compounding a polymerized alpha-olefin resin
US9457491B2 (en) 2011-05-30 2016-10-04 Kabushiki Kaisha Miyanaga Coolant supply device and electric drill unit provided with coolant supply device
JP2020146938A (en) * 2019-03-14 2020-09-17 株式会社日本製鋼所 Method for manufacturing filler-containing resin composite material
JP2022155422A (en) * 2021-03-30 2022-10-13 垰田 宏子 Photocatalyst slurries, photocatalyst masterbatches, and photocatalyst molded articles, and methods of producing them

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0691635A (en) * 1992-09-09 1994-04-05 Toray Ind Inc Preparation of polyester composition
EP0645232A1 (en) * 1993-09-29 1995-03-29 Union Carbide Chemicals & Plastics Technology Corporation Method for compounding a polymerized alpha-olefin resin
US9457491B2 (en) 2011-05-30 2016-10-04 Kabushiki Kaisha Miyanaga Coolant supply device and electric drill unit provided with coolant supply device
JP2020146938A (en) * 2019-03-14 2020-09-17 株式会社日本製鋼所 Method for manufacturing filler-containing resin composite material
JP2022155422A (en) * 2021-03-30 2022-10-13 垰田 宏子 Photocatalyst slurries, photocatalyst masterbatches, and photocatalyst molded articles, and methods of producing them

Similar Documents

Publication Publication Date Title
TWI389942B (en) Moulding material and moulding comprising a thermo-plastic containing nanoscale, inorganic particles, process for the preparation of the moulding material and moulding and uses thereof
JP2911663B2 (en) Method and apparatus for directly and continuously modifying a polymer melt
US5281379A (en) Processes for manufacturing thermoplastic resin compositions
KR100810977B1 (en) Oriented nanofibers embedded in polymer matrix
TW200918282A (en) Process for the production of an electrically conducting polymer composite material
JPH0794603B2 (en) Polyamide matting master-batch
JP6059133B2 (en) Heat-shrinkable polyester single layer film
JPH0347710A (en) Manufacture of thermoplastic resin composition and molded material
CA1060621A (en) Master mixes by compaction
JPH0455848B2 (en)
TW201127607A (en) Process for incorporating solids into polymers
JP2578479B2 (en) Method for producing polymer containing powder additive
JP4732844B2 (en) Method for producing fired molded body, method for producing fired body, and fired body
JPH02263867A (en) Production of thermoplastic resin composition and molded product therefrom
JPH039811A (en) Manufacture of thermoplastic resin composition and its molding
KR100609596B1 (en) Method for the preparation of inorganic or metallic nanoparticles-polymer composite
WO2019058697A1 (en) Cleaning agent for molding-machine cleaning and cleaning method
JPH02203901A (en) Production of bundled reinforcing fibers or staple fiber chips
JPS63268734A (en) Production of polyester resin composition
JP2590435B2 (en) Method for producing liquid crystalline polymer microspheres
JPH07214547A (en) Preparation of thermoplastic resin pellet
JP2874249B2 (en) Colorant composition and blow-molded article colored with the composition
JP3569145B2 (en) Method for producing retardation film
JP2535422B2 (en) Method to evenly disperse particles in polymer
KR20240057485A (en) Functional master batch composition using reuse synthetic resins and the method of manufacturing thereof