JP2022155422A - Photocatalyst slurries, photocatalyst masterbatches, and photocatalyst molded articles, and methods of producing them - Google Patents

Photocatalyst slurries, photocatalyst masterbatches, and photocatalyst molded articles, and methods of producing them Download PDF

Info

Publication number
JP2022155422A
JP2022155422A JP2021084210A JP2021084210A JP2022155422A JP 2022155422 A JP2022155422 A JP 2022155422A JP 2021084210 A JP2021084210 A JP 2021084210A JP 2021084210 A JP2021084210 A JP 2021084210A JP 2022155422 A JP2022155422 A JP 2022155422A
Authority
JP
Japan
Prior art keywords
photocatalyst
plastic
particles
water
masterbatch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021084210A
Other languages
Japanese (ja)
Other versions
JP7048795B1 (en
Inventor
博史 垰田
Hiroshi Tougeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021084210A priority Critical patent/JP7048795B1/en
Application granted granted Critical
Publication of JP7048795B1 publication Critical patent/JP7048795B1/en
Publication of JP2022155422A publication Critical patent/JP2022155422A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide photocatalyst slurries, photocatalyst masterbatches, and photocatalyst molded articles, and methods of producing them which are need when producing photocatalyst products, can save the work for producing particles, and greatly reduce the production cost.SOLUTION: A photocatalyst slurry producing method is used, which includes a mixing step of mixing photocatalyst particles, water, and a plastic while evaporating the water. A photocatalyst masterbatch producing method is used, which includes the mixing step and a first molding step of melting the plastic and molding it into a chip-shaped masterbatch. A photocatalyst molded-article producing method is used, which further includes a second molding step of incorporating the chip into the plastic and molding it. A photocatalyst slurry, which is a mixture of the photocatalyst particles, water, and the plastic, is used. A photocatalytic masterbatch containing the photocatalyst particles and the plastic is used. The photocatalyst molded article containing the photocatalyst particles and the plastic is used.SELECTED DRAWING: None

Description

本発明は、光触媒スラリーと光触媒マスターバッチと光触媒成形品とそれらの製造方法に関するものである。TECHNICAL FIELD The present invention relates to a photocatalyst slurry, a photocatalyst masterbatch, a photocatalyst molded product, and methods for producing them.

光触媒に光を当てると電子と正孔が同時に発生し、酸素などと反応して活性酸素ができる。この活性酸素はオゾンよりも強い酸化力を持っていて、有害化学物質や悪臭、菌・ウィルスなどを水や二酸化炭素などの無毒な物質に変えることができる。この光触媒反応は光を利用するだけで環境浄化などのさまざまな応用が可能である。When the photocatalyst is exposed to light, electrons and holes are generated at the same time, and react with oxygen to form active oxygen. This active oxygen has a stronger oxidizing power than ozone, and can convert harmful chemical substances, odors, bacteria and viruses into non-toxic substances such as water and carbon dioxide. This photocatalytic reaction can be applied to various applications such as environmental purification simply by using light.

従来、樹脂に光触媒を混入したシート、フィルムがあった(特許文献1,2,3)。Conventionally, there have been sheets and films in which a photocatalyst is mixed in resin (Patent Documents 1, 2, and 3).

一般に、有機繊維やプラスチック成形品の製造工程において光触媒は練込みや埋込みなどの手段によって担持される。特に、押出機を用いて加熱して融解した重合体と光触媒を混練し、押出成形することによって成形品を作製することが行われる。その際、プラスチックのペレットなどの重合体を融解しながら光触媒粒子と混練して均一に分散してマスターバッチを作製し、それをさらに融解したプラスチックに混練して押出成形すると、光触媒粒子が均一に分散した高性能の光触媒素材を作製することができる。そしてそれを紡糸して糸を作製し、それを織って繊維や不織布や合成紙などを作製することができるし、それらを成形することによって、板やシートやさまざまな形の高性能の光触媒成形品が得られる。In general, photocatalysts are carried by means of kneading, embedding, or the like in the manufacturing process of organic fibers or plastic moldings. In particular, a molded product is produced by kneading a melted polymer and a photocatalyst using an extruder and extruding the mixture. At that time, a polymer such as plastic pellets is melted and kneaded with photocatalyst particles to uniformly disperse them to prepare a masterbatch, which is further kneaded with molten plastic and extruded to uniformly disperse the photocatalyst particles. A dispersed high-performance photocatalyst material can be produced. It can be spun to produce threads, woven to produce fibers, non-woven fabrics, synthetic paper, etc. By molding these, it is possible to form boards, sheets, and various other forms of high-performance photocatalyst molding. product is obtained.

その際、光触媒として粒子状のものや、光触媒を水に分散した光触媒スラリーが使用される。光触媒が湿式で作製されると、光触媒スラリーが得られるため、粒子状の光触媒よりも光触媒スラリーの方が安価なことが多い。通常、70~80%の水分を含有した光触媒スラリーが市販されている。 In that case, a particulate photocatalyst or a photocatalyst slurry in which a photocatalyst is dispersed in water is used. Photocatalyst slurries are obtained when photocatalysts are produced in a wet process, and therefore photocatalyst slurries are often cheaper than particulate photocatalysts. Photocatalyst slurries containing 70 to 80% water are usually commercially available.

特開2007-307884号公報JP 2007-307884 A 特開2005-097608号公報JP-A-2005-097608 特開2013-136216号公報JP 2013-136216 A

しかし、プラスチックや繊維などへの混錬・混入・埋込に光触媒スラリーを使用すると、水の蒸発熱が非常に大きいため、融解した重合体の温度が低下して固まってしまい、重合体に混錬・混入・埋込をすることができない。そのため、光触媒スラリーを乾燥して一旦、光触媒粒子を作製することが必要であったが、その際、粒子同士が固着して粒径の大きな固い粒となってしまっていた。そして、粒径の大きな固い粒を粉砕して微粒子にするためには多大な費用が必要となっていた。 However, when photocatalyst slurry is used for kneading, mixing, or embedding in plastics or fibers, the heat of evaporation of water is extremely high, so the temperature of the melted polymer drops and solidifies. It cannot be wrought, mixed, or embedded. Therefore, it was necessary to dry the photocatalyst slurry to once produce photocatalyst particles, but at that time, the particles adhered to each other to form hard particles with a large particle size. In addition, a great amount of expense was required to pulverize hard particles having a large particle size into fine particles.

光触媒の粒径が大きいと、プラスチックや繊維に混錬・混入・埋込して担持した場合、混入しにくく、偏在して光触媒粒子が取れやすいという問題があった。光触媒粒子がプラスチックや繊維の表面に頭を出して表面に広く分布していないと光触媒反応を効率よく起こすことができないが、そのために必要な微細な光触媒粒子をプラスチックスや繊維の中に均一に分散することが難しく、実用に供すことができる高性能の光触媒成形品を作製することが難しかった。 If the particle size of the photocatalyst is large, there is a problem that when the photocatalyst is kneaded, mixed, embedded in plastics or fibers and supported, it is difficult to mix, unevenly distributed, and the photocatalyst particles are easily removed. If the photocatalyst particles do not protrude from the surface of the plastic or fiber and are not widely distributed, the photocatalytic reaction cannot occur efficiently. It was difficult to disperse it, and it was difficult to produce a high-performance photocatalyst molded article that could be put to practical use.

例えば、まな板の中に光触媒を混錬・混入した光触媒まな板を作製した場合、まな板の表面に包丁で傷がつくと光触媒粒子が傷の面に顔を出して光が当たって光触媒反応を起こすが、粒径の大きな光触媒粒子が使われていて分散が悪いと、光触媒粒子が顔を出さず、光が当たっても光触媒反応を起こすことができない。そのため、光触媒を微細粒子の状態でプラスチックや繊維の中に均一に分散して混錬・混入・埋込して担持することが必要である。 For example, when a photocatalyst cutting board is made by kneading and mixing a photocatalyst into the cutting board, if the surface of the cutting board is scratched with a kitchen knife, the photocatalyst particles will come out of the scratched surface and will cause a photocatalytic reaction when exposed to light. If photocatalyst particles with a large particle size are used and the dispersion is poor, the photocatalyst particles will not come out and the photocatalytic reaction will not occur even when exposed to light. Therefore, it is necessary to uniformly disperse the photocatalyst in the state of fine particles in the plastic or fiber, knead, mix, embed, and carry the photocatalyst.

本発明の目的は、上記のような従来技術のもつ問題点に鑑み、プラスチックや繊維などの重合体に混錬・混入・埋込などによって光触媒を担持して悪臭の除去や、空気中の有害物質または汚れの分解除去、排水処理や浄化処理、抗菌や防かびなど、環境の浄化を効果的かつ経済的に安全に行うことができる光触媒製品を作製するために必要な、粒子作製の手間が省け、製造コストを大幅に低減することができる光触媒スラリーと光触媒マスターバッチと光触媒成形品とそれらの製造方法を提供することにある。 In view of the problems of the prior art as described above, the object of the present invention is to support a photocatalyst by kneading, mixing, embedding, etc. in polymers such as plastics and fibers to remove odors and reduce harmful effects in the air. Reduces the time and effort required to create particles necessary to create photocatalyst products that can effectively, economically and safely purify the environment, such as decomposition and removal of substances or dirt, wastewater treatment and purification, antibacterial and antifungal. To provide a photocatalyst slurry, a photocatalyst masterbatch, a photocatalyst molded article, and a method for producing them, which can save and greatly reduce the production cost.

光触媒の粒子と水とプラスチックとを、上記水を蒸発させながら混合する混合工程を含む光触媒スラリーの製造方法を用いる。また、上記混合工程と、上記プラスチックを溶融してチップ状のマスターバッチに成形する第1成形工程と、を含む光触媒マスターバッチの製造方法を用いる。さらに、上記チップをプラスチックに含有させ成形する第2成形工程を、さらに含む光触媒成形品の製造方法を用いる。A method for producing a photocatalyst slurry is used, which includes a mixing step of mixing photocatalyst particles, water, and plastic while evaporating the water. Also, a method for producing a photocatalyst masterbatch is used, which includes the mixing step and a first molding step of melting the plastic and molding it into a chip-shaped masterbatch. Furthermore, a method for manufacturing a photocatalyst molded article is used, which further includes a second molding step of incorporating the chip into plastic and molding.

光触媒粒子と水とプラスチックを混合した光触媒スラリーを用いる。また、光触媒粒子とプラスチックと水を含む光触媒マスターバッチを用いる。さらに、光触媒粒子とプラスチックとを含む光触媒成形品を用いる。Photocatalyst slurry, which is a mixture of photocatalyst particles, water, and plastic, is used. Also, a photocatalyst masterbatch containing photocatalyst particles, plastic and water is used. Furthermore, a photocatalyst molded article containing photocatalyst particles and plastic is used.

本発明の光触媒粒子と水とプラスチックを含有した光触媒スラリーは、光触媒粒子を含んだ水にプラスチックの粒子、薄片、ペレット、及びそれらの混合物を添加して水を蒸発させながら混合することで、容易に作製することができ、それを加熱混錬することで、微細な光触媒粒子が均一に分散したマスターバッチを容易に得ることができる。 The photocatalyst slurry containing photocatalyst particles, water and plastic of the present invention can be easily obtained by adding plastic particles, flakes, pellets, and a mixture thereof to water containing photocatalyst particles and mixing while evaporating water. By heating and kneading it, a masterbatch in which fine photocatalyst particles are uniformly dispersed can be easily obtained.

そして、得られたマスターバッチを融解したプラスチックに混錬し、成形することによって光触媒素材が得られ、それを紡糸して糸を作製し、それを織って繊維や不織布や合成紙などを作製することができる。それらを成形することによって、板やシートやさまざまな形の高性能の光触媒成形物が得られる。これにより悪臭や空気中の有害物質、汚れの分解除去あるいは廃水処理や浄水処理、抗菌抗ウィルス抗かびなどの環境浄化材料として幅広い分野で使用でき、効果的かつ安全に使用することができる光触媒成形品を容易にかつ経済的に作製することができる。Then, the obtained masterbatch is kneaded with molten plastic and molded to obtain a photocatalyst material, which is spun to produce yarn, which is then woven to produce fibers, nonwoven fabrics, synthetic paper, etc. be able to. By molding them, high-performance photocatalyst moldings of various shapes such as plates and sheets can be obtained. As a result, it can be used in a wide range of fields as an environmental purification material such as decomposing and removing bad odors, harmful substances in the air, dirt, wastewater treatment, water purification treatment, antibacterial, antiviral, antifungal, etc. Photocatalyst molding that can be used effectively and safely. Products can be produced easily and economically.

有機繊維やプラスチックなどの基材に光触媒をコーティングなどで担持した場合は人が触れることで光触媒が直ぐ取れてしまうが、練り込みや埋め込みなどによって担持した本発明による光触媒成形品は、光触媒が取れず、基材の中から光触媒が出てくるため、耐久性に優れており、長期的に繰り返し使用することができる。 When a photocatalyst is supported on a base material such as organic fiber or plastic by coating, the photocatalyst can be easily removed by human touch. Since the photocatalyst comes out of the base material, it has excellent durability and can be used repeatedly over a long period of time.

また、水中や空気中の細菌やウイルスは光の照射により光触媒に生じる強力な酸化力によって容易に水や二酸化炭素に分解されるため、確実にしかも効率よく死滅させることができる。通常、薬剤を使用していると薬剤の効かない耐性菌が発生するが、光触媒は耐性菌に対しても有効であるし、光触媒に対する耐性菌は生じず、変異したウィルスに対しても有効である。それだけでなく、抗菌・抗ウィルスや消臭、空気浄化、水質浄化、土壌浄化、鮮度保持など、同時に複数の機能を発揮することが可能で、世界中どこでも光があれば使用できる。 In addition, since bacteria and viruses in water and air are easily decomposed into water and carbon dioxide by the strong oxidizing power generated in the photocatalyst by irradiation with light, they can be killed reliably and efficiently. Normally, drug-resistant bacteria occur when drugs are used, but photocatalysts are also effective against drug-resistant bacteria, photocatalyst-resistant bacteria do not occur, and they are effective against mutated viruses. be. In addition, it can perform multiple functions at the same time, such as antibacterial, antiviral, deodorant, air purification, water purification, soil purification, and freshness preservation, and can be used anywhere in the world as long as there is light.

(実施の形態)
実施の形態では、以下の工程をする。
(1)水と光触媒の粉体とプラスチックの粒状物とを混合し、光触媒スラリーを作製する。
(2)(1)の光触媒スラリーから成形用のペレットであるマスターバッチを作製する。
(3)(2)のマスターバッチとプラスチックから成形品を作製する。
<光触媒>
本実施の形態に用いられる光触媒としては、酸化チタンや酸化タングステン、酸化亜鉛、酸化鉄、酸化鉛、酸化インジウム、炭化けい素、硫化モリブデン、硫化カドミウムなど、いろいろなものが使用される。
(Embodiment)
In the embodiment, the following steps are performed.
(1) Water, photocatalyst powder, and plastic particles are mixed to prepare a photocatalyst slurry.
(2) A masterbatch, which is pellets for molding, is produced from the photocatalyst slurry of (1).
(3) A molded product is produced from the masterbatch of (2) and the plastic.
<Photocatalyst>
Various photocatalysts such as titanium oxide, tungsten oxide, zinc oxide, iron oxide, lead oxide, indium oxide, silicon carbide, molybdenum sulfide, and cadmium sulfide are used as the photocatalyst used in this embodiment.

最も好ましいのは酸化チタンである。以下にその理由を記載する。
(1)酸化タングステンや硫化モリブデン、酸化インジウムはタングステンやモリブデン、インジウムがレアメタルで資源的に希少で高価であるのに対し、酸化チタンは白色顔料として大量生産されて広く使用されており、チタンが地殻中に9番目に多い元素であるため酸化チタンは資源的に豊富で安価で入手しやすい。
Most preferred is titanium oxide. The reason is described below.
(1) Regarding tungsten oxide, molybdenum sulfide, and indium oxide, tungsten, molybdenum, and indium are rare metals and are scarce and expensive in terms of resources. Being the ninth most abundant element in the earth's crust, titanium oxide is abundant in resources, inexpensive and readily available.

(2)硫化カドミウムや酸化鉛が有毒であるのに対し、酸化チタンは食品添加物として認められており、歯磨き粉やホワイトチョコレートにも使用されていて、安全無毒な物質である。(2) While cadmium sulfide and lead oxide are toxic, titanium oxide is recognized as a food additive, is used in toothpaste and white chocolate, and is a safe and non-toxic substance.

(3)酸化亜鉛や酸化鉛、硫化カドミウムなどは水に入れて光を当てると、光溶解という現象が起こって陽イオンと陰イオンに分解されて消滅してしまうが、酸化チタンは光溶解を起こさず、安定で耐久性に優れているため、光触媒として最も好ましい。(3) When zinc oxide, lead oxide, cadmium sulfide, etc. are placed in water and exposed to light, a phenomenon called photodissolution occurs and they are decomposed into cations and anions and disappear, but titanium oxide is photodissolved. It is most preferable as a photocatalyst because it is stable and has excellent durability.

<酸化チタン>
本実施の形態に用いられる酸化チタンは、アナターゼ、ルチル、ブルッカイトなどの結晶のものだけでなく、酸素欠陥を有すものや、金属ドープ、あるいは窒素、硫黄などをドープした酸化チタンなどが挙げられる。
また、粒子表面に光触媒として不活性なシリカやアルミナや、アパタイトなどのセラミックスを島状に担持したものでもよい。即ち、本実施の形態では、酸化チタンの種類は特に制限されない。
<Titanium oxide>
Titanium oxide used in the present embodiment includes not only crystals such as anatase, rutile, and brookite, but also those having oxygen defects, metal-doped, nitrogen, sulfur, etc.-doped titanium oxides. .
In addition, the particles may be those in which silica, alumina, or ceramics such as apatite, which are inactive as photocatalysts, are supported on the surface of the particles in the form of islands. That is, in this embodiment, the type of titanium oxide is not particularly limited.

<光触媒粒子の粒径>
本実施の形態に用いられる光触媒粒子の粒径は1nm以上、10μm以下が望ましく、特に10nmより大きく~1μmより小さいのが好ましい。これ以下であると量子効果により光触媒が吸収できる光の波長がブルーシフトして波長の長い光では光触媒反応を起こしにくくなり、これ以上であると光触媒組成物や光触媒成形物中の光触媒粒子の分散が悪くなって光触媒が偏在した成形物ができてしまい、性能が落ちてしまう。
<Particle size of photocatalyst particles>
The particle size of the photocatalyst particles used in the present embodiment is desirably 1 nm or more and 10 μm or less, and more preferably greater than 10 nm and less than 1 μm. If it is less than this, the wavelength of light that can be absorbed by the photocatalyst is blue-shifted due to the quantum effect, and light with a long wavelength makes it difficult for the photocatalytic reaction to occur. The photocatalyst is unevenly distributed, resulting in a molded article with deteriorated performance.

<プラスチック>
本実施の形態に用いられるプラスチックは、ポリエチレン、ナイロン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエステル、ポリプロピレン、ポリエチレンオキサイド、ポリエチレングリコール、ポリエチレンテレフタレート、シリコン樹脂、ポリビニルアルコール、ビニルアセタール樹脂、ポリアセテート、ABS樹脂、エポキシ樹脂、酢酸ビニル樹脂、セルロース、セルロース誘導体、ポリアミド、ポリウレタン、ポリカーボネート、ポリスチレン、尿素樹脂、フッ素樹脂、ポリフッ化ビニリデン、フェノール樹脂、セルロイド、キチン、澱粉シートなどのあらゆる種類のプラスチックが挙げられる。
<Plastic>
Plastics used in this embodiment include polyethylene, nylon, polyvinyl chloride, polyvinylidene chloride, polyester, polypropylene, polyethylene oxide, polyethylene glycol, polyethylene terephthalate, silicon resin, polyvinyl alcohol, vinyl acetal resin, polyacetate, and ABS resin. , epoxy resins, vinyl acetate resins, cellulose, cellulose derivatives, polyamides, polyurethanes, polycarbonates, polystyrenes, urea resins, fluororesins, polyvinylidene fluoride, phenolic resins, celluloid, chitin, and starch sheets.

<プラスチックの形状>
プラスチックの形状は、粒子状や薄片状、フレーク状、ペレット状であり、粒子状のものは球状や円筒状、円柱状、角柱状、円板状、角板状、ラグビーボール状、不定形などのあらゆる種類の形状が挙げられる。本実施の形態に用いられるプラスチックの大きさは、球状の場合、直径1~10mm、直方体形状(剥片)の場合、長さ0.5~2cm、厚さ1~5mm、幅1~3cmが好ましい。円柱状の場合、直径1~10mm、長さ0.5~2cmが好ましい。これより大きくなると光触媒マスターバッチを作製したときにプラスチックの中に光触媒粒子が均一に分散しにくくなり、これより小さいと作製コストが上がりすぎてしまう。
<Plastic shape>
The shapes of plastics are particles, flakes, flakes, and pellets, and the particles are spherical, cylindrical, columnar, prismatic, disk-shaped, square-plate-shaped, rugby-ball-shaped, and amorphous. All kinds of shapes of The size of the plastic used in this embodiment is preferably 1 to 10 mm in diameter in the case of a spherical shape, and 0.5 to 2 cm in length, 1 to 5 mm in thickness, and 1 to 3 cm in width in the case of a rectangular parallelepiped (flake). . When it is cylindrical, it preferably has a diameter of 1 to 10 mm and a length of 0.5 to 2 cm. If it is larger than this, it becomes difficult to uniformly disperse the photocatalyst particles in the plastic when the photocatalyst masterbatch is produced, and if it is smaller than this, the production cost increases too much.

(製造方法)
<従来の混錬>
光触媒を、プラスチックや繊維などに混錬・混入・埋込をして固定化する従来を説明する。
第1工程:押出機にまずプラスチックのペレットなどの形状の重合体を流し込む。その後、重合体を融解する。
第2工程:光触媒を含むスラリーを流し込んで混練して均一に分散してマスターバッチを作製する。
ここで、光触媒として、光触媒と水との混合物である光触媒スラリーを使うと、融解したプラスチックに水が接触する。この場合、水が蒸発して、その蒸発熱により、プラスチックの融液の温度が低下して融液が固化してしまう。このため、プラスチックの融液と光触媒を十分に混練することができない。
(Production method)
<Conventional kneading>
The conventional method of fixing a photocatalyst by kneading, mixing, or embedding it in plastic or fiber will be explained.
Step 1: First, a polymer in the form of plastic pellets is poured into an extruder. The polymer is then melted.
Second step: A slurry containing a photocatalyst is poured and kneaded to uniformly disperse to prepare a masterbatch.
Here, if a photocatalyst slurry, which is a mixture of a photocatalyst and water, is used as the photocatalyst, the water comes into contact with the molten plastic. In this case, the water evaporates, and the heat of evaporation lowers the temperature of the plastic melt, causing the melt to solidify. Therefore, the plastic melt and the photocatalyst cannot be sufficiently kneaded.

<実施の形態の混錬>
本実施の形態では、予め、光触媒粒子と水を含んだ混合物に、プラスチックの粒子やフレーク、ペレットを添加する。加熱や減圧、乾燥空気の吹込みなどによって水を蒸発させながら、錬することによって、光触媒粒子と水とプラスチックを含有した水分含有量を低くした光触媒スラリーを作製して用いる。
<Kneading of Embodiment>
In this embodiment, plastic particles, flakes, and pellets are added in advance to a mixture containing photocatalyst particles and water. A photocatalyst slurry containing photocatalyst particles, water, and plastic with a low water content is prepared and used by kneading while evaporating water by heating, pressure reduction, blowing of dry air, or the like.

光触媒粒子と水とを含んだスラリーを乾燥すると、粒子同士が固着して粒径の大きな固い粒ができるだけである。しかし、光触媒粒子と水を含んだスラリーにプラスチックを添加し、加熱や減圧、乾燥空気の吹込みなどによって、水を蒸発させながら混錬すると、光触媒粒子同士が固着してきてもプラスチックがぶっつかってバラバラにしてくれるため、粒径の大きな固い粒ができない。 When the slurry containing the photocatalyst particles and water is dried, the particles stick to each other to form hard particles having a large particle size. However, when plastic is added to a slurry containing photocatalyst particles and water, and kneaded while evaporating water by heating, decompressing, blowing dry air, etc., even if the photocatalyst particles adhere to each other, the plastic will collide. Because it breaks apart, hard grains with a large particle size cannot be formed.

そのためには、完全に乾燥する前に混錬を止めることが必要である。それによって、光触媒粒子と水とプラスチックが良く分散した水分含有量の低い光触媒のスラリーが得られる。
光触媒粒子は、親水性で、プラスチックは、疎水性である。光触媒粒子ははじかれてプラスチックと混ざりにくいが、光触媒粒子と水とプラスチックを、水を蒸発させながら混錬することによってスラリーの粘度が上がって良く混ざり合い、それを融解することでプラスチックの中に光触媒粒子が良く分散したマスターバッチを作製することができる。ここで、マスターバッチ中の光触媒には、吸着された水が残存している。その吸着水の量は光触媒全体の0.01~0.5重量%である。なお、プラスチックは撥水性で水を含まない。
マスターバッチの形状、大きさは、一例として、円柱形状である。球状でもよい。マスターバッチの大きさは、球状の場合、直径1~10mm、直方体形状(剥片)の場合、長さ0.5~2cm、厚さ1~5mm、幅1~3cmが好ましい。円柱状の場合、直径1~10mm、長さ0.5~2cmが好ましい。
For that purpose, it is necessary to stop kneading before complete drying. Thereby, a photocatalyst slurry with a low water content in which the photocatalyst particles, water and plastic are well dispersed is obtained.
The photocatalyst particles are hydrophilic and the plastic is hydrophobic. The photocatalyst particles are repelled and difficult to mix with the plastic, but by kneading the photocatalyst particles, water, and plastic while evaporating the water, the viscosity of the slurry increases and mixes well, melting it into the plastic. A masterbatch in which the photocatalyst particles are well dispersed can be produced. Here, adsorbed water remains in the photocatalyst in the masterbatch. The amount of adsorbed water is 0.01 to 0.5% by weight of the entire photocatalyst. Plastic is water-repellent and does not contain water.
The shape and size of the masterbatch is, for example, cylindrical. It may be spherical. The size of the masterbatch is preferably 1 to 10 mm in diameter when spherical, and 0.5 to 2 cm long, 1 to 5 mm thick and 1 to 3 cm wide when rectangular parallelepiped (flake). When it is cylindrical, it preferably has a diameter of 1 to 10 mm and a length of 0.5 to 2 cm.

<組成>
本実施の形態の光触媒スラリー中の水分含有量は5~50重量%がよい、10~40重量%が好ましい。
これ以上になると水の蒸発によりプラスチックの融液の温度が低下して融液が固化してしまい、プラスチックの融液と光触媒を混練することができない。これ以下になると固い光触媒粒子ができて混錬しにくくなる。
本実施の形態の光触媒スラリー中の光触媒粒子の含有量はプラスチックに対して10~50重量%が望ましく、特に20~30重量%が望ましい。これ以下であると光触媒の濃度が低すぎて光触媒マスターバッチを作製したときに使いづらく、これ以上であると光触媒の濃度が高すぎてプラスチックから光触媒が脱離しやすくなる。
<Composition>
The water content in the photocatalyst slurry of the present embodiment is preferably 5 to 50% by weight, preferably 10 to 40% by weight.
If the temperature is higher than this, the temperature of the plastic melt will drop due to the evaporation of water, and the melt will solidify, making it impossible to knead the plastic melt and the photocatalyst. Below this, hard photocatalyst particles are formed and kneading becomes difficult.
The content of the photocatalyst particles in the photocatalyst slurry of the present embodiment is desirably 10 to 50% by weight, particularly desirably 20 to 30% by weight, relative to the plastic. If it is less than this, the concentration of the photocatalyst is too low to make it difficult to use when producing a photocatalyst masterbatch.

ここで、表1に組成の光触媒スラリーの組成範囲を示す。

Figure 2022155422000001
Here, Table 1 shows the composition range of the composition of the photocatalyst slurry.
Figure 2022155422000001

<マスターバッチ>
こうして得られた本実施の形態の光触媒スラリーを押出機に流し込んで加熱あるいは加熱・減圧しながら混錬すると、水が蒸発しながらプラスチックのペレットなどの重合体が融解して光触媒粒子と混合され、微細な光触媒粒子が均一に分散したマスターバッチが得られる。
<Masterbatch>
When the photocatalyst slurry of the present embodiment thus obtained is poured into an extruder and kneaded while being heated or heated and reduced in pressure, water evaporates and polymers such as plastic pellets are melted and mixed with the photocatalyst particles. A masterbatch in which fine photocatalyst particles are uniformly dispersed is obtained.

<光触媒成形品>
このマスターバッチをプラスチックに加えて押出成形すると、光触媒粒子が均一に分散した高性能の光触媒素材を作製することができる。そしてそれを紡糸して糸を作製し、それを織って繊維や不織布や合成紙などを作製することができる。さらにそれらを成形することによって、板やシートやさまざまな形の高性能の光触媒成形品が得られる。
<Photocatalyst molded product>
When this masterbatch is added to plastic and extruded, a high-performance photocatalyst material in which photocatalyst particles are uniformly dispersed can be produced. Then, it can be spun to produce threads, which can be woven to produce fibers, non-woven fabrics, synthetic paper, and the like. Furthermore, by molding them, high-performance photocatalyst molded articles of various shapes such as plates and sheets can be obtained.

以下の実施例1~3の条件を表2にまとめた。

Figure 2022155422000002
以下の評価の合格基準は、99%以上である。実施の形態2が最もよい。The conditions of Examples 1 to 3 below are summarized in Table 2.
Figure 2022155422000002
The acceptance criteria for the following evaluation is 99% or more. Embodiment 2 is the best.

粒径50nmのアナターゼ型75%及びルチル型25%の酸化チタン粒子を、水に30重量%分散した光触媒スラリーに、直径4mmのポリエチレン粒子を加えた。50℃で加熱しながら混錬し、光触媒スラリーを作製した。Polyethylene particles with a diameter of 4 mm were added to a photocatalyst slurry prepared by dispersing 30% by weight of 75% anatase-type and 25% rutile-type titanium oxide particles with a particle size of 50 nm in water. The mixture was kneaded while being heated at 50° C. to prepare a photocatalyst slurry.

これを押出機に流し込んで、減圧しながら240℃に加熱・混錬した。水が蒸発しながらポリエチレン粒子が融解して光触媒粒子と混合され、微細な光触媒粒子が均一に分散したマスターバッチが得られた。
これを融解したポリエチレンに混錬して、光触媒を4重量%含有した。幅20cm、長さ30cm厚さ1cmのまな板に使用できる板を作製した。
This was poured into an extruder, heated to 240° C. and kneaded under reduced pressure. As the water evaporated, the polyethylene particles were melted and mixed with the photocatalyst particles to obtain a masterbatch in which fine photocatalyst particles were uniformly dispersed.
This was kneaded into molten polyethylene to contain 4% by weight of photocatalyst. A 20 cm wide, 30 cm long and 1 cm thick board that can be used as a chopping board was produced.

これを用いて、光触媒性能評価試験方法(JIS R 1702)により大腸菌を用いて抗菌性能試験を行った。
その結果、24時間後、リファレンスの200万個の菌数に対して10個以下になり、99.999%以上の減少率が得られた。この試験を板上の5か所の点で行ったが、いずれも99.999%以上の減少率が得られた。
Using this, an antibacterial performance test was conducted using Escherichia coli according to the photocatalyst performance evaluation test method (JIS R 1702).
As a result, after 24 hours, the number of bacteria decreased to 10 or less compared to 2 million reference bacteria, and a reduction rate of 99.999% or more was obtained. This test was performed at 5 points on the plate, and all of them gave a reduction rate of 99.999% or more.

粒径40nmのアナターゼ型チタン粒子を水に20重量%分散した光触媒スラリーに直径3mm長さ8mmのPET粒子を加え、55℃で加熱しながら混錬し、水分量25重量%の光触媒スラリーを作製した。これを押出機に流し込んで295℃に加熱・混錬すると、水が蒸発しながらPET粒子が融解して光触媒粒子と混合され、微細な光触媒粒子が均一に分散したマスターバッチが得られた。 Add PET particles with a diameter of 3 mm and a length of 8 mm to a photocatalyst slurry in which 20% by weight of anatase titanium particles with a particle size of 40 nm are dispersed in water, and knead while heating at 55 ° C. to prepare a photocatalyst slurry with a water content of 25% by weight. did. When this was poured into an extruder and heated to 295° C. and kneaded, the PET particles were melted while the water was evaporated and mixed with the photocatalyst particles to obtain a masterbatch in which fine photocatalyst particles were uniformly dispersed.

これを融解したPETに混錬して光触媒を5重量%含有した5cm角のフィルムを作製した。これを用いてISO 18071:2016の試験をした。
ファインセラミックス(アドバンストセラミックス、アドバンストテクニカルセラミックス)屋内照明下における光触媒材料の抗ウィルス性特定試験方法によりインフルエンザウィルスを用いて抗ウィルス性能試験を行った。
その結果、ウィルス感染価10万に対して、1時間後、100%不活化という結果が得られた。
This was kneaded with molten PET to prepare a 5 cm square film containing 5% by weight of photocatalyst. Using this, the test of ISO 18071:2016 was performed.
Fine ceramics (advanced ceramics, advanced technical ceramics) Antiviral performance test was conducted using influenza virus according to the specific test method for antiviral properties of photocatalyst materials under indoor lighting.
As a result, 100% inactivation was obtained after 1 hour for a virus infectious titer of 100,000.

粒径30nmのアナターゼ型80%及びルチル型20%の酸化チタン粒子を水に25重量%分散した光触媒スラリーに厚さ1.5mmのポリプロピレンフレークを加え、45℃で加熱しながら混錬し、水分量30重量%の光触媒スラリーを作製した。 Polypropylene flakes with a thickness of 1.5 mm are added to a photocatalyst slurry in which 80% anatase type and 20% rutile type titanium oxide particles with a particle size of 30 nm are dispersed in water at 25% by weight, and kneaded while heating at 45 ° C. to remove moisture. A photocatalyst slurry with an amount of 30% by weight was prepared.

これを押出機に流し込んで、減圧しながら280℃に加熱・混錬することで、微細な光触媒粒子が均一に分散したマスターバッチが得られた。
これをポリプロピレンに混錬して紡糸し、それをさらに織ることで光触媒を4重量%含有した布を作製した。これを用いてJIS R1702ファインセラミックス-光触媒抗菌加工材料の抗菌試験方法及び抗菌効果の方法により黄色ブドウ球菌を用いて抗菌性能試験を行った。その結果、24時間後、リファレンスの150万個の菌数に対して10個以下になり、99.999%以上の減少率が得られた。
酸化チタン粒子は、アナターゼ型とルチル型とを含むものを用いる方が好ましい。光触媒としての活性が高い。アナターゼ型60~90%がよく、75~80%が好ましい。
This was poured into an extruder and heated and kneaded at 280° C. under reduced pressure to obtain a masterbatch in which fine photocatalyst particles were uniformly dispersed.
This was kneaded with polypropylene, spun, and further woven to produce a cloth containing 4% by weight of photocatalyst. Using this, an antibacterial performance test was conducted using Staphylococcus aureus according to JIS R1702 Fine Ceramics-Antibacterial Test Method for Photocatalyst Antibacterial Finished Materials and Antibacterial Effect Method. As a result, after 24 hours, the number of bacteria decreased to 10 or less compared to the reference of 1.5 million, and a reduction rate of 99.999% or more was obtained.
It is preferable to use titanium oxide particles containing an anatase type and a rutile type. Highly active as a photocatalyst. 60-90% anatase is good, preferably 75-80%.

本願の光触媒スラリーと光触媒マスターバッチとそれらの製造方法は、広く光触媒を利用する製品の製造に使用される。本願の光触媒成形品は、家庭、会社、施設などで広く使用される。The photocatalyst slurry and photocatalyst masterbatch of the present application and their production methods are widely used in the production of products utilizing photocatalysts. The photocatalyst molded article of the present application is widely used in homes, companies, facilities, and the like.

Claims (7)

光触媒の粒子と水とプラスチックとを、前記水を蒸発させながら混合する混合工程を含む光触媒スラリーの製造方法。A method for producing a photocatalyst slurry, comprising a mixing step of mixing photocatalyst particles, water, and plastic while evaporating the water. 請求項1の前記混合工程で前記光触媒スラリーの製造をし、
前記光触媒スラリーを用いて、前記プラスチックを溶融してチップ状のマスターバッチに成形する第1成形工程と、を含む光触媒マスターバッチの製造方法。
The photocatalyst slurry is produced in the mixing step of claim 1,
A method for producing a photocatalyst masterbatch, comprising: a first molding step of melting the plastic using the photocatalyst slurry and molding it into a chip-shaped masterbatch.
請求項2の前記マスターバッチをプラスチックに含有させ成形する第2成形工程を、さらに含む光触媒成形品の製造方法。A method for producing a photocatalyst molded article, further comprising a second molding step of incorporating the masterbatch of claim 2 into plastic and molding. 光触媒粒子と水とプラスチックを混合した光触媒スラリーであり、
前記水が5~50重量%含まれる光触媒スラリー。
Photocatalyst slurry is a mixture of photocatalyst particles, water and plastic.
A photocatalyst slurry containing 5 to 50% by weight of water.
前記水は、5~50重量%、前記プラスチックは、40~90重量%である請求項5記載の光触媒スラリー。6. The photocatalyst slurry according to claim 5, wherein the water is 5-50% by weight, and the plastic is 40-90% by weight. 光触媒粒子とプラスチックと水を含む光触媒マスターバッチであり、前記光触媒粒子の表面には前記水が残っている光触媒マスターバッチ。A photocatalyst masterbatch comprising photocatalyst particles, plastic and water, wherein the water remains on the surface of the photocatalyst particles. 光触媒粒子とプラスチックとを含む光触媒成形品であり、
JIS R 1702の試験で評価値が99%以上の光触媒成形品。
A photocatalyst molded article containing photocatalyst particles and plastic,
A photocatalyst molded product with an evaluation value of 99% or higher in the JIS R 1702 test.
JP2021084210A 2021-03-30 2021-03-30 Photocatalyst slurry, photocatalyst masterbatch, photocatalyst molded products and their manufacturing methods. Active JP7048795B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021084210A JP7048795B1 (en) 2021-03-30 2021-03-30 Photocatalyst slurry, photocatalyst masterbatch, photocatalyst molded products and their manufacturing methods.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021084210A JP7048795B1 (en) 2021-03-30 2021-03-30 Photocatalyst slurry, photocatalyst masterbatch, photocatalyst molded products and their manufacturing methods.

Publications (2)

Publication Number Publication Date
JP7048795B1 JP7048795B1 (en) 2022-04-05
JP2022155422A true JP2022155422A (en) 2022-10-13

Family

ID=81259105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021084210A Active JP7048795B1 (en) 2021-03-30 2021-03-30 Photocatalyst slurry, photocatalyst masterbatch, photocatalyst molded products and their manufacturing methods.

Country Status (1)

Country Link
JP (1) JP7048795B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347710A (en) * 1989-04-25 1991-02-28 Kanebo Ltd Manufacture of thermoplastic resin composition and molded material
JPH0691635A (en) * 1992-09-09 1994-04-05 Toray Ind Inc Preparation of polyester composition
WO1997024289A1 (en) * 1995-12-27 1997-07-10 Tohkem Products Corporation Titanium dioxide reduced in volatile water content, process for producing the same, and masterbatch containing the same
JPH1121356A (en) * 1997-07-01 1999-01-26 Kobe Steel Ltd Method for dispersing additive in resin for forming fiber or film
WO2002004569A1 (en) * 2000-07-10 2002-01-17 Mutsuo Himeno Coating composition
JP2008266584A (en) * 2007-03-28 2008-11-06 Mitsui Chemicals Inc Photocatalyst-containing masterbatch
JP2011111562A (en) * 2009-11-27 2011-06-09 Esuteia:Kk Method and apparatus for producing inorganic nanocomposite

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347710A (en) * 1989-04-25 1991-02-28 Kanebo Ltd Manufacture of thermoplastic resin composition and molded material
JPH0691635A (en) * 1992-09-09 1994-04-05 Toray Ind Inc Preparation of polyester composition
WO1997024289A1 (en) * 1995-12-27 1997-07-10 Tohkem Products Corporation Titanium dioxide reduced in volatile water content, process for producing the same, and masterbatch containing the same
JPH1121356A (en) * 1997-07-01 1999-01-26 Kobe Steel Ltd Method for dispersing additive in resin for forming fiber or film
WO2002004569A1 (en) * 2000-07-10 2002-01-17 Mutsuo Himeno Coating composition
JP2008266584A (en) * 2007-03-28 2008-11-06 Mitsui Chemicals Inc Photocatalyst-containing masterbatch
JP2011111562A (en) * 2009-11-27 2011-06-09 Esuteia:Kk Method and apparatus for producing inorganic nanocomposite

Also Published As

Publication number Publication date
JP7048795B1 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
CN100465360C (en) Optic catalyst anti-bacterial mildw-proof negative ion polypropylene monofilament and its preparing method and use
CN109438937B (en) Antibacterial PLA-based degradable food packaging material and preparation method thereof
CN101921428A (en) Monofilament applied to bamboo charcoal air strainer and preparation process and application thereof
KR101759483B1 (en) Synthetic resin with antibiotic and deodorant functional material and manufacture method thereof
KR102472749B1 (en) Manufacturing method of adsorption material with harmful gas removal antibacterial and deodorizing functions
JP2001179109A (en) Photocatalytic granule and method of producing the same
WO2008038350A1 (en) Resin composition, pulverized matter and method of discarding resin composition
JP2007054692A (en) Photocatalyst, its manufacturing method and photocatalyst film
CN109563274B (en) Method for preparing nano-silver particle-impregnated nano-silver organic-inorganic composite resin and antibacterial water pipe prepared by using same
KR101045274B1 (en) Pellet type antimicrobial masterbatch
JP2022155422A (en) Photocatalyst slurries, photocatalyst masterbatches, and photocatalyst molded articles, and methods of producing them
JP4980204B2 (en) Method for producing titanium oxide-based deodorant
Yaipimai et al. Multifunctional metal and metal oxide hybrid nanomaterials for solar light photocatalyst and antibacterial applications
TW202043354A (en) Resin composition containing metallic copper fine particles and method for producing the same
KR100628667B1 (en) Filter comprising antimicrobial nano metal components and process for preparing the same
JPH02273513A (en) Filter for removing harmful substances and its manufacture
JP2017104809A (en) Method for producing photocatalyst-silica composite molding
JP2006232865A (en) Titania-containing polymer composition
KR101824189B1 (en) Manufacturing method of hydrate of zinc carboxylate, hydrate of zinc carboxylate manufactured therefrom and material for antimicrobial plastic comprising the hydrate of zinc carboxylate
JP2000044241A (en) Anatase titania deposited body and its production
JP2841668B2 (en) Method for manufacturing activated carbon moldings
JP3333791B2 (en) Antibacterial resin composition
KR102354109B1 (en) Core-shell structure apatite-plastic molded product using titanium dioxide photocatalyst
JP2005343725A (en) Production method of porous sintered compact
Jesionowski et al. Multifunctional Oxide-Based Materials: From Synthesis to Application

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

R150 Certificate of patent or registration of utility model

Ref document number: 7048795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150